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Resting-state fMRI is widely used to study brain function and connectivity. However, interpreting pat-
terns of resting state (RS) fMRI activity remains challenging as they may arise from different neuronal
mechanisms than those triggered by exogenous events. Currently, this limits the use of RS-fMRI for
understanding cortical function in health and disease. Here, we examine the phase synchronization (PS)
properties of blood-oxygen level dependent (BOLD) signals obtained during visual field mapping (VFM)
and RS with 7T fMRI. This data-driven approach exploits spatiotemporal covariations in the phase of
BOLD recordings to establish the presence of clusters of synchronized activity. We find that, in both VFM
and RS data, selecting the most synchronized neighboring recording sites identifies spatially localized PS
clusters that follow the topographic organization of the visual cortex. However, in activity obtained
during VFM, PS is spatially more extensive than in RS activity, likely reflecting stimulus-driven inter-
actions between local responses. Nevertheless, the similarity of the PS clusters obtained for RS and sti-
mulus-driven fMRI suggest that they share a common neuroanatomical origin. Our finding justifies and
facilitates direct comparison of RS and stimulus-evoked activity.

& 2017 Elsevier Inc. All rights reserved.
1. Introduction

Resting state (RS) fMRI is a popular method to examine brain
function and connectivity in health and disease. Blood-oxygen level
dependent (BOLD) fluctuations exhibit extensive spatial structure
during RS, making RS-fMRI a valuable measure of brain function and
metabolism (Raichle, 2015; Vincent et al., 2007; Yeo et al., 2011). It is
also becoming an increasingly important measure in clinical diag-
nosis (Fox, 2010; Lee et al., 2013). However, the physiological me-
chanisms underlying RS fMRI activity are still poorly understood.
Responses at different recording sites can be correlated as a result of
neuroanatomical connections, or metabolic and hemodynamic re-
lationships (Buzsáki et al., 2007; Matsui et al., 2016; Logothetis et al.,
2009; Tong et al., 2015). Therefore, interpretation of function and
connectivity patterns estimated from RS remains challenging. Fur-
thermore, high-resolution fMRI and methods to analyze patterns of
neuronal responses on the cortical surface are becoming increas-
ingly common, particularly in vision research (Aquino et al., 2012;
Dumoulin and Wandell, 2008; Schira et al., 2009; Haak et al., 2013).
el).
This creates a need for methods that can adequately describe the
interactions between structural connections, neuronal metabolism
and hemodynamics at the cortical surface level.

Previous studies have examined the structure of occipital BOLD
fluctuations in RS and shown that they are influenced by several
factors: local spatial fluctuations within visual field maps that may
reflect aggregate population activity (Butt et al., 2013; Heinzle
et al., 2011; Parker et al., 2016), widespread iso-eccentric fluctua-
tions within and between visual areas (Arcaro et al., 2015; Yeo
et al., 2011; Butt et al., 2015) that may partly reflect the transition
between foveal and peripheral regions (Bock et al., 2015), and vi-
suotopically organized co-fluctuations between visual areas (Rae-
maekers et al., 2014; Gravel et al., 2014; Bock et al., 2015; Heinzle
et al., 2011), which may reflect links between neuronal popula-
tions sharing the same visual field selectivity within and across
areas. However, the neuronal correlates of these components, their
functional relevance, and their interactions are not yet fully un-
derstood. For this reason, demonstrating that patterns of BOLD
responses derived from both stimulus-driven and spontaneous
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brain activity can be parcelled into similar, spatially specific motifs
would provide valuable insights into the neuronal correlates un-
derlying RS-fMRI activity.

Here, we take a new approach by investigating the spatial
structure that arises from local covariations in the phase of low-
frequency BOLD fluctuations within early visual cortex. First, we ask
whether clustering based on such phase synchronization (PS) ana-
lysis establishes modular spatial structure. Next, we ask whether the
synchronization clusters derived from signals recorded during RS
and VFM are similar. Finally, we examine whether synchronization
between clusters with similar visual field position selectivity across
visual areas reflects the underlying layout of neuroanatomical con-
nections, which may provide clues to their origin.

To establish and quantify the spatial structure of PS we take a
modeling approach in which we analyze how PS and clustering
change with cortical and visuotopic distance. Together, this lets us
characterize the spatial extent of local synchrony and parcelate
recording sites into topographically localized clusters.

To preview our main finding, we find that clustering the phase
covariations in both RS and VFM results in discrete topographically
organized synchronization clusters that are stable across sessions
and conditions (VFM and RS). This suggests that the synchroni-
zation clusters obtained from both RS and VFM activity are sub-
served by common neuroanatomical underpinnings.
2. Methods

2.1. Data

The empirical data used in the main body of this paper has
previously been described in Gravel et al. (2014). The main results
were replicated using a second data set that has previously been
described in Raemaekers et al. (2014). The methods and results for
this second dataset are presented in the supplementary information.

2.1.1. Participants
Data was acquired for four participants with normal visual

acuity (age: S1 ¼ 26, S2 ¼ 30, S3 ¼ 31,S4 ¼ 40). Experimental
procedures were approved by the medical ethics committee of the
University Medical Center Utrecht.

2.1.2. Visual field mapping stimulus
Visual stimuli were presented by back-projection onto a

15.0 � 7.9 cm gamma-corrected screen inside the MRI bore. The
subject viewed the display through prisms and mirrors, and the
total distance from the subjects eyes (in the scanner) to the display
screen was 36 cm. Visible display resolution was 1024 � 538
pixels. The stimuli were generated in Matlab (Mathworks, Natick,
MA, USA) using the PsychToolbox (Brainard, 1997; Pelli, 1997). The
visual field mapping paradigm consisted of drifting bar apertures
at various orientations, which exposed a 100% contrast checker-
board (switching contrast at 5 Hz) moving parallel to the bar or-
ientation. After each horizontal or vertical bar orientation pass,
30 s of mean-luminance stimulus were displayed. Throughout the
VFM, subjects fixated a dot in the center of the visual stimulus. The
dot changed color between red and green at random intervals. To
ensure attention was maintained, subjects pressed a button on a
response box every time the color changed. Detailed procedures
can be found in (Dumoulin and Wandell, 2008) and (Harvey and
Dumoulin, 2011). The radius of the stimulation area covered
6.25° (eccentricity) of visual angle from the fixation point.

2.1.3. Resting state
During the resting state scans, the stimulus was replaced with a

black screen and subjects closed their eyes. The lights in the
scanning room were off and blackout blinds removed light from
outside the room. The roomwas in complete darkness. Thus, visual
stimulation was minimized. The subjects were instructed to think
of nothing in particular and not to fall asleep.

2.1.4. MRI acquisition
Functional T2*-weighted 2D echo planar images were acquired on

a 7 T scanner (Philips, Best, Netherlands) using a 32 channel head coil
at a voxel resolution of 1.98 � 1.98 � 2.00 mm, with a field of view
of 190 � 190 � 50 mm. TR was 1500 ms, TE was 25 ms, and flip
angle was set to 80∘. The volume orientation was approximately
perpendicular to the calcarine sulcus. In total, eight 240-volumes
functional scans were acquired, comprising 5 resting state scans (RS)
interleaved with 3 VFM scans (first was an RS scan). High resolution
T1-weighted structural images were acquired at a resolution of
0.49 � 0.49 � 0.80 mm, with a field of view of 252 �
252 � 190 mm. TR was 7 ms, TE was 2.84 ms, and flip angle was 8∘.
We compensated for intensity gradients across the image using an
MP2RAGE sequence, dividing the T1 by a co-acquired proton density
scan of the same resolution, with a TR of 5.8 ms, TE was 2.84 ms, and
flip angle was 1∘. Physiological recordings were not collected.

2.1.5. Preprocessing
First, the T1-weighted structural volumes were resampled to 1 mm

isotropic voxel resolution. Gray and white matter were automatically
labeled using Freesurfer and labels were manually edited in ITKGray to
minimize segmentation errors (Teo et al., 1997). The cortical surface
was reconstructed at the white/gray matter boundary and rendered as
a smoothed 3D mesh (Wandell et al., 2000). Motion correction within
and between scans was applied for the VFM and the RS scans (Nes-
tares and Heeger, 2000). Subsequently, data were aligned to the ana-
tomical scans and interpolated to the anatomical segmentation space
(Nestares and Heeger, 2000). Instrumental drift was removed by de-
trending with a discrete cosine transform (DCT) filter with cutoff fre-
quency of 0.01 Hz. In order to reduce nuisance from high frequency
physiological variation, the detrended signals were filtered with a low-
pass 4th order Butterworth filter with cutoff frequency of 0.1 Hz. The
resulting signals were used for population receptive field (pRF) mod-
eling (Section 2.2.1). Additionally, in order to analyze narrow band
low-frequency synchronization patterns (Section 2.2.2), detrended
signals were band-pass filtered using two 4th order bandpass But-
terworth filter with cutoff 0.04 Hz and 0.07 Hz (Glerean et al., 2012).

2.2. Analysis

2.2.1. Visual field mapping
Visual field maps V1, V2, and V3 were mapped using the pRF

method (Dumoulin and Wandell, 2008). This summarizes the visual
field position to which each recording site responds as a circular
Gaussian in visual space. An isotropic 2D Gaussian was chosen as pRF
shape characterized by three parameters: x and y (position), and size
(sigma). Here, a large set of candidate pRF models are combined with
the stimulus aperture to generate predictions of the neuronal re-
sponses each candidate pRF would produce. This predicted neuronal
response time course is convolved with the hemodynamic response
function (HRF) to give a set of candidate predicted fMRI response time
courses for each combination of pRF parameters. The best fitting pre-
dicted fMRI time course and its associated pRF parameters are then
chosen to summarize the response of each recording site, together with
the model variance explained to summarize the model goodness of fit
(Dumoulin and Wandell, 2008). Recording sites were excluded from
subsequent analyses if their best fitting pRF models explained less than
30% of response variance, or had visual field eccentricities beyond 6°.

2.2.2. Estimating phase synchronization
To establish the degree of synchronization of low-frequency
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BOLD fluctuations, we estimated the phase locking values (PLV) of
the BOLD signals of all pairs of recording sites within a visual field
map. The PLV is a measure of phase synchronization widely de-
scribed in the literature (Tass et al., 1998; Lachaux et al., 1999) and
it has been used in fMRI (Glerean et al., 2012; Laird et al., 2002;
Ponce-Alvarez et al., 2015). We first obtained estimates of the in-
stantaneous phase of the band-pass filtered BOLD signal by com-
puting the Hilbert transform and then taking the angle of the re-
sulting analytical signal (Laird et al., 2001). Data were bandpass
filtered because instantaneous phase estimates thus obtained only
admit clear physical interpretation for a narrow frequency band.
After obtaining instantaneous phase estimates for each recording
site at each time point, we discarded the 5 first and 5 last time
points (the first and last 7.5 s of recording) to avoid edge effects
inherent to the Hilbert transform. Afterwards, we computed the
PLV matrix by using the following equation:
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where PLVi,j represents the time averaged symmetric phase locking
values matrix between the recording sites i,j; Δϕi,j(t) is the in-
stantaneous phase difference between any two recording sites at
time t and T is the total duration of the recording. This matrix
summarizes the average synchronization tendency of low-fre-
quency BOLD fluctuations over the scanning session.

2.2.3. Parcellation into synchronization clusters
To identify the spatial structure that arises from local covaria-

tions in the phase of low-frequency BOLD fluctuations, we sear-
ched for groups of neighboring recording sites (contiguous along
the grid defined by the cortical surface reconstruction) that were,
on average, highly synchronous during the entire duration of a
scan. This was achieved by selecting the 5% strongest entries in the
PLV matrix. Afterwards, we pruned the 5% strongest entries in the
PLV matrix by setting the synchronization values of recording sites
beyond 3 mm distance to zero. The cortical distances between
recording sites were estimated as the shortest distance along the
cortical surface manifold using Dijkstras algorithm (Dijkstra, 1959)
(Dijkstra, 1959). We choose a 3 mm distance threshold to em-
phasize short range (local, contiguous along the cortical surface)
over long range (large-scale, between distant cortical folds) in-
teractions. Pruning the PLV matrix before clustering helped mini-
mize the contribution of long-range interactions while empha-
sizing local interaction structure. This implies that two distant
voxels could be assigned to the same cluster only if they were
chained together through synchronized neighbors.

Next, we clustered the pruned PLV matrix using the Louvain
clustering algorithm (Blondel et al., 2008). The Louvain algorithm
finds the optimal modular partition of non-overlapping clusters by
maximizing the number of within-cluster connections while mini-
mizing the number of between-cluster connections. The algorithm
depends on a scaling parameter that determines the scale of the
modular partition, which we set to 1, the default value defined for
classic modularity (Rubinov and Sporns, 2010). Due to the non-
deterministic nature of the clustering algorithm, slightly different
solutions are obtained each time the algorithm is run. Therefore we
applied an iterative approach. First, we run the Louvain clustering
algorithm 10 times and then calculated an agreement matrix for all
iterations. The entries in this matrix indicate the probability that a
link was assigned to the same partition across all iterations. Next, we
run the clustering algorithm another 10 times on the most probable
entries of the agreement matrix (agreement 40.9). This approach
converges to the most probable modular partition (Betzel et al.,
2013) for each VFM and RS scan. Lastly, we computed a consensus
partition from the resulting modular partitions of the individual
VFM and RS scans. For illustrative purposes, we render the con-
sensus partitions obtained from all VFM and RS scans on inflated
reconstructions of the cortical surface and in visual space (using the
pRF positions of the recording sites in each cluster).

2.2.4. Reproducibility of synchronization clusters
To determine whether identified PS clusters were similar across

scanning sessions, we computed the normalized mutual information
(NMI) between modular partitions derived from different scans.
First, we computed NMI values between all scan pairs of the same
category (3 VFM and 5 RS). Second, we computed the NMI between
the consensus RS and VFM partitions. To demonstrate that NMI
values reflected genuine features of the data (similar spatial covar-
iations) rather than methodological artifacts, we constructed a sur-
rogate NMI distribution under the null hypothesis that high NMI
values could be obtained from data in which there are no mean-
ingful spatial correlations (i.e. spatially randomized data). This al-
lowed us to compare empirical NMI estimates to a baseline.

To construct the surrogate NMI distribution, we first generated
30 surrogate data sets for each visual area by permuting the in-
dices of the grid defined by the cortical surface reconstruction.
This removed the spatial structure of the data while keeping the
autocovariance and temporal covariations intact. We choose to
shuffle grid and not voxel space because shuffling before inter-
polating to gridspace can remove some extremes in the data,
smoothing it out while bringing everything towards the mean
(Hagler et al., 2006). Second, we computed modular partitions for
each surrogate data set as we did with the empirical data. Third,
we computed the NMI between these surrogate partitions and the
empirical partitions, obtaining a surrogate distribution of NMI
values. Finally, we compared this distribution to the empirical NMI
distributions using a Mann-Whitney test. This gave the probability
of observing each empirical NMI distribution by chance.

Additionally, we examined whether the size of the clusters
derived from RS and VFM were similar by computing the cortical
surface area of each cluster. Only recording sites directly on the
white-gray matter boundary were considered for area computa-
tion. Cluster areas were then averaged for each visual field map
and hemisphere, giving a total of 24 averages for VFM and RS. We
used the Pearson correlation coefficient between average cluster
areas derived from RS and VFM data to compare their similarity.

2.2.5. Visuotopic organization of phase synchronization clusters
To examine the visuotopic organization of clusters, we in-

vestigated how the probability of any two recording sites sharing a
cluster changed as a function of the visual field distance between
their population receptive fields (pRF). For all visual field maps,
hemispheres and subjects, we computed the binomial probability of
sharing a cluster for the RS-derived consensus partition for bins of
0.25∘ of visual field distance. The visual field distances between all
recording pairs were estimated in the radial and angular directions as
the difference in their corresponding pRF eccentricities and arc dis-
tance, respectively. The arc distance was computed by multiplying the
pRF polar angle difference with the average pRF eccentricity of any
two recording sites. To estimate how the range of cluster membership
probability changes with radial and arc distance we fitted binomial
distributions with the radial and arc distances as independent vari-
ables, and computed the decay factor of these probabilities. To ensure
probabilities were computed between truly adjacent locations, only
arc distances between iso-eccentric and radial distances between iso-
angular locations were considered (a tolerance of 2∘ was used).

2.2.6. Spatial extent of phase synchronization
We also determined the spatial extent of phase synchronization

(PS) by estimating how it decreases with cortical and visuotopic
distance. First, for each visual field map, subject and scan, we
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computed the average PLV for every 1 mm increase in cortical dis-
tance. We then quantified the spatial extent of PS by drawing on a
framework developed in geophysics for the empirical evaluation of
spatial dependencies: the variogram (Ye et al., 2015; Parker et al.,
2016). The variogram provides a measure of how much two samples
vary depending on their distance. In order to adapt the method to
describe the dependency of the PLV with cortical distance, we pro-
ceeded as follows. First, we defined an exponential model by cen-
tering an exponential function at zero distance and keeping its
maximum amplitude at 1, the maximum possible value for the PLV.
We then varied the decay factor (in mm of cortical distance), and the
baseline PLV of this exponential model to fit the distance-binned PLV
data. We choose the exponential model because the relation between
functional connectivity and cortical distance is well described by an
exponential decay (Butt et al., 2013) and because the models para-
meters have a direct physical interpretation, in millimeters of cortical
distance and PS magnitude (PLV). This allowed us to summarize the
spatial extent of the aggregate synchronous activity contributed by a
set of neighboring recording sites (synchronization range) and their
long range baseline interactions (baseline). One important difference
between our approach and variogram analysis as applied in geo-
physics is that here we use the decay factor as a measure of the
synchronization range. In a standard variogram analysis, the range
corresponds to 3 times the decay factor and roughly describes the
region in which spatial correlations dissipate into randomness (here
baseline). Synchronization range (the decay factor) and baseline were
estimated for each subject, scan and visual area separately.

Additionally, we examined how PS decreases with visuotopic
distance. Similarly as previously described, for each visual field
map combination (V1-V1, V2-V2, V3-V3, V1-V2, V1-V3 and V2-V3),
subject and scan, we computed the average PLV for every 1° in-
crease in visuotopic distance. Visuotopic distances were computed
using the following equation:

θ θ= + − ( − ) ( )D r r r r cos2 2i j i j i j i j,
2 2 2 2

where D(i,j) represents the visuotopic distance between the re-
cording sites i,j. As explained previously, we modeled the range and
baseline of PS in visual space by using an exponential decay func-
tion. To test for differences in range and baseline between VFM and
RS derived estimates, we computed two sample t-tests. To test
whether there was a correlation between synchronization range and
the cortical areas (in mm) of the synchronization clusters in different
scans, we computed the Pearson correlation between the synchro-
nization range and cluster cortical areas for data grouped across
subjects, visual areas and scans (5 for RS and 3 for VFM).

2.2.7. Intra and inter-hemispheric cluster connectivity
We examined whether clusters sharing similar visual field se-

lectivity have higher PLV across areas and hemispheres. To answer
this, we proceeded as follows. Clusters were first grouped over foveal
and peripheral quarter-fields using the averaged eccentricity and polar
angle pRF preferences of their cortical grid points. The transition be-
tween fovea and periphery was set to 2.2°. The grouping process re-
sulted in a matrix of 24 ROIs, 4 for each area (V1, V2 and V3) in each
hemisphere. Signals for each ROI were obtained by averaging the
minimally preprocessed signals (after detrending) and filtering in the
in the 0.04–0.07 Hz. From these signals, the PLV was computed re-
sulting in 24 � 24 PLV matrices for each subject, scan and condition
(12 � hemisphere). These matrices were then averaged over scans
and the resulting grand averages classified as intra- or inter-hemi-
spheric functional connections. Subsequently, these connections were
z-scored (separately) and evaluated for significance across subjects
using permutations corrected for multiple comparisons. We then
asked if the resulting PLV-based functional connectivity matrices
matched the underlying homotopic anatomical connections. For this
purpose, we created a binary matrix with ones indicating homotopic
connections between foveal and peripheral quarter-fields in different
areas and hemispheres and used the Spearman correlation between
the PLV-based connectivity matrices and the matrix representing
homotopic anatomical connections.
3. Results

3.1. Synchronization clusters derived from resting state and visual
field mapping

We first asked two questions: 1) whether spatially localized pat-
terns of functional connectivity within visual areas could be derived
from resting state (RS) data; and 2) whether these patterns were si-
milar to those evoked by visual field mapping (VFM) stimuli. Both in
RS and VFM, clustering the 5%most synchronized neighbours revealed
a modular network structure that maps to discrete cortical regions
that group recording sites with similar eccentricity and polar angle
preference. Fig. 1 shows the parcellation based on the consensus
clustering across individual scans in both RS and VFM for one parti-
cipant. PS clusters obtained from one RS scan were significantly more
similar to those from another RS scan than they were to clusters from
surrogate RS data with recording sites randomly permuted (average
V1 normalized mutual information (oNNMI4to empirical RS data
was 0.744, while 〈NMI〉to surrogate RS data was 0.635. p o 0.0001. All
subjects show this result in V1, V2 and V3, as shown in Supplementary
Table 1). Importantly, consensus cluster partitions obtained from VFM
data were significantly more similar to clusters from RS data
(oMNI4 ¼ 0.745) than they were to clusters from surrogate RS data
with recording site locations randomly permuted (oNMI4 ¼ 0.623)
(p o 0.001) (Supplementary Table 2). These results indicate that PS
clusters were stable in space both across scanning runs and different
conditions. The average cortical surface area of clusters derived from
VFM and RS was strongly correlated (Pearson correlation coefficient
r ¼ 0.94, p o 10 �11) but clusters were significantly larger in VFM
than in RS (p ¼ 0.0045) (Fig. 2A).

3.2. Visuotopic organization of synchronization clusters

Next, we examined the visuotopic organization of synchroni-
zation clusters to test whether the clustering reflects neuronal
response preferences of the recording sites. We quantified how the
probability of any two recording sites sharing a cluster changed as
a function of the radial and arc distances between recording sites.
In both radial and angular directions, recording sites are more
likely to share a cluster if their pRFs are close in visual space
(Fig. 2B and C). However, the probability of sharing a cluster de-
clines faster with visual field distance in the angular than the ra-
dial direction. Therefore, the visual field extent of clusters is
elongated along the radial direction both in RS (decay factor: 1.93°
for the radial direction and 0.3° for the angular direction) and in
VFM (decay factor: 1.65° for the radial direction and 0.25° for the
angular direction). This systematic asymmetry in the relationship
between visual position preferences and clustering cannot be
straightforwardly explained by relationships to cortical location.

3.3. Comparison of the spatial extent of phase synchronization be-
tween RS and VFM

We next asked whether the spatial extent of phase synchronization
differed between VFM and RS scans. To test this, we fit the relationship
between the PLV and cortical distance as an exponential function. This
help us quantifies the synchronization range and baseline (long-range)
magnitude of the PLV as the decay factor and offset, respectively
(Fig. 3). Across subjects and scans, in V1, V2 and V3, the
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synchronization range spread over a larger cortical distance in VFM
(mean (SD): V1 ¼ 7.72 mm (0.75); V2 ¼ 7.81 mm (1.13) and
V3 ¼ 7.92 mm (1.79)) than in RS (mean (SD): V1 ¼ 3.19 mm (1.17);
V2 ¼ 2.97 mm (1.41) and V3 ¼ 3.11 mm (0.86)). In VFM, baseline
synchronization estimates were smaller (mean (SD): V1 ¼ 0.24
(0.022); V2 ¼ 0.37 (0.07) and V3 ¼ 0.36 (0.09)) than those for RS
(mean (SD): V1 ¼ 0.46 (0.069); V2 ¼ 0.45 (0.068) and V3 ¼ 0.45
(0.11)). Differences between VFM and RS derived synchronization range
and baseline were significant in all cases (two sample t-test: p o 10-5
for V1; p ¼ 0.0252 for V2; p ¼ 0.0307 for V3). Next, we asked how
phase synchronization changed between voxels, within and between
areas, with close visuotopic selectivity in VFM and RS.Similarly to what
we previously described, we fit an exponential function to the re-
lationship between the PLV and visuotopic distance instead (Fig. 4).
Across subjects and scans, within V1, V2, V3 and between V1-V2, V1-
V3 and V2-V3, the synchronization range spread over a larger visuo-
topic distance (in degrees of visual angle) in VFM (mean (SD):
V1 ¼ 0.99° (0.14); V2 ¼ 1° (0.13); V3 ¼ 0.95° (0.19); V1-V2 ¼ 0.97°
(0.14); V1-V3 ¼ 0.89° (0.15) and V2-V3 ¼ 0.94° (0.14)) than in RS
(mean (SD): V1 ¼ 0.45° (0.17); V2 ¼ 0.51° (0.16); V3 ¼ 0.44° (0.22);
V1-V2 ¼ 0.42° (0.18); V1-V3 ¼ 0.32° (0.18) and V2-V3 ¼ 0.41° (0.21)).
In VFM, baseline synchronization estimates were smaller (mean (SD):
V1 ¼ 0.21 (0.013); V2 ¼ 0.22 (0.017); V3 ¼ 0.24 (0.024); V1-
V2 ¼ 0.22 (0.013); V1-V3 ¼ 0.23 (0.015) and V2-V3 ¼ 0.23 (0.011))
than those for RS (mean (SD): V1 ¼ 0.45 (0.08); V2 ¼ 0.39 (0.08);
V3 ¼ 0.43 (0.11); V1-V2 ¼ 0.39 (0.073); V1-V3 ¼ 0.38 (0.074) and V2-
V3 ¼ 0.4 (0.095))). Differences between VFM and RS derived syn-
chronization range and baseline were significant in all cases (two
sample t-test: p o 10-5 for all cases). Finally, we asked whether there
was a correlation between synchronization range and the areas of the
synchronization clusters in different RS scans. To this end, we com-
puted the Pearson correlation between the synchronization range and
the mean cluster areas for data grouped across subject, resting state
scans and visual areas. For cortical distances, we found no significant
correlation between synchronization range and mean cluster areas
(r ¼ �0.044, p ¼ 0.737, n ¼ 60). For visuotopic distances, we found a
weak correlation (r ¼ 0.31, p ¼ 0.0128, n ¼ 60).
Fig. 1. Consensus synchronization clusters obtained for all VFM and RS scans of a single
and 5S). Modules depicted in the cortical surface reconstruction and in visual space (thei
different colors, which correspond between cortical surface and visual field representati
may not match between RS and VFM.
3.4. Homotopic anatomical connectivity of cluster synchronization

We also asked whether clusters sharing similar visual field
selectivity had higher PLV across visual areas and hemispheres. To
answer this, we grouped the data in each hemisphere across up-
per/lower foveal and peripheral quadrants and computed sig-
nificant PLV-based functional (intra- and inter-hemispheric)con-
nections for RS and VFM data (p o 0.001, permutations corrected
for multiple comparisons. See Fig. 5). The resulting binary matrices
were compared to a binary matrix consisting of connections be-
tween ROIs with similar visuotopic selectivity using Spearman
correlation (intra-hemispheric: 0.45 for RS and 0.56 for VFM. Inter-
hemispheric: 0.46 for RS and 0.57 for VFM. p o 0.0001 for all
cases). The match between PLV-based functional connections and
anatomical connections increased in VFM.
4. Discussion

Using covariations in local phase synchrony to parcelate the fMRI
signal, we revealed a stable spatial structure in BOLD fluctuations re-
corded during resting state (RS). This spatial structure, which we
identified as phase synchronization (PS) clusters, was also observed in
response to visual field mapping (VFM) stimuli. Interestingly, the
magnitude and spatial extent of PS varied in different RS scans yet the
shape, elongated along eccentricity, and location of the PS clusters
remained stable. Importantly, the topographical organization of syn-
chronized hemodynamic activity across areas strongly reflected the
layout of homotopic anatomical connections. The similar shape and
location of the PS clusters obtained for RS and stimulus-driven fMRI,
together with the high synchrony between clusters sharing similar
visual field position selectivity across visual cortical areas and hemi-
spheres, suggest that they share a common neuroanatomical origin.
Therefore, our findings justify and facilitate direct comparison of RS
and stimulus-evoked activity.
subject (results for other subjects are included in supplementary materials Figs. 1S
r perimeter) using each recording sites pRF position. Different clusters are shown in
ons (recording sites within 0–6° of eccentricity). The number of clusters and colors



Fig. 2. Spatial aspects of the synchronization clusters. (A) Correlation between cortical surface areas of VFM and RS derived clusters. Average areas of cluster were obtained
for each visual field map in each subject hemispheres. The average cortical surface area of clusters was significantly correlated (r ¼ 0.94, p o 10�11) but nevertheless were
significantly larger for estimates based on VFM or RS data (p ¼ 0.0045, Wilcoxon signed rank test). As most data points are distributed above the unity line, this indicates
that the synchronization cluster were slightly larger when derived from the VFM data. (B) In RS, shared cluster membership probability decreases with visual field distance.
The probability of two recording sites sharing a synchronization cluster decreases with the visuotopic distance between the recording sites pRFs for both the radial (blue) and
the angular direction (red). The spread of shared cluster membership was greater along the radial direction (decay factor ¼ 1.93° for RS and 1.65° for VFM) compared to the
angular direction (decay factor ¼ 0.3° for RS and 0.25° for VFM). Error bars correspond to the binomial probability and its confidence interval for bins of 0.25° of visuotopic
distance. The continuous trace corresponds to the binomial probability fit of all data within 0–6° of visuotopic distance. The binomial fits were obtained after grouping the
data over areas, scans, subjects and conditions. (C) Same as in (B) but for the VFM data.
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4.1. Phase-synchronization-based parcellation of RS fMRI signals
reveals topographically organized clusters in early visual cortex

Analyzing the phase synchronization (PS) of low-frequency
BOLD fluctuations within early visual cortex, we revealed syn-
chronization clusters during resting state (RS). The spatial struc-
ture was consistent among different RS scans, indicating that
within-area local interactions are preserved during RS. This
within-area stability is in contrast to the variability in between-
area interactions observed in previous studies (Heinzle et al., 2011;
Raemaekers et al., 2014; Butt et al., 2013; Gravel et al., 2014).
Whereas between-area interactions are less stable during RS,
during VFM they become more stable (Gravel et al., 2014; Arcaro
et al., 2015; Heinzle et al., 2011; Roseman et al., 2016), giving rise
to a synchronization-based structure that is consistently found
across subjects (as shown by Fig. 5). Both in RS and VFM, the PLV
structure resembled the layout of homotopic anatomical connec-
tions (cortical connections between visual areas sharing similar
visual field position selectivity) within and between hemispheres
(Fig. 5). The finding that across-area cluster synchronization
ig. 3. Phase synchronization as a function of cortical distance in areas V1, V2 and V3. In VFM
kely reflecting stimulus induced interactions. In contrast, in RS, baseline synchronization is
gnals. To quantify range and baseline, we fit an exponential function (dotted lines) to the av
rror of the mean corrected for upsampling the functional data to the reconstructed cortic
ronization range spread over a larger cortical distance in VFM (mean (SD): V1 ¼ 7.66 mm
1 ¼ 3.91 mm (1.55); V2 ¼ 4.00 mm (2.35) and V3 ¼ 3.45 mm (0.83)). In VFM, baseline s
.026) and V3 ¼ 0.23 (0.039)) than those for RS (mean (SD): V1 ¼ 0.46 (0.045); V2 ¼ 0
ronization range and baseline estimates were significant in all cases (p o 0.05, two sam
bjects and scans, was: 0.33 for VFM scans and 0.42 for RS scans. Data for a single subject
follows the underlying layout of homotopic anatomical connec-
tions points to a structural anchoring in spontaneous fMRI activity.

4.2. Similar location and shape, but different spatial extent of phase
synchronization clusters for resting state and visual field mapping

Similar cluster structure was observed in BOLD activity during RS
and in response to visual field mapping (VFM) stimuli. However, the PS
clusters found in VFM were slightly larger than those found in RS
(Fig. 2A). This mirrors our result that synchronization range spreads
over a larger cortical extent in VFM, but local variations in the mag-
nitude and spatial extent of PS do not affect the overall location and
shape of the PS clusters. The fact that PS between neighboring re-
cording sites (i.e. synchronization range) decreases more gradually
with cortical and visual distance in VFM than in RS likely reflects a
stimulus-evoked increase in spatial interactions (Lacy et al., 2016;
Schellekens et al., 2013). The narrower synchronization range in RS
data is consistent with recent findings demonstrating that within- and
between-area interactions in primary and extrastriate visual areas have
a narrower spatial footprint during RS than during VFM (Heinzle et al.,
, phase synchronization range spread over a larger cortical distance than in RS scans,
higher, possibly indicating increased long range interactions or the effect of global
erage PLV binned by cortical distance (colored points). Error bars show the standard
al surface grid (upsampling factor ¼ 8). Across scans, in V1, V2 and V3, the syn-
(0.40); V2 ¼ 9.31 mm (0.49) and V3 ¼ 10.66 mm (1.34)) than in RS (mean (SD):

ynchronization estimates were smaller (mean (SD): V1 ¼ 0.23 (0.007); V2 ¼ 0.30
.44 (0.095) and V3 ¼ 0.48 (0.18)). Differences between VFM and RS derived syn-
ple t-test). Global average PLV floor, computed by permuting voxel indexes across
. Data for other subjects are included in the supplementary material (Fig. 3S).



Fig. 4. Phase synchronization as a function of visuotopic distance for areas V1, V2 and V3. Phase synchronization, expressed as PLV, was grouped from 0 to 10∘ in bins of 1∘.
Points represents the voxel averages across bins for each scan. To quantify differences between VFM and RS we fit an exponential function to the average PLV binned by
visuotopic distance and compute the range and baseline. Across scans, within V1, V2, V3 and between V1-V2, V1-V3 and V2-V3, the synchronization range spread over a
larger visuotopic distance (in degrees of visual angle) in VFM (mean (SD): V1 ¼ 1.02° (0.1); V2 ¼ 0.98° (0.05); V3 ¼ 1.04° (0.2); V1-V2 ¼ 0.97° (0.09); V1-V3 ¼ 0.94° (0.12)
and V2-V3 ¼ 0.98° (0.07)) than in RS (mean (SD): V1 ¼ 0.55° (0.15); V2 ¼ 0.47° (0.088); V3 ¼ 0.38° (0.099); V1-V2 ¼ 0.43° (0.22); V1-V3 ¼ 0.36° (0.13) and V2-V3 ¼ 0.38°
(0.075)). In VFM, baseline synchronization estimates were smaller (mean (SD): V1 ¼ 0.21 (0.016); V2 ¼ 0.21 (0.016); V3 ¼ 0.22 (0.04); V1-V2 ¼ 0.20 (0.012); V1-V3 ¼ 0.21
(0.014) and V2-V3 ¼ 0.22 (0.089)) than those for RS (mean (SD): V1 ¼ 0.44 (0.053); V2 ¼ 0.43 (0.13); V3 ¼ 0.48 (0.16); V1-V2 ¼ 0.37 (0.088); V1-V3 ¼ 0.36 (0.1) and V2-
V3 ¼ 0.44 (0.14))). Differences between VFM and RS derived synchronization range and baseline were significant in all cases (two sample t-test: p o 10-5 for all cases). Data
for a single subject. Data for other subjects are included in the supplementary material (Fig. 4S).
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2011; Raemaekers et al., 2014; Butt et al., 2013; Gravel et al., 2014).
However, long range (baseline) PLV interactions were higher during RS,
possibly indicating increased long-range interactions or global activity.
In some RS scans, between ROI interactions in PS resembled those seen
in visual field mapping. Interestingly, in a previous study of the first
dataset, connective field models computed from those scans revealed
well-ordered topographic maps (Gravel et al., 2014).

An interesting feature of the cluster shape is its radial-tangential
anisotropy. PS clusters derived from both RS and VFM are radially
elongated in the visual field maps (Fig. 2B and C). One possible factor
for this elongation is a certain non-uniformity introduced by the shape
of the ROIs. However, the ROIs are not always elongated (while V2 and
V3 quarter fields sometimes are, V1 quarter fields generally not).
Moreover, clusters are too small to be affected by ROI shape. Another
possibility is that, due to the log-scaling between visual field and
cortical coordinates (Schira et al., 2010), circular connectivity on the
cortical surface may look radially elongated when depicted in visual
space (Nandy and Tjan, 2012; Toet and Levi, 1992). To explore these
possibilities, we smoothed the time series using a 2D Gaussian kernel
(2 and 15mm FWHM, Fig. 2S in supplementary material) defined onto
the reconstructed cortical surface (grid). Anisotropy was preserved but
its range widened with smoothing. We also modeled the effect of
circular connectivity (without using the time series) on anisotropy by
clustering toy models of circular connectivity on the cortical surface.
Two toy cases were considered: 1) a matrix of weights constructed by
assigning a 2 mm FWHM Gaussian connectivity profile to each loca-
tion; and, 2) a binary network of nearest neighbors chains (3 mm and
6 mm threshold). Anisotropic clusters with similar spatial ranges were
recovered in both cases. Clusters obtained from a shuffled grid (were
2D spatial relations are destroyed) did not show anisotropy (Fig. 2S in
supplementary materials). In sum, all lines of evidence seem to sup-
port the second option: circular connectivity on the cortical surface
looks elongated in visual space. This cluster elongation in the eccen-
tricity direction may have functional consequences. One hypothetical
functional structure that has a similar radially elongated shape is the
so-called integration field identified by crowding research (Kooi et al.,
1994; Toet and Levi, 1992; Bouma, 1970; Pelli, 2008; Nandy and Tjan,
2012). Crowding is the breakdown of object recognition in peripheral
vision when similar objects are too closely spaced, which increases
perceptual uncertainty. It has been speculated that spacing effects on
perceptual uncertainty at the behavioral level are a result of signal
correlations in neuronal populations (van den Berg et al., 2012).

Besides differences in cluster size and synchronization range, RS
and VFM data also differ in the decay factor of the phase locking values
(PLV) with cortical distance (Fig. 3). For VFM, the PLV was very stable
over scans whereas in RS it was rather variable. Searching for the
origin of this variability, we re-analyzed the data after having applied
global signal regression. This suppressed the long-range variability in
particular in the RS data, suggesting that large-scale interactions across
areas and global systemic variations affect the baseline synchroniza-
tion level in each scan. We conclude that these are an important
component of the observed variability in occipital RS recordings. An-
other cause of variability, at the behavioral level, could be the re-
lationship between resting state BOLD fluctuations and oculo-motor
behaviour that occurs subliminally and spontaneously during the
scanning sessions (Ramot et al., 2011).

Hence, while we derive similar synchronization clusters from
RS and VFM in terms of their location and shape, the magnitude
and spatial extent of PS differs between RS and VFM data. Despite
local variations in the magnitude and spatial extent of PS during
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different scans and conditions, the location and shape of PS clus-
ters is stable, demonstrating that PS clusters reflect a stable ar-
chitectural property. In addition, we show that the topographical
organization of synchronized hemodynamic activity across areas
strongly reflects the layout of homotopic anatomical connections.
Taken together, these findings support the hypothesis that spon-
taneous fMRI activity reflects the organization of the underlying
anatomical connections (Vincent et al., 2007; Kenet et al., 2003;
Tsodyks et al., 1999; Honey et al., 2009).

4.3. Spatial extent of phase synchrony during resting state: possible
mechanisms

But which mechanisms could underlie the stability and spatial
organization of PS? The observed spatial specificity of the spon-
taneous BOLD fluctuations can only emerge if the intrinsic neu-
ronal activity within and across visual cortical areas is topo-
graphically organized. However, the neuronal basis of these BOLD
patterns is not yet fully understood. It is debated on whether
spontaneous fMRI activity reflects the consequences of popula-
tion spiking activity, sub-threshold neuronal activity (Logothetis
et al., 2001), or metabolic relationships between neurons and
astrocytes (i.e. neuro-vascular coupling) (OHerron et al., 2016;
Pang et al., 2017). On the one hand, BOLD phase synchronization
patterns may reflect the consequences of intrinsic switching of
spiking input activity to aggregate neuronal assemblies sharing
similar visual field position selectivity and tuning characteristics
(Kenet et al., 2003; Blumenfeld et al., 2006; Lewis et al., 2016;
Vinck and Bosman, 2016). Alternatively, those patterns may be
the footprint of slow subthreshold fluctuations in local field po-
tentials, which can be visuotopically organized and good pre-
dictors of the BOLD signal (Logothetis and Wandell, 2004; Car-
andini et al., 2015). A recent study by Matsui and colleagues
(Matsui et al., 2016) using neuronal calcium signals and si-
multaneous hemodynamic recordings unifies these contrasting
findings by showing that both global fluctuations, in the form of
propagating waves, and transient local coactivations are neces-
sary for setting the spatial structure of hemodynamic functional
connectivity (Matsui et al., 2016; Pisauro et al., 2013). Also im-
portant is the role of astrocytes, the main link between neuronal
metabolism and blood flow. They certainly play a role setting the
pace of visuotopically organized hemodynamic fluctuations, as it
is has been shown they modulate the delay between neuronal
Fig. 5. Voxels in clusters with similar visual field position selectivity have higher PLV acr
upper/lower foveal (below 2.2∘ eccentricity) and peripheral (above 2.2∘ eccentricity) qua
connections were computed. Diagonal and off-diagonal quarter-fields in each matrix repr
the colors), respectively. Inside each colored box, quarter-fields are grouped in the follow
periphery. The resulting PLV matrices were averaged across scans and z-scored. Subseque
and gray squares for inter-hemispheric connections) was established using permutation
degree of homotopy in the resulting PLV-structures by using the Spearman correlation be
connections) with ones indicating homotopy (see methods section 2.2.7.). Correlation
hemispheric: 0.46 for RS and 0.57 for VFM. p o 0.0001 for all cases).
activity and its hemodynamic response (Pang et al., 2017). To-
gether, these findings suggest that multiple physiological factors
may influence spontaneous hemodynamic activity in a way that
gives rise to visuotopically organized fluctuations.

An anatomical factor that may influence the spatial extent of phase
synchrony, and therefore the size and location of the clusters, is the
density and distribution of capillary beds. Shaped by the intricate
branching patterns of the supporting vascular network, in-
homogeneity in the density and distribution of capillary beds may lead
to varying blood perfusion and deoxyhemoglobin washout rates
(Postnov et al., 2005; Aquino et al., 2012; OHerron et al., 2016). In
addition to the effects exerted by the supporting vascular network, the
energy expense of different populations of neurons and glial cells may
covary with vessel density, structuring hemodynamic fluctuations in
locally and functionally segregated neighborhoods (Tong et al., 2016;
Buzsáki et al., 2007) whose responses are -on average-biased together
(Kastner et al., 1999). This structured hemodynamic variability may
lead to inhomogeneity in the coupling between the hemodynamic
response of a recording site and the neuronal activity in the neigh-
borhood of the site, and a concomitant bias among neighboring sites
(Kamitani and Tong, 2005).

This inhomogeneity hypothesis is consistent with evidence from
animal models pointing to the limits of hemodynamic measurements
in neuroimaging studies. Harrison et al. (2002) demonstrated that the
distribution of blood capillaries correlates with hemodynamic func-
tional connectivity at the millimeter scale, suggesting a direct re-
lationship between a neuronal populations metabolic demand and the
density of its supporting capillary networks. In another study, Vazquez
et al. (2014) delineated functional clusters of slow metabolic fluctua-
tions across the mouse cortex, confirming a relationship between
metabolic demand and capillary network density. Furthermore, si-
multaneous measurements of neuronal spiking, metabolic demand
and vessel responses demonstrate that vessel dilatory responses are
effectively coupled to spiking and metabolic activity (OHerron et al.,
2016). However, they also show vascular responses to stimuli that
elicit little to no neuronal activity in the surrounding tissue, revealing
limitations of the link between hemodynamic and neuronal responses.

Large draining veins also affect the spatial structure of the BOLD
signal. They are known to modulate the phase of nearby metabolic
fluctuations (Winawer et al., 2010) with little effect on signal ampli-
tude and reliability. On the other hand, parenchymal draining veins
inside recording sites have a large modulatory effect on the amplitude
of local BOLD signals, and are sometimes an order of magnitude larger
oss visual field maps and hemispheres. For each subject, clusters were grouped over
rter-fields and PLV matrices for intra and inter -hemispheric PLV-based functional
esent within- and between-hemisphere PLV across visual cortical areas (grouped by
ing order (from left to right): upper fovea, upper periphery, lower fovea and lower
ntly, a significant PLV structure across subjects (black squares for intra-hemispheric
s (p o 0.001. Corrected for multiple comparisons). Furthermore, we estimated the
tween these and binary matrices (for within-hemisphere and between-hemisphere
s increase during VFM (intra-hemispheric: 0.45 for RS and 0.56 for VFM. Inter-
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than those induced by neuronal metabolism. Pial veins, which are
adjacent to the cortical surface and predominantly parallel to the sulci,
similarly reduce spatial specificity and introduce noise (Winawer et al.,
2010). As pial branches drain oxygen from large patches of cortex, they
may play a substantial role in determining the location and shape of
the synchronization clusters.

Together, these findings suggest that links between the neu-
ronal metabolism and the hemodynamic signals have limited
spatial resolution (Formisano et al., 2012; Lee et al., 1995; Menon
and Kim, 1999; OHerron et al., 2016). At finer scales, vascular
network structures play an important role in shaping the spatial
structure of the BOLD signal. We conclude that synchronization
clusters most likely reflect a combination of 1) shared metabolic
demands of local neuronal populations with similar visuotopic
selectivity, 2) linked neuronal activity of neuronal populations
with similar visuotopic selectivity across areas, and 3) the density
of supporting capillary networks, regardless of whether responses
are stimulus driven or endogenous. Our findings indicate that,
despite limitations in the resolution of metabolism-sensitive
measurements such as fMRI to determine the contribution of
neuronal activity to hemodynamic signals, it is still possible to
study the neuronal properties of aggregate neuronal populations.

4.4. Limitations and future directions

We computed phase locking values (PLV) to quantify the degree of
synchronization of low-frequency BOLD fluctuations despite the
Pearson correlation being the most used functional connectivity
measure in RS BOLD analysis. However, this is justified by two facts.
Correlation values come with 2 drawbacks: First, there is an ongoing
debate on how to deal with negative correlations. Second, if two sig-
nals are 90° out of phase, they will result in a Pearson correlation of 0,
even though these signals are highly locked. PLV does not suffer from
these drawbacks. Nonetheless, we have provided a direct comparison
between PLVmeasures and Pearson correlation measures on the effect
of measured anisotropy in the supplementary material (Fig. 2S). This
shows that, for the current data under investigation, results are highly
comparable. Given that the PLV measure is convenient to interpret (ie.
are the signals phase locked), we opted to keep this measure.

We use the same frequency band (0.04–0.07 Hz) for RS and VFM.
However, during VFM responses are locked to the stimuli period, the
peak frequency band is lower than in RS. Generally in RS data, most
power is below 0.03 Hz, however, the peak powermight not be always
the product of neuronal activity. Some scans can show peaks around
0.1 Hz or even higher. As shown by Glerean and colleagues, 0.04–
0.07 Hz is the most reliable frequency band from which to extract
resting state networks (Glerean et al., 2012). In VFM, we use the same
frequency band as a in RS to be able to compare the results. We de-
liberately removed some of the possible useful information in the low
frequency side because we are not pulling out the VFM response per-
se but instead focus on spontaneous fluctuations and try to avoid
contamination by low frequency artifacts (i.e. respiration).

The current study analyses stationary synchronization patterns
only. As such, they provide a time averaged picture and do not capture
potentially relevant transient dynamics (Liu and Duyn, 2013). Time-
resolved methods such as the analysis of propagation and transient
coactivation patterns might help disclose relevant dynamics such as
visuotopically organized co-fluctuations, patterns of diffusion and
possibly waves (Liu and Duyn, 2013; Matsui et al., 2016; Aquino et al.,
2012). Further research is also required to establish the possible neu-
ronal mechanisms underlying visuotopically organized covariations in
the phase of fMRI signals. Adding independent measures of neuro-
physiological and visceral activity, like electroencephalography and
electrogastrography, seems a promising path to study the relation of
neuronal activity to hemostatic and visceral activity during resting
state (Richter et al., 2017; Yuan et al., 2012). Future analyses could also
take into account measures of blood flow, as blood arrival times are
known to affect resting state functional connectivity (Erdoğan et al.,
2016).
5. Conclusion

We have demonstrated that BOLD signals fluctuations across early
visual cortical areas can be segmented into highly reproducible syn-
chronization clusters irrespective whether they are derived from RS
fMRI or visual field mapping data. Importantly, we show that the
spatial footprint of these synchronization clusters is independent of
the magnitude and spatial extent of PS in different RS and VFM scans
and reflect the layout of homotopic anatomical connections along the
visual hierarchy. This indicates that both intrinsic and stimulus-evoked
fMRI fluctuations are anchored by the same neuroanatomical con-
nections. The fact that the PS clusters for RS and VFM are similarly
elongated in the eccentricity direction also points to a shared neu-
roanatomical basis. Our findings thus justify and facilitate direct
comparison of RS and stimulus-evoked activity.
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