
EDITORIAL

Imaging the visual system: from the eye to the brain

Imaging technologies have revolutionized the study of

human anatomy and physiology. Nowhere is this more evi-

dent than in the vision sciences, where imaging has pro-

vided unprecedented insights into the structure and

function of the entire visual pathway in vivo. Ocular and

retinal imaging techniques such as optical coherence

tomography (OCT)1,2 have become established clinical

tools, providing highly detailed images of ocular structures

that are now used routinely to support the diagnosis and

management of ocular disease. The expanding scope of

measurements possible with ocular imaging technology is

resulting in even more accurate diagnostic and prognostic

clinical instruments and progressing our understanding of

the eye’s structural and functional properties.3

On the other hand, brain imaging technologies such as

functional magnetic resonance imaging4,5 and diffusion

tensor tractography6 are not yet widely utilized in the clini-

cal management of visual disorders. This is likely to change.

There is increasing evidence that the impact of ocular dis-

ease on visual function cannot be fully understood without

considering associated changes in the structure and func-

tion of the brain.7 Furthermore, attempts to restore vision

using electrical prosthetics8–10 or regenerative medicine11

require an understanding of the entire visual pathway in

patients with vision loss. For example, any neurodegenera-

tive effects of long-term visual cortex deafferentation will

limit the extent to which vision can be recovered when reti-

nal input to the brain is restored. Therefore future advances

in the field of vision restoration are likely to rely critically

on information from a combination of both eye and brain

imaging techniques.

This feature issue had two main goals. The first was to

identify new imaging technologies and recent progress in

established imaging methodologies that can be applied to

the visual system. The second was to highlight advances in

our understanding of the visual system and visual disorders

that have been achieved through the use of imaging tech-

niques. These broad goals allowed us to assemble a collec-

tion of papers that span the entire visual system from the

cornea to the extrastriate visual cortex.

The feature issue begins with two invited reviews that

together provide comprehensive overviews of both retinal

and brain imaging. The first review, by Jessica Morgan,

describes recent developments in retinal imaging resulting

from the use of novel OCT techniques, adaptive optics and

their combination.3 These techniques allow for detailed,

cellular level imaging of retinal layers and vasculature, visu-

alization of the photoreceptor mosaic (both cones and

rods) and even perimetry at the level of individual photore-

ceptors. Morgan also describes the exciting possibility of

high-resolution functional imaging of the retina.3 These

cutting edge technological advances in retinal imaging have

direct implications for the early detection of retinal dys-

function and improved assessment of treatment outcomes.

The second review, by Brown et al.7, deals with the

application of structural, functional and spectroscopic

magnetic resonance imaging (MRI) techniques to the

study of vision disorders. The visual system is particularly

amenable to functional MRI (fMRI) because it is relatively

straightforward to present participants with well-con-

trolled stimuli for psychophysics within the scanner envi-

ronment. In fact, the very first human functional magnetic

resonance imaging (fMRI) studies involved measurements

of visual cortex activation.4,5,12 It is perhaps not surprising

then, that fMRI has been used extensively to study the

functional organization of the human visual system. Pre-

cisely organized retinotopic maps have been visualized

within the primary and extrastriate visual cortex13–16 as

well as in thalamic areas such as the pulvinar.17 Recent

advances in retinotopic mapping techniques have even

allowed for the estimation of average receptive field size

within specific regions of the visual cortex.18 In more gen-

eral terms, structural and functional MRI has advanced

our understanding of visual pathway disease mechanisms

and the extent to which the brain can reorganize in

response to impaired visual input.

Brown et al.7 provide an introduction to structural and

functional brain imaging techniques as well as a technique

called magnetic resonance spectroscopy that enables the

measurement of metabolite concentration in targeted

brain areas. They then describe studies that have used

these techniques to unveil the cortical and subcortical

effects of anophthalmia, macular degeneration, retinitis

pigmentosa, glaucoma, albinism and amblyopia in

humans.7 It is clear from this review that the impact of

ocular disease and dysfunction does not end at the eye.

Both review papers highlight the remarkably rapid tech-

nical advances that imaging technologies have undergone,

and the substantial contributions that imaging has made to

vision science. It is also evident from both reviews that sig-

nificant breakthroughs in the clinical application of imag-

ing technologies are imminent. This theme is reflected in

the original research papers included in the feature issue.

The first two papers relate to anterior eye-imaging

technologies. Iskander et al.19 report on the Eye Surface

Profiler: a device that utilizes fourier transform profilome-
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try to measure the topography of the anterior eye in high

resolution, extending across cornea, limbus and sclera. The

possibility of accurately mapping the topography of the

limbus and sclera provides exciting new opportunities to

further our understanding of the anterior eye’s topography,

which in turn has the potential to impact upon contact lens

fitting and design.

In order to properly interpret the exceptionally precise

anterior eye measurements that can be achieved with con-

temporary OCT techniques, it is essential to understand the

normal physiological factors that influence anterior eye

structure. Read et al. highlight this issue by showing that

scleral and conjunctival thicknesses vary significantly

throughout the 24 h sleep/wake cycle.20 This result demon-

strates the ability of high resolution imaging to reveal new

physiological changes, and underscores the importance of

considering normal variations in ocular tissues when inter-

preting anterior eye measurements.

Moving from the anterior eye to the retina, Chui et al.21

report the use of adaptive optics scanning light ophthal-

moscopy (AOSLO) to document the remodelling of the

retinal microvasculature in a patient with diabetic retinopa-

thy. The longitudinal changes in microvasculature that can

be detected using this technique are striking and demon-

strate the potential of AOSLO to track disease processes

and quantify treatment outcomes.

The next two papers highlight the utility of imaging tech-

nologies for the detection of ocular disease. Ly et al.22

review the use of infrared reflectance imaging to detect age

related macular degeneration (AMD) and to differentiate

between different phenotypes of the disease. The authors

also provide case images to guide clinicians in the use of

infrared reflectance imaging for the diagnosis of AMD.

Pang and Franz demonstrate that the Heidelberg Retinal

Tomograph (HRT) has higher sensitivity and specificity for

detecting congenital optic nerve hypoplasia than the stan-

dard measurement of disc-to-macula/disc diameter ratio.23

An optimal HRT disc area cut-off value for distinguishing

between optic nerve hypoplasia and a healthy optic nerve

head is also provided.

The final set of three papers deal with the use of MRI

techniques to assess the impact of visual disorders on

the brain. Two of these papers use functional MRI to

address a fundamental question in visual neuroscience:

does the human visual system have sufficient plasticity to

“remap” in response to disease or injury? Fracasso

et al.24 investigate the structure of retinotopic maps in a

patient with congenital hemihydranencephaly, a disorder

that causes the complete absence of one hemisphere due

to abnormal prenatal cortical development. The absence

of one hemisphere represents an extreme challenge to

the visual system because the entire cortical representa-

tion of one visual hemifield is absent. However, visual

field testing revealed that the patient’s vision extended

into the left visual field despite the absence of a right

cerebral hemisphere. Subsequent high-field fMRI mea-

surements showed that the remaining right hemisphere

contained population receptive fields that encoded both

the left and right hemifields.24 This is a dramatic

demonstration of extensive visual cortex plasticity occur-

ring in response to a prenatal developmental abnormal-

ity.

In contrast to Fracasso et al.’s finding, Haak et al.25

report an absence of cortical reorganization following

visual system damage. The key difference is that while Fra-

casso et al.’s patient had an abnormal visual pathway from

birth,24 the patients studied by Haak et al.25 lost vision later

in life due to juvenile macular degeneration. Despite

extended periods of vision loss, these patients exhibited

normal patterns of functional connectivity between the pri-

mary and extrastriate visual cortex indicating a lack of cor-

tical reorganization. This is perhaps good news, since this

result suggests that the neural systems required to process

information from retinal implant technologies remain

intact despite having been deprived of visual input for

extended periods of time.

In the final paper of this feature issue, Boucard et al.26

explore the impact of normal-pressure tension glaucoma

on subcortical white matter microstructure using diffusion

tensor imaging. Glaucoma is of particular interest from a

brain imaging perspective because the neurodegenerative

effects of the disease extend beyond the retinal ganglion

cells to the lateral geniculate nucleus and cortex.27,28 Bou-

card et al.26 report evidence of white matter abnormalities

in the optic radiations, forceps major (a large fibre bundle

that connects the two occipital lobes) and the corpus callo-

sum (the primary white matter connection between the

two hemispheres). These white matter changes may reflect

neurodegeneration. Therefore, the presence of white matter

changes in structures that are remote from the retinal gan-

glion cells, such the corpus callosum, raises the intriguing

possibility that glaucoma may involve brain-specific

neurodegeneration.

As a whole, the papers that make up this feature issue

highlight how rapid technological advances have pro-

vided us with the ability to image all aspects of the

visual system with unprecedented resolution. The

expanding capabilities and scope of imaging technologies

and continued multidisciplinary approach to imaging the

eye and brain promises to further broaden our knowl-

edge of the entire visual system: from the anterior eye,

to the retina and the cerebral cortex. We envision that

the developments in imaging on the horizon have the

potential to further transform clinical practice and

patient management and enable continued research

breakthroughs and discoveries.
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