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A B S T R A C T

Humans and many animals can distinguish between stimuli that differ in numerosity, the number of objects in a
set. Human and macaque parietal lobes contain neurons that respond to changes in stimulus numerosity.
However, basic non-numerical visual features can affect neural responses to and perception of numerosity, and
visual features often co-vary with numerosity. Therefore, it is debated whether numerosity or co-varying low-
level visual features underlie neural and behavioral responses to numerosity. To test the hypothesis that non-
numerical visual features underlie neural numerosity responses in a human parietal numerosity map, we
analyze responses to a group of numerosity stimulus configurations that have the same numerosity progression
but vary considerably in their non-numerical visual features. Using ultra-high-field (7T) fMRI, we measure
responses to these stimulus configurations in an area of posterior parietal cortex whose responses are believed
to reflect numerosity-selective activity. We describe an fMRI analysis method to distinguish between alternative
models of neural response functions, following a population receptive field (pRF) modeling approach. For each
stimulus configuration, we first quantify the relationships between numerosity and several non-numerical visual
features that have been proposed to underlie performance in numerosity discrimination tasks. We then
determine how well responses to these non-numerical visual features predict the observed fMRI responses, and
compare this to the predictions of responses to numerosity. We demonstrate that a numerosity response model
predicts observed responses more accurately than models of responses to simple non-numerical visual features.
As such, neural responses in cognitive processing need not reflect simpler properties of early sensory inputs.

Introduction

Humans and many animals can distinguish between stimuli that
differ in numerosity, the number of objects in a set. Human and
macaque parietal lobes contain neural populations that respond to
changes in stimulus numerosity, and neural responses here predict
numerosity discrimination behavior (Piazza et al., 2004; Tudusciuc and
Nieder, 2007). However, it is passionately debated whether these
behavioral discriminations and neural responses follow numerosity
per se or rather rely on low-level visual features that often co-vary with
numerosity. One side of this debate proposes that numerosity is sensed
directly using numerosity-selective neurons (Anobile et al., 2014;
DeWind et al., 2015; Nieder et al., 2002; Park et al., 2016; Ross and
Burr, 2010; Tudusciuc and Nieder, 2007), while the other proposes
that neural and behavioral responses to numerosity reflect non-
numerical visual features that change with numerosity (Clearfield and
Mix, 2001; Feigenson et al., 2002; Gebuis and Gevers, 2011; Durgin
2008; Dakin et al., 2011; Morgan et al., 2014; Gebuis et al., 2014).

Convincing arguments and experiments support both viewpoints. Data
from our previous fMRI study (Harvey et al., 2013) has been proposed
to support both sides of the debate (Anobile et al., 2016; Gebuis et al.,
2014), but in each case without quantitative comparisons against the
predictions made by the alternative viewpoint. Here we quantitatively
and formally test the predictions of alternative models of apparently
numerosity-selective responses against this data.

Behavioral studies have proposed that numerosity discrimination
relies on: total item perimeter (Clearfield and Mix, 2001), total item
luminance, total item surface area (Feigenson et al., 2002), area
covered by the set outline (mathematically, the convex hull) (Gebuis
and Gevers, 2011), density (Durgin, 2008), or the contrast energy at
high spatial frequencies (Dakin et al., 2011; Morgan et al., 2014).
Others have argued that patterns of behavioral responses are incon-
sistent with such non-numerical cues (Anobile et al., 2014; DeWind
et al., 2015; Ross and Burr, 2010). It is not possible to design a
stimulus configuration where none of these visual features co-varies
with numerosity: eliminating covariance of one feature with numer-
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osity introduces covariance with another features, which observers
could use to make judgments. Similarly, using multiple stimulus
configurations with different relationships between visual features
and numerosity cannot eliminate potential feature-based strategies
because the observer can change strategies between configurations. As
such, although observers are typically instructed to distinguish between
stimuli based on numerosity, in remains unclear to what extent they
can distinguish based on the co-varying low-level visual features listed
above.

At a neural level, populations of neurons responding to presenta-
tion of specific numerosities are found in macaques and humans (Eger
et al., 2009; Harvey et al., 2013; Nieder et al., 2002; Nieder and Miller,
2004; Piazza et al., 2004). Experiments to characterize such responses
typically use multiple stimulus configurations to demonstrate re-
sponses are robust to changes in visual features. Indeed, a recent
event-related potential study of early visual responses that increase
monotonically with numerosity (distinct from the tuned numerosity-
selective responses we examine here) shows they are effected very little
by non-numerical cues that can co-vary with numerosity (Park et al.,
2015). Unlike human observers, neurons are unlikely to change which
visual feature they respond to when stimulus configurations change.
However, preferences of later, tuned numerosity-selective neurons can
change between stimulus configurations, so at least some of these
neurons may also respond to other features (Harvey et al., 2013;
Nieder and Miller, 2004; Tudusciuc and Nieder, 2007). Alternatively,
apparent responses to numerosity might reflect responses to a co-
varying non-numerical visual feature, with no numerosity responses
present (Gebuis et al., 2014). The critical test here is whether models of
responses to co-varying visual features predict the measured neural
responses better than responses to numerosity.

Here we describe a method to test predictions of alternative models
of cognitive neural responses functions from fMRI data. We use this to
test the hypothesis that neural responses to numerosity reflect re-
sponses to co-varying non-numerical visual features in two ways. First,
we quantify these features across the multiple stimulus configurations
used to investigate numerosity responses in a recent experiment that
shows effects of visual features on neural numerosity responses
particularly clearly (Harvey et al., 2013). This quantifies relationships
between several visual features and numerosity in these different
stimulus configurations, revealing where these features can be used
to distinguish between stimuli of differing numerosity. While none of
these features is perfectly correlated with numerosity in all stimulus
configurations, the effects of stimulus configuration on numerosity
tuning raise the possibility that non-numerical features underlie these
responses (Gebuis et al., 2014). Second, we test the possibility by
comparing the ability of visual feature response model predictions and
numerosity response model predictions to explain fMRI responses
measured in an area of posterior parietal cortex whose responses to
numerosity changes are believed to reflect numerosity-selective activ-
ity. We demonstrate that numerosity response models predict observed
fMRI responses more accurately than non-numerical visual features
response models. As such, human fMRI responses to numerosity do
not reflect responses to the proposed low-level, non-numerical visual
features.

Methods

All data are taken from (Harvey et al., 2013), where experimental
methods for their acquisition are described in full. Here we outline
methodological details that aid interpretation of results, and describe
new analyses.

Subjects

We present data from eight subjects (two female, age range 19–38
years). Two were left-handed. All were well educated, with good

mathematical abilities. All had normal or corrected to normal visual
acuity. All were trained with tasks requiring numerosity judgments
before scanning. Experiments were undertaken with the informed
written consent of each subject. All experimental procedures were
cleared by the ethics committee of University Medical Center Utrecht.

Stimuli

Visual stimuli were presented by back-projection onto a
15.0×7.9 cm screen inside the MRI bore. The subject viewed the
display through prisms and mirrors, and the total distance from the
subject's eyes (in the scanner) to the display screen was 41 cm. Visible
display resolution was 1024×538 pixels.

The stimuli were generated in Matlab using the PsychToolbox
(Brainard, 1997; Pelli, 1997). A large diagonal cross, composed of thin
red lines, crossed the entire display, a design that allows very accurate
fixation (Schira et al., 2009). Subjects (n=8) fixated the intersection of
the cross. Stimuli consisted of groups of items randomly positioned at
each presentation so that each item fell entirely within 0.75° of fixation.
As such, contrast energy was distributed equally across the stimulus
area for all numerosities, avoiding any links between numerosity and
the visual field position of the contrast energy. To prevent perceptual
grouping, individual items were distributed roughly homogenously
across the stimulus area (except for the high density configuration
described below).

We used various stimulus configurations (Fig. 1) (Harvey et al.,
2013; Nieder et al., 2002) that ensure that responses to other visual
features did not follow the same time course in different configurations.
The first stimulus configuration (‘constant area’) kept the total surface
area of all of items combined constant across numerosities, ensuring
equal luminance across numerosities. The second (‘constant item size’)
kept individual item size constant. The third (‘constant perimeter’) kept
the total perimeter constant, ensuring equal edge density. We have
previously referred to this as the ‘constant circumference’ configura-
tion: ‘perimeter’ is a more general term, applying to all shapes, not only
circles. The fourth stimulus configuration (‘high density’) contained the
same items as the constant area configuration, but at higher density,
with all items falling within a 0.375° radius circle that was randomly
placed inside the stimulus area. The fifth stimulus configuration
(‘variable features’) contained the same item sizes as the constant item
size (and did not vary item size), but used various shapes instead of the
circles used in other configurations.

All patterns were presented as black items on a gray background.
Patterns were presented briefly (300 ms) to ensure subjects did not have
time to count (Saltzman and Garner, 1948). This was repeated every
750 ms, each time with a new random pattern presented, with 450 ms
presentation of a uniform gray background between pattern presenta-
tions. This was repeated six times, over 4500 ms, corresponding to three
fMRI volume acquisitions (TRs), before the numerosity changed. On
10% of pattern presentations, patterns were shown in white instead of
black. Subjects were instructed to press a button when this happened to
ensure they were paying attention to the patterns during fMRI acquisi-
tion. No numerosity judgments were required. Subjects responded on
90–100% of white presentations within each scanning run.

The numerosities one through seven were shown as the main
stimulus, first presented in ascending order, followed by a longer
period (13.5 s) where the stimulus contained twenty items, followed by
the numerosities in descending order, followed by another long period
of twenty items. This sequence was repeated four times in each
scanning run. Despite fMRI's lack of a specific baseline, the long period
of twenty items allowed us to distinguish between very small tuning
width (which never respond to the 1–7 range) and very large tuning
widths (which always respond to the 1–7 range) (Dumoulin and
Wandell, 2008). While both tuning widths capture responses to the
1–7 range, responses to the twenty item presentation will decrease for
a large tuning width but not a small tuning width.
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Some non-numerical features do not change much between seven
and twenty items. Including or excluding a large change in these
features will not affect the variance explained by the model, the
criterion we use to compare alternative response models. However,
features that are similar between seven and twenty item presentations
are unlikely to capture our responses well, because the recorded
responses to seven and twenty items are quite different.

Furthermore, during this twenty item presentation, little neural
response was expected from numerosity-selective neurons with small
preferred numerosities, as such a large numerosity should have been
well outside of the numerosity range that elicits strong responses.
However, neural populations responding to the contrast energy of the
stimulus should respond most strongly during the twenty item
presentation, avoiding confusion with populations preferring a specific
large numerosity. Finally, the twenty item presentation increases the
range of presented numerosities and non-numerical features, and the
range of responses. Therefore, this provides extra information to
distinguish between response models.

Quantification of visual features

For every stimulus configuration and numerosity, we quantified
several visual features of the presented stimuli. Some of these features
were linearly proportional to each other. Neural response models were
general linear models, so gave identical predictions for linearly
proportional visual features.

Many of these visual features (individual item radius, perimeter and
area, total item perimeter and area, and display luminance) relied only
on item size and numerosity. As item size had a fixed relationship to
numerosity in all stimulus configurations, and most stimulus config-
urations used circular items, we quantified these features geometri-
cally. For the variable features configuration, where various randomly-
chosen shapes form the stimulus configuration, we measured the areas
and perimeters of these shapes over 1200 presentations of each
numerosity and used the means of these distributions to build visual
feature response models.

As all items were the same color (black), display luminance was
linearly proportional to total item area. Radius was also linearly
proportional to perimeter where items are circular, and items that
are not circular had no radius. Therefore, to test predictions of
responses to the visual features listed above, we only needed to test
models of responses to individual item perimeter, individual item area,
total item perimeter and total item area.

Other visual features (convex hull area, convex hull perimeter,
numerical density, luminance density and edge density) depended on
item placement, which was randomized for each presentation. For
these features, we measured the distribution across 1200 presentations
of each stimulus configuration, and used the mean of this distribution
to make neural response models. We defined the convex hull area as
the area under the entire pattern, and convex hull perimeter as the
length of the line surrounding the entire pattern.

Numerical density, luminance density and edge density described
the number of items, total item area, and total perimeter per unit
stimulus area respectively. We quantified numerical density, luminance
density and edge density within the convex hull: numerical density,
luminance density and edge density within the total possible stimulus
area were proportional to numerosity, total item area and total
perimeter respectively because the total possible stimulus area was
always the same. Density within the convex hull was a more parsimo-
nious measure, as this density measure increased when items were
grouped more closely. However, we density is not a meaningful
measure where a display contains a single object.

We also quantified stimulus contrast. As all stimuli had the same
maximum and minimum luminance, they contained no variance in
Michelson contrast, so Michelson contrast could not explain any
variance in our measured responses. Root mean square (RMS)
contrast, however, reflects the standard deviation of luminance values
within a particular area. We quantified RMS contrast within both the
total stimulus area (display RMS contrast) and within the convex hull
(convex hull RMS contrast).

Finally, we examined contrast energy at high spatial frequencies
(Dakin et al., 2011; Morgan et al., 2014). Many different metrics could
be used to characterize the spatial frequency distribution, and we did not
aim to examine all possible visual features. High spatial frequency
contrast energy has been used to explain performance in numerosity
discrimination tasks (Dakin et al., 2011; Morgan et al., 2014). Which
spatial frequencies are involved depends on item size and display size. We
quantified contrast energy at frequencies above 4 cycles/deg from Fourier
transformations of our stimulus images. This frequency band approxi-
mated that used in the cited studies, considering differences in item sizes
and display size. We also observed that this frequency band co-varied
closely with numerosity in some of our stimulus configurations.

Having quantified these visual features, we examined their relation-
ships to numerosity in each configuration, and compared predictions of
models of responses to these features to predictions of models of
responses to numerosity.

Fig. 1. Example stimuli in for all presented numerosities in all stimulus conditions. For the same numerosity, low-level visual features varied considerably between conditions.
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FMRI acquisition

Functional T2*-weighted 2D echo planar images were acquired on a
7 T scanner using a 32 channel head coil at a resolution of
1.98×1.98×2.00 mm, with a field of view of 190x190×50 mm. TR
was 1500 ms, TE was 25 ms, and flip angle was 80°. Functional runs
were each 248 time frames (372 s) in duration, of which the first eight
time frames (12 s) were discarded to ensure the signal was at steady
state. Four repeated runs were acquired within the same session for
each stimulus configuration. Responses to different stimulus config-
urations were recorded on different days.

MRI data analysis

T1-weighted anatomical scans were automatically segmented using
Freesurfer (Dale et al., 1999) and then hand-edited to minimize
segmentation errors (Teo et al., 1997) using ITK-SNAP (Yushkevich
et al., 2006). Functional MRI analysis was performed in the mrVista
software package, which is freely available at (http://white.stanford.
edu/software/). FMRI data were corrected for subject motion and
aligned to anatomical scans (Nestares and Heeger, 2000) in which gray
and white matter had been labeled to allow reconstruction of the
cortical surface (Wandell et al., 2000). Data from several sessions,
resulting from all stimulus configurations, was interpolated into the
same anatomical segmentation space, allowing us to compare
responses of the same anatomical locations to different stimulus
configurations. Data collected on different scanning runs and
stimulus cycles in which the same stimulus configuration was
presented were averaged together before model fitting, following
typical pRF modeling approaches. Areas with overlying draining
veins, which spatially and temporally distort the fMRI signal, were
identified by their low mean blood oxygenation level dependent
(BOLD) signal intensity (Harvey and Dumoulin, 2011; Yacoub and
Hu, 2001) and excluded from further analysis.

We evaluated predictions of responses to each candidate visual
feature using population receptive field (pRF) modeling, fitting an
independent response for each recording site within gray matter.
Population receptive field models described the aggregate tuning of
the neural population within each fMRI recording site (Fig. 2). A
forward model predicted neuronal responses at each stimulus time
point depending on the quantity of the feature shown. The model
described a tuned response to the candidate feature using a Gaussian
characterized by a preferred feature quantity (mean of the Gaussian
distribution) and tuning width (standard deviation of the Gaussian). By
examining the overlap of the stimulus at each time point with this
tuning model, a prediction of the neuronal response time course was
generated. By convolving this with a hemodynamic response function
(HRF), a predicted fMRI time course was generated. The predicted
fMRI time courses were generated for all combinations of a large range
of preferred feature quantity and tuning width parameters. For each
feature tested (including numerosity), we used 101 candidate values for
preferred feature quantity, evenly spaced between the minimum and
maximum value of that feature found in all stimulus configurations (the
feature range). At each of these candidate preferred feature values, we
tested 401 candidate tuning width values, evenly spaced between 0.01
times the feature range and the maximum feature value. This yielded
40,501 candidate combinations of pRF parameters, scaled to the range
of feature values presented over all stimulus configurations. For each
recording site, the parameters were chosen from the prediction that fit
the data most closely by minimizing the sum of squared errors between
the predicted and observed fMRI time series (and so maximizing R2).

Region of interest (ROI) definitions

We used the same regions of interest here as in our initial
description of the posterior parietal numerosity map (Harvey et al.,

2013). We determined which parts of the cortex appeared to respond in
a numerosity-selective way in all stimulus configurations using a
conjunction analysis by taking the minimum goodness of fit (R2) of
the numerosity tuning model in any stimulus configuration. The
resulting minimum R2 values were rendered onto an inflated cortical
surface. This analysis highlighted a consistent region in the posterior
parietal lobe in all subjects. This region formed the basis our ROI.

We then rendered the preferred numerosities of each recording site
on the cortical surface. The model from the responses averaged across
stimulus configurations consistently gave the clearest and largest
region of topographic representation, covering the topographically
organized regions in all other configurations, so we used this data to
define our ROI. Medial and lateral borders of the ROI each followed
lines of equal preferred numerosity at the low and high ends of the

Fig. 2. A flow chart describing the pRF model fitting principle for a single recording
point (fMRI voxel). A neural response model describing one possible neural response
configuration, with a particular set of parameters describing the preferred feature value
and tuning width of the neural population within a voxel. The predicted neural response
over time is calculated by multiplying the presented feature value at each time point by
the normalized response to that feature in the neural response model (X). This predicted
neural response time course is convolved with a hemodynamic response function (*) to
produce a predicted fMRI time course, given this set of neural response model
parameters. Best fitting model parameters are found by minimizing the difference
between the predicted and the recorded data. This process was repeated for every feature
response model tested.

B.M. Harvey, S.O. Dumoulin NeuroImage 149 (2017) 200–209

203

http://white.stanford.edu/software/
http://white.stanford.edu/software/


preferred numerosity range seen in each subject. Anterior and poster-
ior borders describe the edges of the topographic organization, which
typically also coincided with decreases in the goodness of model fits. All
recording sites within these borders were included in our ROI.

We repeated our analyses to capture responses of a larger area that
is not selected by its response to numerosity. We used freesurfer to
label the right superior parietal lobule from anatomical data alone, and
used this as our region of interest. This produced very similar results,
although all feature response models fit responses less well averaged
over this whole cortical lobule than they did in the numerosity map
ROI.

Comparing visual feature response models

This goodness of fit measure (R2) quantified the amount of variance
in each recording site's response that was explained by each model
(‘variance explained’). We determined the distribution of variance
explained by every visual feature model in every stimulus configura-
tion. To quantify the variance explained across all stimulus configura-
tions, we quantified the amount of variance in each recording site's
response to all stimulus configurations was explained by each model.
To determine whether responses to a particular feature explained
measured data better than responses to numerosity, we performed
Wilcoxon signed rank tests (non-parametric paired difference test),
comparing the variance explained by numerosity models in each
recording site to that explained by visual features models at the same
sites. This test makes a single comparison over the whole population of
recording sites and across all subjects (n=906). We also repeat this test
in each individual subject (number of recording sites differs between
subjects: S1=107, S2=134, S3=103, S4=160, S5=168, S6=87, S7=46,
S8=101). To account for the fact that neighboring fMRI voxels do not
represent entirely independent measures of neural activity, we reduce
the number of measures in our test to assume an effective independent
voxel size of 6 mm. This is highly conservative, as the full-width at half-
maximal-height (FWHM) BOLD point spread function in gray matter is
estimated to be around 2mm at 7 T (Shmuel et al., 2007).

As neurons were unlikely to change tuning between stimulus
configurations, we constrained neural models to use identical preferred
feature quantity and tuning width parameters to predict responses to
all stimulus configurations (constrained models). As responses to
different stimulus configurations were recorded on different days,
response amplitudes (GLM betas) could differ between configurations.

In previously presented analyses (Harvey et al., 2013), preferred
numerosity and tuning width could differ between stimulus configura-
tions. We also fit models where preferred feature quantity, tuning
width and response amplitude could all change between stimulus
configurations (configuration-specific models).

Numerosity models described tuned responses as Gaussian func-
tions in logarithmic numerosity space, although Gaussians in linear
space predicted responses almost as well. Responses to any feature
might follow either its logarithmic or linear progression. Therefore, we
always fit visual feature models as Gaussian functions in both
logarithmic and linear spaces. When comparing model prediction
accuracy, we first determined for each feature whether log or linear
models gave the highest average variance explained across all recording
sites and stimulus configurations (i.e. which best predicted measured
responses). We then used this model for all recording sites.

Results

Common numerosity tuning for all stimulus configurations predicted
responses well

Numerosity models predicted measured responses to every stimu-
lus configuration well, explaining 60.9% of measured response variance
over all stimulus configurations (Fig. 3A). Using the a numerosity
model with identical parameters across all stimulus configurations still
explained 56.1% of measured response variance over all stimulus
configurations (Fig. 3B). In the constant perimeter configuration,
numerosity preferences differed significantly from other stimulus
configurations (Harvey et al., 2013), so explained variance fell more
here. As such, while numerosity preferences were significantly affected
by the stimulus configuration used (Harvey et al., 2013), this had only
modest effects on the responses to each stimulus configuration: using
the same numerosity model parameters (and predicted response) for
all stimulus configurations had only a modest impact on the predictive
accuracy of these models.

Feature co-variance and model fits
Quantifying how each feature varied with numerosity revealed

relationships that distinguished predictions of neural models respond-
ing to numerosity or low-level visual features. Here, we describe these
possible relationships and their effects on visual feature model predic-
tions. We use the root mean square (RMS) contrast of the display area

Fig. 3. Variance explained by neural models responding to numerosity. (A) When numerosity model parameters were allowed to differ between models of responses to different
stimulus configurations, models explained response variance well for all stimulus configurations. (B) When numerosity model parameters were constrained to use identical parameters
to predict responses to all stimulus configurations, these models predicted less variance than models where parameters could vary between stimulus configurations (shown in A). The
decrease in variance explained was largest in the constant perimeter configuration where numerosity preferences differed significantly from other configurations (Harvey et al., 2013).
Bars show the average variance explained in the numerosity map, and error bars show the standard deviation.
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as an illustrative example (Fig. 4). Similar step-by-step analyses
underlie the comparisons made for all stimulus features in Fig. 5.
These are presented in full in the accompanying Data in Brief article.

First, where a visual feature did not change with numerosity in a
particular stimulus configuration, the feature would not change during
that scanning run, so responses to the feature could explain no
response variance. Specifically, fMRI responses lack an explicit base-
line, so a stationary predictor is added to general linear models of fMRI
responses to capture a constant stationary baseline. Adding a further
stationary predictor for a constant feature can explain no variance that
is not already captured by the first stationary predictor. Therefore, our
approach provides no evidence for or against the hypothesis that a
constant feature contributes to the baseline, but a constant feature
cannot predict a changing response. For example, display RMS contrast
did not vary in the constant area or high density stimulus configura-
tions (Fig. 4A) so predicted no response variance here (Fig. 4B).

Second, because we used general linear models here, responses to a
visual feature that co-varied linearly with numerosity in a particular
stimulus configuration would predict responses to that stimulus
configuration exactly as well as numerosity does. This is true regardless
of the slope of the covariance, whether negative or positive. Here, it was
necessary to use responses to other stimulus configurations to distin-
guish between visual feature and numerosity models. For example,
display RMS contrast varied approximately linearly with numerosity in
the constant item size stimulus configuration (Fig. 4A), and responses
to RMS contrast therefore predicted response variance approximately
as accurately as responses to numerosity did (Fig. 4B).

Third, where a visual feature varied nonlinearly with numerosity in
a particular stimulus configuration, the visual feature model would
make different predictions from the numerosity model, allowing us to
distinguish these models. For example, display RMS contrast decreased
nonlinearly with increasing numerosity in the constant perimeter
stimulus configuration (Fig. 4A), so the RMS contrast model predicted
response variance less accurately than the numerosity model did
(Fig. 4B).

We also tested models constrained to use identical parameters to
predict responses to all stimulus configurations. In these constrained
models, different relationships between that feature and numerosity in
different stimulus configurations could distinguish numerosity models
from visual feature models, even if the feature co-varied closely with
numerosity within each stimulus configuration. Predictions of con-
strained visual feature models and numerosity models would differ if
the feature either: 1) had a range of magnitudes in different stimulus
configurations or 2) increased with numerosity in some configurations
and decreased in others. For example, display RMS contrast increased
with numerosity in the constant item size and variable features
stimulus configurations, but decreased with numerosity in the constant
perimeter stimulus configuration. Models constrained to use identical
parameters to predict these responses explained responses to the
constant perimeter stimulus configuration poorly, suggesting responses
followed stimulus numerosity rather than display RMS contrast

Fig. 4. Patterns of visual feature co-variance with numerosity and the predictive accuracy of visual feature models, for the example of display RMS contrast. (A) Display RMS contrast
co-varied approximately linearly with numerosity in some stimulus configurations, varied nonlinearly with numerosity in some stimulus configurations, and did not vary in some
stimulus configurations. Colored points, joined by colored lines, show the visual feature quantity for each numerosity in each stimulus configuration. (B) In stimulus configurations
where display RMS contrast co-varied approximately linearly with numerosity, the display RMS contrast model predicted responses approximately as well as the numerosity model did
(constant item size and variable features stimulus configurations). Where it varied nonlinearly with numerosity, the display RMS contrast model predicted responses with different
accuracy than the numerosity model did (constant perimeter stimulus configuration). Where it was constant for all numerosities within a stimulus configuration, the display RMS
contrast model could not predict a changing response and so could not explain any response variance (constant area and high density stimulus configurations). However, constant
stimulus features may affect the response baseline, and general linear modeling approaches to fMRI cannot capture such effects. Bars show the mean variance explained in responses at
many recording sites, and error bars show the standard deviation. Black lines represent the mean response variance explained by numerosity models in each stimulus configuration, and
gray boxes represent the standard deviation, taken from Fig. 3. (C) When numerosity models and display RMS contrast models were constrained to use identical parameters to predict
responses to all stimulus configurations, these models predicted less response variance than separate models fit to individual stimulus configurations (shown in B), particularly when
features in different stimulus configurations co-varied with numerosity over different ranges or in different directions, as seen in (A). These models therefore explain less response
variance calculated over all stimulus configurations, or over only those stimulus configurations where the display RMS contrast varied (gray bars).

Fig. 5. The numerosity model captured significantly more variance in the data compared
to visual feature models. These values the taken from the variance explained by the
constrained models across all stimulus configurations (gray bars in Figs. 3B, 4C, and
right side panels of Data in Brief article figures).
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(Fig. 4C). The range of display RMS contrasts present in the stimulus
configuration was also quite different (Fig. 4A). Again, models con-
strained to use identical parameters predicted responses to the
constant perimeter configuration poorly. As this constraint only
modestly affected the predictive accuracy of numerosity models
(Fig. 3), this again suggested responses followed stimulus numerosity
rather than display RMS contrast. Features needed to co-vary similarly
with numerosity in all stimulus configurations for visual feature models
to consistently predict measured responses as well as numerosity
models did. Any visual feature that co-varies differently with numer-
osity in different stimulus configurations predicted different responses
that could be distinguished from numerosity responses.

This detailed analysis is presented in the accompanying Data in
Brief article for all visual features.

Numerosity models predicted responses better than models of
responses to proposed non-numerical visual features

The critical test of model performance is how well a single
constrained model predicted responses to all stimulus configurations.
Fig. 5 summarizes this measure of model performance for all tested
visual features. When grouping responses of recording sites across all
subjects, the numerosity model predicted responses better than any
visual feature model, in all cases at p < 10–16. The numerosity model
also predicted responses better than any visual feature model in every
individual subject, in all cases at p < 0.038. Visual feature models
predicted responses well only in stimulus configurations where visual
features co-varied approximately linearly with numerosity, and never
predicted responses to any single stimulus configuration better than
the numerosity model did (Data in Brief Article Figs. 1–5, Tables 1–5).

The best performing visual feature was total item perimeter, which
co-varied approximately linearly with numerosity in all except the
constant perimeter stimulus configuration (Data in Brief article
Figs. 1J-1L). Responses to this stimulus configuration still showed
responses to changing numerosity, though numerosity preferences
were significantly different to those from other stimulus configurations
(Harvey et al., 2013). Even if we excluded the constant perimeter
stimulus configuration from this analysis, the numerosity model still
predicted responses better than the total item perimeter model did (p
< 10−6). As such, the numerosity model predicted responses to
numerosity-varying stimuli within the posterior parietal ‘numerosity
map’ (Harvey et al., 2013) better than models of responses to any
proposed non-numerical visual feature did.

Discussion

Using fMRI analyses that can distinguish between alternative
neural models, we demonstrate that numerosity models predict
measured fMRI responses better than models responding to non-
numerical visual features that co-vary with numerosity, in a posterior
parietal area with apparently numerosity-selective responses. Non-
numerical visual features only predict fMRI responses to specific
stimulus conditions well when they co-vary with numerosity, support-
ing the hypothesis that neural responses primarily reflect stimulus
numerosity.

Numerosity tuning differences between stimulus conditions

Our stimulus configurations were designed to contain very different
relationships between numerosity and low-level, non-numerical visual
features (Harvey et al., 2013; Nieder et al., 2002). If responses were
identical regardless of visual features, we could conclude the under-
lying neural populations responded to numerosity only. While re-
sponses are similar across stimulus configurations, they differs sig-
nificantly between stimulus configurations in both the populations
within our fMRI recording sites (which each contain approximately
80,000 numerosity selective neurons) (Harvey et al., 2013) and in at

least some single neurons in macaque parietal cortex (Nieder and
Miller, 2004).

Two interpretations of variation in numerosity responses with
visual features have been proposed. First, they may reflect responses
for another visual feature, together with numerosity, in the same neural
population (Harvey et al., 2013) or the same single neurons (Tudusciuc
and Nieder, 2007). Specifically, tuned responses to object size together
with numerosity would explain effects of stimulus condition well,
particularly if neural populations responding preferentially to small
numerosities responded preferentially to small object sizes. We have
recently demonstrated such a pattern of associated numerosity and
object size response preferences (Harvey et al., 2015).

Second, effects of visual features on numerosity responses may
reflect responses to a low-level, non-numerical visual feature instead of
numerosity, with no responses to numerosity present in the brain
(Gebuis et al., 2014). No experimental evidence has been proposed to
support this proposal, beyond behavioral inference effects (de Hevia,
2011; de Hevia and Spelke, 2009; Gebuis and Gevers, 2011; Gebuis
et al., 2014; Hurewitz et al., 2006) and the variability of numerosity
responses between stimulus configurations (Gebuis et al., 2014; Harvey
et al., 2013; Nieder and Miller, 2004). As no specific feature has been
proposed, we tested predictions of responses to several non-numerical
visual features that have been proposed to underlie numerosity
discrimination performance in behavioral experiments.

Our statistical approach groups recording sites throughout a region
of interest before comparing the variance explained by different
response models. This demonstrates that responses within this region
are generally better predicted by stimulus numerosity than non-
numerical features. Nevertheless, it is possible that smaller groups of
recording sites or neurons within this region respond to non-numerical
features, either with or without responding to numerosity (Harvey
et al., 2015; Tudusciuc and Nieder, 2007).

Previous evidence for direct numerosity estimation

It has been passionately debated whether numerosity is directly
estimated by the visual system or whether behavioral and neural
responses to numerosity instead reflect responses to a low-level, non-
numerical visual feature that covaries with numerosity. Several recent
studies using both behavioral and neural measures are in line with our
conclusion that responses are incompatible with responses to low-level
visual features alone.

Studies describing numerosity-selective neural responses have
consistently used several visual stimulus configurations that vary
considerably in their visual appearance (Eger et al., 2009; Harvey
et al., 2013; Nieder et al., 2002; Nieder and Miller, 2004; Piazza et al.,
2004). Despite two reports of effects of stimulus configuration (Harvey
et al., 2013; Nieder and Miller, 2004), these effects are remarkably
small for the changes in low-level features and seem likely to reflect
responses to other stimulus quantities in the same neural populations
(Harvey et al., 2015; Tudusciuc and Nieder, 2007).

More recently, event-related potentials have been found at occipital
and occipito-parietal sites that increase in amplitude monotonically
with numerosity (Ester et al., 2012; Park et al., 2015). These do not
seem likely to reflect tuned, numerosity-selective responses, but
instead seem to reflect monotonic summation responses from which
numerosity-selective responses are thought to be derived (Dehaene and
Changeux, 1993; Verguts and Fias, 2004). Even in these early
responses, non-numerical visual features predict little or no response
variance (Park et al., 2015).

These neuroimaging and neurophysiological studies (including the
current study) do not demonstrate that the neural responses they
measure are relevant for behavior. However, there is also extensive
recent behavioral evidence for direct estimation of numerosity.
Repeated presentation of numerosity patterns leads to systematic
adaptation effects on perception of subsequently presented numeros-
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ities (Burr and Ross, 2008). If numerosity perception is adaptable,
perceived numerosity must be represented in the brain. Some studies
have claimed co-varying visual features (primarily texture density)
underlie this adaptation effect (Dakin et al., 2011; Durgin, 2008;
Morgan et al., 2014). However, this seems unlikely because adaptation
to numerosity in one sensory modality transfers to other modalities
(Arrighi et al., 2014), and numerosity comparisons are unaffected by
density (Ross and Burr, 2010).

Further behavioral evidence for direct estimation of numerosity
comes from the demonstration that numerosity can be estimated
accurately from second-order stimuli that do not change luminance
with numerosity (Kramer et al., 2011). Finally, numerosity discrimina-
tions in stimuli that vary randomly in number, object size and spacing
are better explained by numerosity than any other feature (DeWind
et al., 2015). Together, these findings support the view that numerosity
is directly sensed in the brain and perception, although our perception
and neural representation of numerosity is linked to that of other
stimulus quantities.

Visual feature estimation and combination

A biologically plausible mechanism whose output follows numer-
osity closely would allow the animal to use this output to make
decisions based on numerosity, for example during foraging, which
would be selectively advantageous (Harper, 1982; Vallentin and
Nieder, 2008). The proposal that numerosity perception or neural
responses to numerosity instead reflect responses to a co-varying non-
numerical visual feature suggests that the brain cannot accurately and
straightforwardly estimate numerosity from analysis of visual inputs. If
so, it seems likely that other, more easily quantified features would be
used instead.

We quantify many of these candidate non-numerical visual features
using simple mathematical operations. Similarly simple mathematical
operations can also yield numerosity. While it is uncertain how
numerosity is computed in the visual system, it is similarly uncertain
how several other proposed non-numerical visual features could be
computed. It seems premature to assume neural responses to visual
features whose biological estimation is just as unclear, particularly
when neurons responding to these features have not been described.

Mathematically, the total area of all items in the set divided by the
area of an individual item gives the number of items in the set. If the
visual system can quantify a visual feature of the whole set, quantify the
same feature in an individual item, and divide one by the other, this
would provide a perfect estimate of numerosity. Therefore, if such
combinations of visual features can be computed, straightforward
combinations do not necessarily support the viewpoint that numerosity
responses actually reflect responses to non-numerical visual features.
Rather, they may suggest mechanisms that could determine numer-
osity perfectly. Despite this, recent analyses of early visual event-
related potential responses to dot patterns demonstrate that these
responses are well predicted by numerosity, and not preceded by
responses to individual item area, total item area, individual item
perimeter or total item perimeter (Park et al., 2015).

Models of numerosity estimation

However, such mathematical mechanisms are unlikely to describe
the brain's numerosity estimation mechanism. Given that many
animals can make decisions based on numerosity (Brannon and
Terrace, 1998; Brannon et al., 2001; Cantlon and Brannon, 2007;
Nieder et al., 2002; Rugani et al., 2009), and that the brain contains
neurons whose output follows numerosity closely with little effect of
other visual features (Eger et al., 2009; Harvey et al., 2013; Nieder
et al., 2002; Nieder and Miller, 2004; Piazza et al., 2004), such a
mechanism does seem to exist. As such, a biologically-plausible
mechanism whose output follows numerosity closely is required.

Recently, such a mechanism has been proposed (Dakin et al., 2011;
Morgan et al., 2014). Following established computational properties
of the early visual system, this mechanism decomposes the visual input
by spatial frequency. It then uses the outputs of high spatial frequency
filters to estimate numerosity. This predicts systematic errors in
numerosity estimation that follow errors made in psychophysics
experiments. However, we test this mechanism and find it does poorly
in explaining responses to some of our stimulus configurations.
Specifically, Dakin, Morgan and colleagues use stimulus configurations
where item size does not vary with numerosity. We confirm high spatial
frequency contrast energy increases in proportion to numerosity in this
case. However, where item size decreases with increasing numerosity
to keep total item area constant, high spatial frequency contrast energy
varies little with numerosity. Where item size decreases more strongly
to keep total item perimeter constant, high spatial frequency contrast
energy decreases with increasing numerosity. Responses do not follow
these changes in high spatial frequency contrast energy between
stimulus configurations.

Despite problems with this exceptionally simple model in explain-
ing numerosity responses in some stimulus configurations, it is a
biologically plausible mechanism that makes quantitative predictions
against which data can be tested. Further development of such models
may predict response differences between these stimulus configura-
tions. Testing predictions of such models using the methods we
describe here can validate them against neural response data, just as
careful psychophysics can test their predictions against perception.

While such models describe how responses that scale with numer-
osity might arise, emergence neurons with tuned responses to the
output of such mechanisms rely on further models. One plausible
candidate mechanism (Dehaene and Changeux, 1993), which pre-dates
the discovery of numerosity-tuned neurons, shows how such tuned
responses could arise through the interaction of neurons whose
response increases monotonically with numerosity and neurons whose
response decreases monotonically with numerosity.

A numerosity estimation mechanism need not perform perfectly to
produce behaviorally useful information. It would only need to
estimate numerosity fairly accurately in most real world visual input
to provide a selective advantage. For example, visual motion is detected
by a mechanism that responds to consecutive stimulation of two
spatially separated points, known as a Reichardt detector. While
experimenters can create stimuli that do contain motion but do not
activate the Reichardt detector (and vice versa) the Reichardt detector
accurately detects motion in most real world stimuli. As such, it is
generally considered a motion detector, with deviations from accurate
motion detection revealing its underlying mechanism. Similarly, a
numerosity estimation mechanism need only estimate numerosity
accurately in most real-world stimuli, but inaccurate estimation may
reveal its underlying mechanisms.

Even if numerosity is accurately detected, subsequent modulation
of numerosity responses by other visual features certainly can yield
inaccurate perception of numerosity. For example, larger objects are
systematically perceived to be more numerous (Hurewitz et al., 2006).
This finding might suggest that numerosity perception relies on a single
visual feature that is affected by both object size and numerosity.
Alternatively, neurons responding to object size and numerosity might
arise through independent mechanisms and subsequently interact
(Harvey et al., 2015), causing interference between neural representa-
tions of object size and numerosity.

Numerosity and visual feature range

Here we examine response to stimuli with small numerosities (one
through seven), where numerosity can be determined accurately at a
glance. For larger numerosities, we cannot judge numerosity accurately
without counting, and instead perceive numerosity only approximately.
It has been proposed that different mechanisms process different
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numerosity ranges (Anobile et al., 2014). Indeed, it has been proposed
that numerosities below four and numerosities above four are repre-
sented by different systems, the object tracking system and approx-
imate number system respectively (Hyde, 2011; Piazza, 2010). Our
stimuli cross this boundary, but we find very few recording sites with
numerosity preferences above five, suggesting that the neural numer-
osity-selective responses we (and others) describe are primarily in the
object tracking system. Conversely, experiments investigating approx-
imate enumeration of larger numerosities typically avoid the subitizing
range where number is perceived accurately. As accurate numerosity
estimation becomes much harder for higher numerosities, performance
in approximate numerosity judgments may rely on very different
computations, textural cues (Dakin et al., 2011; Morgan et al., 2014)
or co-varying visual features, rather than a numerosity estimation
mechanism that yields numerosity-tuned responses. This is a matter of
some debate (Anobile et al., 2014).

Furthermore, if other visual features vary over a far larger range
than numerosity does, tuning for these features may come to dominate
response variance (Park et al., 2015). We see some evidence of such
effects in the different tuning parameters found in the constant
perimeter condition, where individual item area varies by a factor of
49, while numerosity varies by only a factor of 7. We present no
evidence that the results described here generalize to larger numer-
osities, or where other visual features vary over a far larger range than
numerosity does. We quantify differences in the range of the various
stimulus features in Tables 1–5 of the Data in Brief article.

Similarly, our stimulus was designed to examine responses to
numerosity, rather than the other visual features we investigate here.
Some other features did not vary systematically and progressively
throughout the stimulus sequence in every stimulus configuration (see
accompanying Data in Brief article). A more ideal stimulus design
might randomly vary all stimulus features and determine which
features affected responses by regression (DeWind et al., 2015; Park
et al., 2015). However, such designs are less well suited to fMRI: BOLD
responses are slow, requiring longer intervals between stimulus pre-
sentations to distinguish different responses (Buracas and Boynton,
2002). Thoroughly testing all of these visual features with stimulus
sequences that progress linearly through each feature would have
required impractical amounts of data collection.

Furthermore, we believe this difference is unlikely to underlie the
differences in predictive accuracy of visual features that we report.
First, numerosity-selective responses follow the logarithm of numer-
osity (Harvey et al., 2013; Nieder and Miller, 2003), which changes
non-linearly in our stimulus sequences. In most cases other visual
features similarly progress systematically but non-linearly through any
stimulus configuration. Second, in most other cases the feature does
not vary at all. A feature that does not change throughout the stimulus
sequence cannot predict a changing response, and the recorded
responses clearly change in response to our stimulus sequence.
Third, there are a few cases where a visual feature changes non-
systematically through the stimulus sequence. Even here, the widely
accepted general linear modeling approach to fMRI analysis shows that
responses to non-systematic variations should be just as predictable by
a pRF model as responses to systematic variations (Boynton et al.,
1996; Friston et al., 1998). Researchers typically use systematic
stimulus sequences to map pRFs because the responses to these
sequences are easier for the researcher and reader to interpret than
responses to randomly ordered stimulus sequences, and because pRF
parameter estimates are less sensitive to differences in HRF timing
parameters when nearby stimulus time points show similar stimuli. As
such, most other stimulus features progress similarly to numerosity
through our stimulus sequence, and established general linear model-
ing principles demonstrate that fMRI responses are independent of the
sequence used.

Finally, due to random placement of the objects, some stimulus
features have different magnitudes on different presentations of the

same stimulus configuration, while numerosity always has the same
values. We may miss some trial-by-trial variation in responses that
could result from trial-by-trial variations in visual feature magnitude.
The vast majority of fMRI experiments similarly average responses to
several trials. We predict this average response using the average visual
feature magnitude, again following general linear modeling principles.

We examine responses from one area only. Other areas are likely to
respond to quite different features. For example, luminance contrast
strongly predicts responses in primary visual cortex (Boynton et al.,
1996), so the luminance contrast of our stimuli is likely to predict
responses more closely than numerosity here.

Conclusions

We describe a statistically powerful method to distinguish between
different models that are hypothesized to describe fMRI responses to
complex stimulus properties. We demonstrate that fMRI responses to
stimuli that vary in numerosity are better predicted by models of
responses to numerosity than responses to any non-numerical visual
feature that co-varies with numerosity. This approach can be used to
compare models of numerosity estimation, or emergence of responses
to other complex stimulus features, from quantifiable low-level visual
features.
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