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The “number sense” 73 

Number, like color and movement, is a basic element of the environment. The cognition of 74 

number, including non-symbolic and symbolic number processing, is therefore ubiquitous  75 

and necessary in daily life. Human and animals share the ability to process non-symbolic 76 

number information, namely, numerosity (i.e., the set size of a group of items). This ability is 77 

present in pre-lingual infants (Hyde & Spelke, 2011; Izard, Sann, Spelke, & Streri, 2009), birds 78 

(Emmerton, Lohmann, & Niemann, 1997), fishes (Agrillo, Dadda, Serena, & Bisazza, 2008) 79 

and insects (Dacke & Srinivasan, 2008) and helps to guide humans and animals’ behavior and 80 

decisions. Thus, numerosity perception is believed to be a ‘number sense’, an intuitive 81 

understanding of countable quantities across species (D. C. Burr, Anobile, & Arrighi, 2018a; 82 

S. Dehaene, 2001; Andreas Nieder, 2021). Numerosity perception is critical for navigating the 83 

world, exploiting food sources and avoiding predation (e.g., a monkey processes numerosity 84 

and chooses the tree branch with most fruit, as showed in Figure 1.1). Therefore, the neural 85 

mechanism of numerosity perception is of great interest to psychologist and neuroscientists 86 

and has been studied with various techniques, including electrophysiology (Andreas Nieder, 87 

Freedman, & Miller, 2002a; Sawamura, Shima, & Tanji, 2002), neuroimaging (Eger, Sterzer, 88 

Russ, Giraud, & Kleinschmidt, 2003; Fornaciai, Brannon, Woldorff, & Park, 2017; Piazza, 89 

Izard, Pinel, Le Bihan, & Dehaene, 2004), computational modelling (S. Dehaene & Changeux, 90 

1993; B. M. Harvey, Klein, Petridou, & Dumoulin, 2013) and more recently, deep learning 91 

algorithms ((Kim, Jang, Baek, Song, & Paik, 2021; Nasr, Viswanathan, & Nieder, 2019; 92 

Stoianov & Zorzi, 2012; Zorzi & Testolin, 2018). 93 

 94 
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Figure 1.1 A cartoon example of a monkey processes the number of fruits on a tree. 95 

Numerosity perception is critical to guide human and animals’ behavior and decision in daily 96 

life.  97 

 98 

Neural mechanism of numerosity perception 99 

Evidence from single-cell recordings 100 

By recording spike rates in single neurons of non-human primates, electrophysiological studies 101 

have found neurons tuned to numerosity in the intraparietal areas (A. Nieder & Miller, 2004; 102 

Andreas Nieder et al., 2002a; Sawamura et al., 2002). The response curves of these neurons 103 

show a ‘bell-shaped’ coding scheme, peaking at a specific numerosity (their preferred 104 

numerosity), regardless of the physical appearances of the items (Andreas Nieder & Dehaene, 105 

2009). These neurons respond maximally to their preferred numerosities and decrease their 106 

responses as the distance increases from this numerosity. Later studies found numerosity-107 

selective neurons also in crows (Ditz & Nieder, 2015) and humans (neurosurgical patients) 108 

(Kutter, Bostroem, Elger, Mormann, & Nieder, 2018).  109 

 110 

Evidence from neuroimaging studies 111 

With the development of functional magnetic resonance imaging (fMRI), we are able to non-112 

invasively explore the neural mechanism of numerosity perception in healthy participants. 113 

Combining fMRI and adaptation paradigms, Piazza and colleagues (2004) have demonstrated 114 

a compressed coding for numerosity in the human intraparietal sulcus, alike to the tuning 115 

curves observed in single neurons. Later on, Eger and colleagues (2009) deciphered distinct 116 

patterns for symbolic and non-symbolic number formats from human brain activity and the 117 

patterns evoked by numerosity changed in a gradual fashion as a function of numerical distance, 118 

suggesting an orderly layout of numerosity representations. Moreover, discriminability of 119 

numerosity-evoked fMRI activity patterns in the human intraparietal cortex was found to be 120 

associated with behavioral enumerations (Lasne, Piazza, Dehaene, Kleinschmidt, & Eger, 121 

2019).  122 

 123 

Evidence from computational modelling and deep learning 124 

Based on the evidence from neurophysiology and neuroimaging, our colleagues have since 125 

used population receptive field (pRF) modelling (Dumoulin & Wandell, 2008) and ultra-126 

high field (UHF) fMRI (i.e. 7 Tesla) to explore numerosity representations in the human brain 127 

(B. M. Harvey et al., 2013). A Gaussian function defined by a set of parameters was utilized 128 
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as a neural model to describe the tuning curve of numerosity-selective neural populations. More 129 

specifically, preferred numerosity is indicated by the peak of the tuning function and the tuning 130 

width is indicated by the full-width at half maximum of the Gaussian. In that study, our 131 

colleagues initially found that numerosity-selective neural populations are organized in the 132 

human parietal cortex in a topographic map where preferred numerosity changes gradually 133 

and orderly across the cortical surface (Figure 1.2). Such topographic organization was later 134 

found throughout the human brain, at the temporal-occipital cortex (NTO), the parietal-135 

occipital cortex (NPO), the parietal cortex (NPC1 – NPC3), and the frontal cortex (NF), 136 

forming a network of numerosity maps (Ben M. Harvey & Dumoulin, 2017a). In this thesis, 137 

we refer to these maps as NTO (numerosity maps at the temporal-occipital cortex) and so forth, 138 

as defined in previous studies (Ben M. Harvey & Dumoulin, 2017a; Hofstetter, Cai, Harvey, 139 

& Dumoulin, 2021; Tsouli, Cai, et al., 2021) and following naming conventions of newly 140 

discovered visual field maps in human cortex (Wandell, Dumoulin, & Brewer, 2007).  141 

More recently, with the popularity and wide applications of deep learning algorithms, 142 

computational research using artificial deep neural networks models have shown numerosity-143 

tuned responses (Nasr & Nieder, 2021; Nasr et al., 2019; Zorzi & Testolin, 2018), even in 144 

networks with no training (Kim et al., 2021).  145 

Thus, converging evidence demonstrated a specialized neural system for processing 146 

numerosity and that numerosity-tuned neurons are the core of this network. In this thesis, we 147 

used pRF modelling approach and UHF fMRI to explore the neural mechanism of numerosity, 148 

assess the properties of the numerosity-tuned neural populations along the topographic maps, 149 

and establish links between neural tuning and behavioral perception of numerosity. 150 

 151 
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Figure 1.2 Topographic numerosity map in the human parietal cortex. (A) The variance 152 

explained by the model highlighted a region in the right parietal cortex where the neural 153 

populations demonstrated numerosity tuning. The black square is enlarged in B. (B) Preferred 154 

numerosities of the neural populations increased from medial to lateral ends (white lines) of 155 

the region of interest (black and white lines). Adapted from (B. M. Harvey et al., 2013). 156 

 157 

Distinct behavioral performances on small and large numerosities 158 

It is well-documented that discrimination on a small number of items, typically less than four 159 

items (known as subitizing), is fast and error-free (Kaufman & Lord, 1949). This is distinct 160 

from the behavioral performance on large numerosities (known as estimation), which is more 161 

time-consuming and error-prone as numerosities increase (Trick & Pylyshyn, 1994) (Figure 162 

1.3A). Thus, small and large numerosities are thought to be processed under two separate 163 

systems (Feigenson, Dehaene, & Spelke, 2004; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008; 164 

Xu, 2003). However, this theory is not universally accepted. Neurophysiological evidence 165 

suggests that a single mechanism underlies small and large numerosities, given that the tuning 166 

curves of neurons preferring small and large numerosities are encoded in logarithmic scale in 167 

the same way (Figure 1.3B) (Ditz & Nieder, 2016b; A. Nieder & Merten, 2007). Thus, an 168 

alternative theory suggests that an approximate number system (ANS) represents all 169 

numerosities (Ditz & Nieder, 2016a; Merten & Nieder, 2009; Andreas Nieder & Miller, 2004b). 170 

To test these two hypotheses, we investigated the representation of small and large 171 

numerosities in the human brain in Chapter 2. We speculated that the discrepancy between the 172 

subitizing and estimation ranges may reflect neural tuning properties of numerosity 173 

representation.  174 

 175 
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Figure 1.3 Two theories of neural mechanisms underlying small and large numerosities. 176 

(A) Enumeration of up to four items (subitizing) is error free, while enumeration of larger 177 

numerosities (estimation) is error prone. Based on this distinct behavioral performance, two 178 

systems are thought to process small and large numerosities. Adapted from (Tsouli, Harvey, et 179 

al., 2021). (B) Single-cell recordings show similar tuning curves for small and large 180 

numerosities, suggesting a single mechanism underling small and large numerosities 181 

representations. Adapted from (Ditz & Nieder, 2016a). 182 

 183 

The role of attention in numerosity perception  184 

Another argument derived from the discrete performances in the subitizing and estimation 185 

ranges is whether attention is required in numerosity perception. Due to the quick and accurate 186 

judgements, subitizing has been assumed to be pre-attentive (Trick & Pylyshyn, 1993, 1994), 187 

that is, we perceive the numerosity even when attentional focus is not directed to the 188 

numerosity feature (i.e., feature attention) (Castaldi, Piazza, Dehaene, Vignaud, & Eger, 189 

2019), or to where the stimulus is presented (i.e., spatial attention) (Hesse, Schmitt, 190 

Klingenhoefer, & Bremmer, 2017). Nevertheless, recent psychological studies suggested that 191 

numerosities in subitizing but not estimation range require attentional resources (Anobile, Turi, 192 

Cicchini, & Burr, 2012; D. C. Burr, Turi, & Anobile, 2010) and that attention affects 193 

enumeration of both small and large numerosities (Vetter, Butterworth, & Bahrami, 2008). 194 

Some studies used explicit numerosity tasks that require participants’ attention to numerosity, 195 

for example by discriminating two numerosities (Pomè, Anobile, Cicchini, Scabia, & Burr, 196 

2019). Whereas some studies did not require numerosity judgements but require participants 197 

to perform tasks based on other aspects of the stimuli, for example detecting color changes of 198 

the presented dots (B. M. Harvey et al., 2013; Viswanathan & Nieder, 2013). Whether 199 

participants were involved in a numerosity task or not, they were exposed to the stimulus and 200 

attended to some features of the stimulus. We refer to such attentional control that humans use 201 

cognitive information (e.g., cues) to direct attention to relevant objects (targets) in a visual 202 

scene as endogenous attention, which can be considered as a top-down processing. 203 

Alternatively, participants could also have little or no control over their attention during 204 

perceptual processing. For example, our attention is easily and involuntarily drawn to ‘oddball’ 205 

stimuli that are very different from the background (e.g., a deviant numerosity within a 206 

sequence of equal stimuli) (Hesse et al., 2017). We refer to this stimulus-driven attention as 207 

exogenous attention, which can be considered as a bottom-up processing (Corbetta & 208 

Shulman, 2002).  209 
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We live in a complex world in which a single scene may have multiple objects with 210 

different numerosities. For example, a monkey may be asked to choose from a pile of fruits, 211 

e.g., three bananas and two oranges (Figure 1.4A). How does numerical information of the 212 

monkey’s interest and attention (‘two bananas’) is extracted from the visual scene and what are 213 

the neural responses to the numerical information that is not attended (‘three oranges’)? In all 214 

the studies mentioned above, only one set of items was used, that is, the dots displayed in the 215 

visual scene were perceived as one single set. Thus, attention to the stimulus is inseparable and 216 

directed to one numerosity in the visual scene all the time. To mimic the dynamic natural 217 

environment and explore the role of attention in numerosity perception, we used complex 218 

numerosity stimuli consisting of two dot subsets (Figure 1.4B), and manipulated attentional 219 

focus towards either one of the two subsets (Chapter 3). In this experimental design we were 220 

able to assess attentional modulation on numerosity responses and explore the neural responses 221 

to the unattended subset.  222 

 223 

Figure 1.4 Examples of complex numerosity stimuli in (A) daily life and in (B) schematic 224 

experimental design.  225 

 226 

Towards symbolic number processing 227 

As discussed above, humans and animals share the ability to process non-symbolic numerosity, 228 

while only humans possess the unique ability to process symbolic numbers (Figure 1.5). This 229 

ability is attained via learning of abstract symbols such as Arabic numbers, number words, 230 

math and so forth, which relies on language development and education (Ansari, 2008; 231 

Halberda & Feigenson, 2008). Whether non-symbolic numerosity and symbolic number are 232 

represented in a common abstract coding scheme is a longstanding debate (Ansari, 2007; 233 

Andreas Nieder, 2004). Based on the distinct perceptual consequences, some researchers 234 

propose two independent systems: an approximate system for non-symbolic numerosity and 235 
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an exact system for symbolic number (X. He, Guo, Li, Shen, & Zhou, 2021; Marinova, 236 

Sasanguie, & Reynvoet, 2021; Sasanguie, De Smedt, & Reynvoet, 2017). Moreover, recent 237 

evidence from single-cell recordings on neurosurgical patients showed distinct neurons tuned 238 

to number symbol and numerosity in the medial temporal lobe (Kutter et al., 2018). Yet, an 239 

alternative hypothesis suggests that numerosity and symbolic number are interconnected. 240 

Specifically, numerosity perception is thought to be the precursor to the development of 241 

symbolic numerical cognition (Halberda, Mazzocco, & Feigenson, 2008; Andreas Nieder, 242 

2020a, 2020b; Piazza, 2010). FMRI adaptation studies have revealed similar number-evoked 243 

activation in the intraparietal cortex of both hemispheres, using Arabic numbers (Naccache, 244 

Dehaene, Inserm, Hospitalier, & Joliot, 2001) or dot arrays (Piazza et al., 2004) In addition, 245 

cross-notation fMRI adaptation has also been observed in the human parietal and prefrontal 246 

cortex (Piazza et al., 2007, but see (Cohen Kadosh et al., 2007). As mentioned above, 247 

numerosity-tuned neural populations are organized in networks of topographic maps across the 248 

human cortex. With the advance of pRF modelling and UHF, in Chapter 4 we investigated 249 

whether the numerosity maps are also involved in symbolic number processing.  250 

 251 

Figure 1.5 Examples of non-symbolic numerosity (e.g., a dot array) and symbolic number 252 

stimulus (e.g., an Arabic number 3). 253 

 254 

Numerosity maps at standard field strength of 3T 255 

The field of cognitive neuroscience is weighing evidence about whether to move from the 256 

current standard field strength of 3T to UHF of 7T and above. The MRI systems operating at 257 

UHF provide greatly increased signal-to-noise (SNR) and sensitivity to blood oxygenation 258 

level dependent (BOLD) contrast (van der Zwaag, Schäfer, Marques, Turner, & Trampel, 2016; 259 

Viessmann & Polimeni, 2021; Yacoub et al., 2001), which increases the popularity of UHF at 260 

7T and above in cognitive neuroscience. So far, numerosity maps have only been detected at 261 

7T (B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; 262 

Hofstetter & Dumoulin, 2021; Tsouli, Cai, et al., 2021) and whether it is possible to be 263 

reconstructed at 3T remains unknown. Thus, in Chapter 5 we investigated whether the 264 
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numerosity maps could be detected at 3T and to what extent 7T outperforms 3T in terms of the 265 

model predictive power. We predicted that more data points would be required to reconstruct 266 

robust numerosity maps using 3T data (for example by averaging more functional runs). 267 

Though MR physicists and engineers have extensively compared MR systems operating at 268 

different fields, this study aim to contribute to the field by providing evidence from the 269 

perspective of cognitive neuroscience. 270 

 271 
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Abstract 323 

Numerosity, the set size of a group of items, helps guide behaviour and decisions. Non-324 

symbolic numerosities are represented by the approximate number system. However, distinct 325 

behavioural performance suggests that small numerosities, i.e. subitizing range, are 326 

implemented differently in the brain than larger numerosities. Prior work has shown that neural 327 

populations selectively responding (i.e. hemodynamic responses) to small numerosities are 328 

organized into a network of topographical maps. Here, we investigate how neural populations 329 

respond to large numerosities, well into the ANS. Using 7T fMRI and biologically-inspired 330 

analyses, we found a network of neural populations tuned to both small and large numerosities 331 

organized within the same topographic maps. These results demonstrate a continuum of 332 

numerosity preferences that progressively cover both the subitizing range and beyond within 333 

the same numerosity map, suggesting a single neural mechanism. We hypothesize that 334 

differences in map properties, such as cortical magnification and tuning width, underlie known 335 

differences in behaviour. 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 
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 347 
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 354 

 355 
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Introduction 357 

Perception of numerosity (the set size of a group of items) guides human and animal behaviour 358 

and decisions(D. Burr & Ross, 2008; S. Dehaene, 2001; Andreas Nieder, 2020b; Andreas 359 

Nieder & Dehaene, 2009). Both humans and animals perceive numerosity over a wide 360 

numerical range. The approximate number system (ANS) is a core system that is commonly 361 

recognized to process non-symbolic number (i.e. numerosity) and relates to symbolic number 362 

processing(Gallistel & Gelman, 1992; Meck & Church, 1983). The ANS is thought to produce 363 

an intuitive “number sense” across species(Cantlon & Brannon, 2006) and throughout human 364 

development(Izard et al., 2009), and represent increasing numerosities with decreasing 365 

precision in accord with Weber’s law (Whalen, Gallistel, & Gelman, 1999). Primarily based 366 

on the distinct behavioural performances, a separate system termed object tracking system 367 

(OTS) (Storm & Pylyshyn, 1988) is thought to process small numerosities, typically up to four, 368 

known as subitizing range(Kaufman & Lord, 1949). This system is thought to be distinct from 369 

larger numerosities, known as estimation range (Trick & Pylyshyn, 1994). Evidence supporting 370 

the distinct systems for numerosity processing comes from the discontinuous behavioural 371 

performances, such as reaction time and accuracy, and distinct neural signatures(Anobile, 372 

Cicchini, & Burr, 2016; Feigenson et al., 2004). For example, numerosity judgements within 373 

the subitizing range yields accurate enumerations, which fails for larger numerosities, and may 374 

violate Weber’s law(Revkin et al., 2008). 375 

However, the separate numerosity systems are not universally accepted(Chesney & 376 

Haladjian, 2011; Cordes, Gelman, Gallistel, & Whalen, 2001; Andreas Nieder & Miller, 377 

2004b). Neurophysiological studies on non-human primates found neurons that selectively 378 

respond to different numerosities(Andreas Nieder, Freedman, & Miller, 2002b; Sawamura et 379 

al., 2002). These numerosity-selective neurons respond to small and large numerosities with 380 

similar logarithmic tuning functions as human(Piazza et al., 2004). Single neuron recording 381 

studies conducted on monkeys and crows found no sudden change in the behavioural 382 

performance and no distinct neural responses between small and large numerosities(Ditz & 383 

Nieder, 2016a; Andreas Nieder & Miller, 2004a). Moreover, numerosity discrimination 384 

follows Weber’s law in both small and large numerosities(Ditz & Nieder, 2016b; A. Nieder & 385 

Merten, 2007). Thus, these studies suggest that there is no need to assume separate systems for 386 

small and large numerosities.  387 

Here we investigate the neural mechanisms underlying the representation of small and 388 

large numerosities in the human brain. We refer to the numerosity ranges as small and large, 389 

because subitizing range varies between participants and we did not tailor our experiment for 390 
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individual participants(Mandler & Shebo, 1982). We measured BOLD responses of 391 

numerosity-selective neural populations within functional magnetic resonance imaging (fMRI) 392 

recording sites(B. M. Harvey et al., 2013). We have previously shown these populations to 393 

respond maximally to numerosities in a small range (i.e. 1 to 7) and to be arranged in orderly 394 

topographic maps(Ben M. Harvey & Dumoulin, 2017a). Here we measure their responses to a 395 

wider range of numerosities, well into the ANS (i.e. 1 to 64). 396 

Based on prior knowledge about topographic maps(Deyoe et al., 1996; Wandell et al., 397 

2007) and numerosity processing(S. Dehaene, 2003; Andreas Nieder, 2016), we will evaluate 398 

two hypotheses. First, small and large numerosities may be processed in distinct cortical 399 

regions. We have previously described neural populations responding maximally to small 400 

numerosities in an extensive network of topographically organized brain areas(B. M. Harvey 401 

et al., 2013; Ben M. Harvey & Dumoulin, 2017a). As perception of larger numerosities shows 402 

some different properties, such as more time-consuming and error-prone, larger numerosities 403 

may produce responses in distinct neural populations in a distinct set of areas. Second, neurons 404 

responding maximally to large numerosities could be placed in the same topographic map, i.e. 405 

along the systematic topographic progression including both the small and large ranges. This 406 

would be akin to stimulating greater eccentricities in the same visual field map(Wandell et al., 407 

2007). Even if small and large numerosities are represented at the same topographic map, there 408 

may still be perceptual differences between small and large numerosities. For example, central 409 

versus peripheral vision are processed in the same topographic visual field map, but their 410 

perception differs considerably(Wandell et al., 2007). Following this hypothesis, neural 411 

populations responding to large numerosities may display distinct properties, such as broader 412 

tuning, thus leading to different perceptual properties. 413 

We investigate these hypotheses using ultra-high field (7 Tesla) fMRI and population 414 

receptive field (pRF) modelling(Dumoulin & Wandell, 2008). We measured BOLD response 415 

of neural populations that tuned to small and large numerosities and compared estimated neural 416 

numerosity preferences to investigate how different numerosity ranges are represented in the 417 

brain. We find that both numerosity ranges are represented in the same topographic maps, and 418 

we suggest that differences in neural response selectivity and topographic map properties, such 419 

as tuning width and cortical magnification respectively, underlie the different perceptual and 420 

behavioural properties of small and larger numerosities. 421 

 422 

Results 423 

Neural populations in the same cortical regions respond to small and large numerosities 424 
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When participants viewed the small numerosity range, i.e. 1 to 7, we found neural populations 425 

tuned to these small numerosities. These neural populations were organized in a network of 426 

topographic numerosity maps in line with our previous observations(B. M. Harvey et al., 2013; 427 

Ben M. Harvey & Dumoulin, 2017a). This network consisted of six numerosity maps, in the 428 

temporo-occipital cortex (NTO), parieto-occipital cortex (NPO), parietal cortex (NPC1-3), and 429 

in the superior frontal cortex (NF) (Figure 2.1A & B). Within each map, the numerosity-430 

selective neural populations changed gradually along the cortical surface in their preferred 431 

numerosity (the numerosity producing the largest response in each population). For example, 432 

in NTO (Figure 2.1A), neural populations preferring smaller numerosities clustered at the 433 

inferior temporal gyrus while numerosity preferences increased posteriorly along the map 434 

(white lines). When participants viewed the large numerosity range, i.e. 1 to 64, we found a 435 

similar network of topographic numerosity maps as the one derived from viewing the small 436 

range (Figure 2.1B). Similar networks of topographic numerosity maps were also found in all 437 

other participants (Supplementary Figure 2.1B. 438 

To illustrate the tuned responses, we extracted the response time courses of two 439 

example recording sites (voxels) elicited by viewing the small (Figure 2.1A, C & E) and large 440 

(Figure 2.1B, D & F) numerosity ranges. These example sites are located in the anterior and 441 

posterior regions of the NTO map (Figure 2.1A & B). For the anterior recording site, the neural 442 

response models captured more than 80% of the response variance in both conditions (Figure 443 

2.1C & D). This site had similar preferred numerosities in both conditions, i.e. 2.2 and 2.3 444 

respectively (Figure 2.1G & H). When viewing the small numerosity range, the posterior 445 

recording site’s response increased monotonically over the presented range, reflecting a 446 

preferred numerosity above 7 (Figure 2.1I). However, this preferred numerosity could not be 447 

determined accurately as this response reached a maximum beyond the presented range (Figure 448 

2.1E). When viewing the large numerosity range, the maximum response occurred at the 449 

presentation of larger numerosities (above 7) (Figure 2.1F). As this maximum was within the 450 

large stimulus range, this allowed us to determine the preferred numerosity at 16 (Figure 2.1J). 451 

This demonstrates that neural populations with larger preferred numerosities are found near 452 

those with the small preferred numerosities at the same cortical area.  453 
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 454 

Figure 2.1. Neural population responses to small and large numerosities. A & B Cortical 455 

surface rendering of the right hemisphere shows a similar network of numerosity maps in both 456 

presented ranges. Preferred numerosities of cortical recording sites, estimated from responses 457 

to the small range (A) and the large range (B) for recording sites with over 30% of variance 458 

explained by the neural response model. Black lines outline the lateral borders of individual 459 

numerosity maps. The borders denoting the lowest and the highest preferred numerosities in 460 



 18 

each map are marked by white lines. C & D An example fMRI recording site in anterior NTO 461 

shows different fMRI time courses (dots) for small (C) and large (D) numerosity ranges. Both 462 

time courses are similarly well captured by the predictions (coloured lines) of similar neural 463 

response models. Dots represent mean response amplitudes; error bars represent the standard 464 

errors over repeated measurements (n = 4). The presented numerosities are indicated at the top 465 

of the graph. E & F An example fMRI recording site in posterior NTO shows a higher preferred 466 

numerosity. This response does not reach a maximum in the small numerosity range (E). Dots 467 

represent mean response amplitudes; error bars represent the standard errors over repeated 468 

measurements (n = 4). G & H For both numerosity ranges, the anterior NTO site’s response is 469 

predicted by similar neural response models. I & J For the large numerosity range, posterior 470 

NTO site’s response is well predicted by a neural response model (J). However, this sites’ 471 

preferred numerosity is above the small numerosity range, so it could not be determined 472 

accurately (I), produces only low-amplitude responses and yields poorer model fits (E) with 473 

this range. Preferred numerosity is indicated by the highest response amplitude in the neural 474 

model, and tuning width is indicated by the full width at half maximum (FWHM). The neural 475 

response model within the presented range is shown with solid lines, outside the range with 476 

dashed lines. 477 

 478 

Selectivity of neural populations remains stable  479 

We found strong correlations between the preferred numerosities estimated from the two 480 

numerosity ranges, especially for the overlapping portion (Figure 2.2A & B), in all maps and 481 

all participants (Supplementary Figure 2.2). We selected these preferred numerosities estimates 482 

based on two criteria: variance explained exceeded 30% and the preferred tuning fell within 483 

the presented ranges (i.e. 1-7 and 1-64  for the small and large ranges, respectively). This 484 

indicates a similar spatial organization of numerosity preferences between the two conditions, 485 

though it does not test how similar these preferences are. To quantify their similarity, we 486 

computed the extent to which the distribution of preferred numerosities estimated from the 487 

small and large ranges deviated from the unity line (where the two estimates are identical), i.e. 488 

the percentage deviation, for each map in each participant (see Methods). Zero percentage 489 

deviation indicates identical preferred numerosity estimates between conditions. A Wilcoxon’s 490 

signed rank test showed that the percentage deviations of all the maps across participants were 491 

significantly above zero (two-sided, p = 0.0006, z = 3.4, df = 47) (Figure 2.2C). This 492 

demonstrated that preferred numerosities were significantly larger when estimated from the 493 

large numerosity range. However, the median percentage deviation was only around 3.59%, 494 
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far smaller than the change in mean presented numerosities (454%), so, though significant, the 495 

effect size is small. ANOVA analyses of the percentage deviations in all the maps and 496 

participants demonstrated a significant effect of participant, but no effect of map and no 497 

interaction. Post-hoc analysis showed that only one participant had a significantly different 498 

percentage deviation from other participants (two-way ANOVA; F(7,47) = 13.36, p =3.0 x 10-8, 499 

followed by post hoc analysis, Bonferroni corrected for multiple comparisons) (Figure 2.2D).   500 

Furthermore, we performed a cross validation analysis (see Methods). To estimate the 501 

model’s predictability and reliability, we fit pRF estimates on one half split dataset to the 502 

response elicited by the other half split dataset and computed the cross-validated variance 503 

explained (i.e. cvR2) of the two conditions, respectively (within-condition cross validation). 504 

Next, we fit pRF estimates on small numerosity to the response elicited by large numerosity 505 

and computed the cvR2, and vice versa (cross-condition cross validation). We use the format 506 

of “pRF predictor → test data” (e.g., “large → small”) to indicate using data from large 507 

numerosity range to predict data acquired while viewing small numerosity ranges. We 508 

averaged the cvR2 from all the possible iterations: “small → small”, “small → large”, “large 509 

→ large” and “large → small” cross validations, respectively. We then performed a within-510 

subject two-way ANOVA analysis to compare the cvR2 between within- and cross-condition 511 

validations. There were no significant differences (p > 0.025, two-sided, Bonferroni corrected 512 

for multiple comparisons). As Figure 2.2E shows, all of the half-split datasets show 513 

considerably high predictive power, suggesting that the pRF estimates are similar across 514 

conditions. The results of cross validation analyses also show strong correlations between 515 

preferred numerosity estimated from the two ranges and a slight increase of numerosity 516 

preference at the large range. (Supplementary Figure 2.5A-B). 517 
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 518 

Figure 2.2. Relationship between numerosity preferences estimated from small and large 519 

ranges indicates similar numerosity selectivity and topographic progressions. (A) 520 

Participant 1’s NTO (see the maps in Figure 2.1A & B) numerosity preferences estimated from 521 

the two ranges were strongly correlated (see legend of the Pearson correlation coefficients and 522 

statistical significance). Dots show the estimates from individual recording sites (variance 523 

explained > 30%), the blue line shows the linear fit between the two estimates, the dashed line 524 

shows unity (i.e. identical preferences). (B) Linear fits from all six of this participant’s maps. 525 

These also reflect strong correlations in each map (see legends), indicating a similar spatial 526 

organization of estimated numerosity preferences, and are consistently above the unity line. 527 

(C) Bars show averaged percentage deviation quantifying the difference between the slopes of 528 

the linear fits (in B) and the unity line for each map. Error bars show the standard errors of the 529 

mean over participants (n = 8). A two-sided Wilcoxon signed rank test shows the percentage 530 

deviation of all these maps were above zero (z = 3.4, p = 0.0006, df = 47), suggesting a slight 531 

increase of preferred numerosity estimates at the large range. (D) Bars show averaged 532 

percentage deviation (same as in C) for each participant. Error bars show the standard errors 533 

of the mean (n = 6). Post hoc analysis shows significant difference between participant 6 and 534 

other participants (Bonferroni corrected for multiple comparions; * indicates p = 3.0 x 10-8). 535 

(E) Bars represent averaged cross-validated variance explained of the within- and cross-536 

condition cross validation datasets. Error bars indicate standard errors of the mean over 537 
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participants (n = 8). Within-subject two way ANOVA analysis shows no significant differences 538 

between the cross validation datasets (p > 0.025, two-sided, Bonferroni corrected for multiple 539 

comparisons). Source data are provided as a source data file. 540 

 541 

More cortical area devoted to smaller numerosities  542 

The change of numerosity preferences along each map was quantified by measuring the 543 

distance of each data point from the borders of the map with the highest and the lowest 544 

numerosity preferences (white lines in Figure 2.1A & B, see Methods). The numerosity 545 

preference progressed systematically along the cortical surface (Fig. 3a). Consistent with 546 

previous studies(B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a), we found a 547 

cortical magnification effect, with less cortical surface responding to larger numerosities, in all 548 

the maps of all the participants (Figure 2.3B, Supplementary Figure 2.3).  549 

To visualize the location of populations with large numerosity preferences (above 7), 550 

we calculated the proportion of large numerosity preferences in each 10% cortical distance 551 

interval. As shown in Figure 2.3C, neural populations tuned to large numerosities are located 552 

towards the end of the maps. This suggests that numerosity preferences progressed from small 553 

to large continuously along the same topographic map. Last, we found a significant correlation 554 

between the size of the maps (cortical distance) and the largest preferred numerosity in these 555 

maps (r = 0.51, p = 0.0003; Figure 2.3D). This suggests that tuned responses to larger 556 

numerosities are more detectable in larger maps. Using cross validation datasets, similar 557 

systematic progressions were found across all maps and all participants (Supplementary Figure 558 

2.5C). 559 
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 560 

Figure 2.3. Visualization of the large numerosity preference locations. (A) Cortical 561 

progression of small (dark blue) and large (light blue) preferred numerosities with the cortical 562 

distance (between the white lines in Figure 2.1A & B) across participant 1’s NTO map. The 563 

preferred numerosity increased systematically for both conditions. Points represent the mean 564 

preferred numerosity in each distance bin (every 2 mm); error bars showing standard errors of 565 

the mean over data points within each bin. Coloured lines show the best logarithmic fits. (B) 566 

Progression of numerosity preferences estimated from the large range as a function of 567 

normalized cortical distance in all the numerosity maps of participant 1. The black line shows 568 

the best logarithmic fit that bins the data points from all the maps across normalized cortical 569 

distance. Shade area shows the 95% confidence interval determined by bootstrapping fits (n = 570 

1,000) to the binned points and p-values indicate the probability of the observed change from 571 

permutation analysis (n = 10,000), in both panel A & B. (C) Proportion of tuned responses to 572 

large preferred numerosities (above 7) for each 10% interval of normalized cortical distance in 573 

all maps of all participants. Coloured bars represent the proportion of preferred numerosities 574 

ranging from 7-16, 16-32 and 32-64. (D) Map size (cortical distance) correlates with the largest 575 

preferred numerosities in the maps, i.e., large maps typically contain larger numerosity 576 

preferences. Source data are provided as a source data file. 577 

 578 
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Tuning width increases with preferred numerosity 579 

To illustrate the change of tuning width with preferred numerosity, we plotted tuning width 580 

against preferred numerosity estimated by viewing the large numerosity range (Figure 2.4). 581 

Population tuning widths increase with preferred numerosities systematically across all 582 

numerosity maps of all the participants (Supplementary Figure 2.4), in line with the observation 583 

at the small numerosity range(B. M. Harvey et al., 2013). The cross validated datasets show 584 

similar changes of tuning width increase with preferred numerosity (Supplementary Figure 585 

2.5D-E). 586 

 587 

Figure 2.4. Tuning width changes with preferred numerosity. (A) Tuning width increases 588 

with preferred numerosity in participant 1’s NTO map elicited by the large range. Recording 589 

points are binned based on preferred numerosity. Points represent the mean tuning width within 590 

each bin, error bars represent the standard errors of the mean over all the data points within 591 

each bin. Solid line is the linear fit to the bins, weighted by the inverse of the standard error of 592 

each bin. (B) Linear fits of tuning width against preferred numerosity of all the numerosity 593 

maps averaged across participants (solid coloured lines) and across maps (solid black line). In 594 

both panel a & b: dashed lines represent 95% confidence intervals determined by bootstrapping 595 

fits to the binned points (n = 1,000). The statistical significance of the slopes was determined 596 

with permutation analysis (n = 10,000), indicating the probability of observed tuning width 597 

change by chance. 598 

 599 

Discussion  600 

We found a network of neural populations tuned to small and large numerosities organized as 601 

topographic maps in the same cortical regions. These neural populations exhibit stable 602 

numerosity selectivity regardless of presented numerosity range. When the participants were 603 

viewing the large range, i.e. 1 to 64, we found populations with larger numerosity preferences 604 

(above 7) located at the end of the maps (near higher preferences within the small range). These 605 
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numerosity maps exhibit features akin to maps for primary sensory organs (retinotopic maps, 606 

tonotopic maps and somatotopic maps), such as a larger extent of cortical surface devoted to 607 

smaller numerosities, i.e. cortical magnification(Ben M. Harvey & Dumoulin, 2011; Sereno et 608 

al., 1995). These results demonstrate a continuum of small and large numerosity preferences 609 

within the same numerosity map. We therefore propose a single neural mechanism for the ANS 610 

up to numerosities of 64. We suggest that small and large numerosities are encoded in the same 611 

neural tuning, nevertheless, small and large numerosities differ in their cortical representations. 612 

We speculate that the differences of the map properties, such as cortical magnification and 613 

tuning width, may underlie the different behavioural and perceptual qualities of small and large 614 

numerosities. 615 

For the overlapping numerosities between the small and large ranges, i.e. 1 to 7, the 616 

numerosity maps were similar. When stimulating with larger numerosities (above 7), the 617 

numerosity maps extended in the direction of the higher preferences within the small range 618 

condition in a continuous fashion. This is akin to visual field maps, when stimulating with a 619 

greater eccentricity a larger proportion of the map is revealed(Wandell et al., 2007). Likewise, 620 

a wider numerosity range reveals a larger proportion of the numerosity map.  621 

We propose that there are two main theories to explain the results. On one hand, we 622 

speculate that the numerosity tuning remains stable but that the stimulus range influences the 623 

numerosity responses. A single recording site (1.75 x 1.75 x 1.75 mm3) will have about 250,000 624 

neurons(Braitenberg, 1998). In line with this notion, the tuning width of the total population 625 

within a single recording site is quite large: neural populations tuned to 2 have a tuning width 626 

of about 10 (see for example in Figure 2.1G & H). Therefore, we assume that at a single neuron 627 

level, different preferred tunings are present in the same fMRI recording site, i.e. the population 628 

consists of neurons with different preferred numerosities. In other words, the heterogeneity of 629 

the neural population alters the overall numerosity preference depending on the presented 630 

range. More specifically, the overall numerosity preference of a recording site is an average of 631 

the preferred numerosities of the neural populations within this recording site. For example, at 632 

the same recording site, the averaged population tuning would be higher for the large 633 

numerosity range because the neurons sensitive to larger numerosities in the recording site will 634 

contribute more to the population responses when the larger numerosities are presented, and 635 

less when smaller numerosities are presented. We found only a slight increase of preferred 636 

numerosity at the same recording site (i.e. the slope is slightly above the unity line) when 637 

stimulated with the large range, even in the lower portion of the range (i.e. 1-7). However, the 638 

overall deviation is small (around 3.59%). This suggests that the majority of neurons within a 639 
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recording site tend to have similar preferred numerosities. Furthermore, neural tuning 640 

estimated from the large range predicts a large signal variation of the responses derived from 641 

the small range, and vice versa (Figure 2.2E). Therefore, we suggest that the numerosity 642 

preference of single neurons is likely stable, but the heterogeneity of the neural population may 643 

give rise to different preferred numerosity estimations when the stimulus changes.  644 

On the other hand, another possible explanation is that the tuning of neural population 645 

depends on the presented stimuli and the numerosity maps are dynamic remapping of the tuning 646 

properties. Previous studies have demonstrated that numerosity is susceptible to adaptation 647 

akin to primary sensory perceptions(D. C. Burr, Anobile, & Arrighi, 2018b; D. Burr & Ross, 648 

2008; Piazza et al., 2004). Recently, Tsouli et al.(Tsouli, Cai, et al., 2021) found that 649 

numerosity adaptation altered the preferred numerosity within the numerosity map, resulting a 650 

predominantly attractive biases towards the numerosity of the adaptor. Moreover, the 651 

adaptation effect increases as the numerical distance between the unadapted preferred 652 

numerosity and the adaptor increases. Let us assume that the neural population at a recording 653 

site responded selectively to the numerosity 4. When stimulated repeatedly and sequentially 654 

with larger numerosities (e.g. 8-64), the preferred numerosity of the neural population could 655 

shift to a higher number, due to the attractive bias of adaptation towards the larger numerosities. 656 

Thus, the numerosity maps would show some systematic changes in numerosity preference 657 

depending on the numerosity range, i.e. dynamic remapping of the neural population tuning 658 

properties. As we note in the Methods, our stimulus sequence presented the numerosities 659 

changed systematically in both ascending and descending directions and the small and large 660 

ranges were interleaved during scanning. By doing so, we aim to balance opposing effects of 661 

preceding lower and higher numerosities and habituation effects of the small or large range. 662 

Furthermore, as Supplementary Figure 2.1 shows, stimulating with only large numerosities 663 

(>7) resulted in poor estimates of the maps and only elicited responses at the maps consisting 664 

of neural populations tuned to larger numerosities. This suggests that the neural population 665 

tuning is less likely to change dynamically to follow the presented stimulus. Thus, though we 666 

cannot exclude context-depending remapping, we are not convinced of this theory given the 667 

possibility of range-dependent differences in the contributions of different parts of a 668 

heterogeneous neural population (the first theory). Therefore, we favour the interpretation that 669 

under our stimulus design the numerosity tuning remains predominantly stable. 670 

In line with our findings, the stability of numerosity selectivity is also evident at a 671 

temporal scale. At a single neuron level, neurophysiological recordings on non-human primates 672 

demonstrated that numerosity-selective neurons maintain reliable tunings after the numerosity 673 
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stimulations disappear(Andreas Nieder et al., 2002b; Andreas Nieder & Miller, 2003). 674 

Similarly, stable numerosity selectivity is also found in corvid birds when retaining information 675 

of numerosity in working memory and the neuronal activity during the delay period could 676 

predict behavioural performance(Ditz & Nieder, 2015). These findings suggest that tuned 677 

responses of numerosity-selective neurons are stable across time, at least they hold information 678 

of the pre-presented numerosity in working memory. This enables a reliable neural system to 679 

maintain information temporally to deal with the task demand. Together with our findings, we 680 

suggest that numerosity tunings are stable, providing a reliable neural system for numerosity 681 

perception at the cortical representation and temporal processing scales. 682 

The largest preferred numerosities detected in the numerosity maps were smaller than 683 

the largest presented numerosity (i.e. 64), and these neural populations are found located at the 684 

end of the map. In addition, stimulating with only larger numerosities (i.e. above 7) does not 685 

reveal the complete maps, or a clear topographic progression, but mainly produces responses 686 

at the sites where the maps have neural populations tuned to large numerosities (Supplementary 687 

Figure 2.1C). There were few responses to larger numerosities beyond 12. This could be 688 

interpreted as evidence that the cortical encoding is different for larger numerosities than 689 

smaller ones. However, fewer responses to large numerosities does not necessarily mean there 690 

are no neurons responding to these large numerosities. Evidence from single neuron recordings 691 

demonstrate neurons selective for large numerosities(A. Nieder & Merten, 2007). In our study, 692 

neurons with tuning to very large numerosities may be hidden in the overall neural populational 693 

response dominated by neurons tuned to smaller numerosities. Therefore, we suggest that small 694 

and large numerosities are represented similarly in terms of their neural tunings.  695 

Furthermore, based on our observations, less cortical area is devoted to representing 696 

larger numerosities. We assume that the largest numerosity we can measure is constrained by 697 

the surface area of the numerosity map. For example, the largest preferred numerosity of a 698 

given recording site (voxel) is derived by averaging the preferred numerosities of the neural 699 

populations within this site. In such a way, the representative preferred numerosity of a given 700 

recording site will always be smaller after averaging values from the subpopulations. This 701 

could also explain why the size of numerosity map correlates with the potential largest 702 

preferred numerosity within the map (Figure 2.3D). If the map is small in size (fewer voxels), 703 

we cannot resolve individual populations preferring larger numerosities as they are mixed with 704 

those preferring smaller numerosities at the same recording sites. If the maps are larger in size 705 

however, we could distinguish the neural populations tuned to larger numerosities and those 706 

tuned to smaller numerosities in separated voxels.  707 
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Furthermore, we propose that the cortical magnification explains why stimulating with 708 

only larger numerosities (i.e. above 7) does not reveal the complete maps or topographic 709 

progression. We speculate that the cortical magnification factor, i.e. fewer cortical surface area 710 

is devoted to larger numerosities, accounts for the fact that fewer representations for larger 711 

numerosities (e.g. 16 - 64) were detected. In visual cortex, there is a smaller fraction of cortical 712 

surface for representing larger eccentricities(Daniel, Whitteridge, Hospital, & London, 1961; 713 

Wandell et al., 2007), likewise, there are evidences point at a similar decline in surface area for 714 

representing larger numerosities(B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 715 

2017a). Thus, it seems likely that the detection of the largest numerosity was also constrained 716 

by the cortical magnification effect of the numerosity map representation. In support of this 717 

assumption, Cheyette et al.(Cheyette & Piantadosi, 2020) suggested that the limited amount of 718 

information processing capability of the underlying neural circuits leads to the inaccurate 719 

perception of large numerosity, while a single system represents small and large numerosity.  720 

The continuum of cortical representation of small and large numerosities argues for a 721 

single numerosity neural representation mechanism, in line with the single enumeration system 722 

of the ANS. However, numerosity estimation is fast and accurate for the subitizing range, 723 

where some studies report a clear violation of Weber’s law(Revkin et al., 2008; Xu, 2003). 724 

Enumeration suddenly becomes slow and error-prone beyond this range, showing an increase 725 

in reaction time and a decrease in precision(Balakrishnan & Ashby, 1991; Pomè, Anobile, 726 

Cicchini, & Burr, 2019). Therefore, this dissociation is held to reflect two separate systems in 727 

enumerations at different set sizes(Feigenson et al., 2004). However, reported differences in 728 

the dependence for small versus large numbers do not necessary imply the existence of two 729 

separate systems. Because for small numerosities the imprecision of the numerosity 730 

representation remains below one item while for larger numerosities to achieve the same 731 

discrimination precision more numerical distance is required, which results in more overlap 732 

and a ratio-dependent effect(Andreas Nieder, 2020a, 2020b).   733 

Although we suggest that a common neural mechanism underlies numerosity 734 

representation across a wide range, it may nevertheless have distinct perceptual and 735 

behavioural consequences between the subitizing and estimation ranges. The fast and accurate 736 

perception on small numerosities is because more cortical area of the numerosity maps are 737 

devoted to smaller numerosities(B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 738 

2017a). This is consistent with the observation in macaque prefrontal cortex that single neurons 739 

with smaller numerosity preferences occurred more frequent, with a progressive decrease in 740 

frequency toward higher numerosity preferences(A. Nieder & Merten, 2007). This cortical 741 
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representation of small and large numerosities resembles the logarithmic coding of 742 

numerosity(Kutter et al., 2018; Andreas Nieder & Miller, 2003; Piazza et al., 2004). 743 

Neurophysiological studies in macaque and corvids show logarithmically numerosity encoding 744 

in single neurons(Ditz & Nieder, 2015; Andreas Nieder, 2016). Logarithmic coding allows a 745 

wide range of numerosities to be encoded, thus increasing the scope of neural representation 746 

and perception of numerosity(Dayan & Abbott, 2001). The cortical magnification of 747 

numerosity maps provides the neural circuits for such a logarithmic coding space. Perception 748 

on large numerosities gets inaccurate and takes more time as the tuning width increases with 749 

the preferred numerosity. Thus, we speculate that the properties of numerosity representation, 750 

such as cortical magnification and tuning width, give rise to distinct perceptual performance 751 

on small and large numerosities.  752 

Despite much evidence for a number sense in humans, there have been arguments about 753 

whether numerosity is sensed directly or derived indirectly from other non-numerical 754 

information in the stimulus, such as dot size and density(S. C. Dakin, Tibber, Greenwood, 755 

Kingdom, & Morgan, 2011; Gebuis & Reynvoet, 2012). One reason why the argument is 756 

particularly compelling is that numerosity is intrinsically correlated with many other physical 757 

features. For example, we have shown a correlation between the neural tuning of object size 758 

and numerosity, with largely overlapping topographic maps. However, object size and 759 

numerosity tuning result from distinct mechanisms, indicated by their distinct tuning properties 760 

and map organizations(Ben M. Harvey, Fracasso, Petridou, & Dumoulin, 2015). Previous 761 

studies from other labs have demonstrated separate mechanisms for perception of numerosity 762 

and density(Anobile, Cicchini, & Burr, 2014; Anobile, Cicchini, et al., 2016) that a regime of 763 

texture mechanism represents densely packed items that cannot be individuated as separate 764 

items. Note that in previous studies(B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 765 

2017a), we used various stimulus conditions, such as constant area, constant dot size, constant 766 

circumference, high density and various shapes. In these studies, we consistently found 767 

topographic numerosity maps in all the stimulus configurations, which suggests that the 768 

topographic maps depend on numerosity rather than other stimulus information. We have also 769 

demonstrated that responses in these maps cannot be explained by neural tuning for these non-770 

numerical features(Ben M. Harvey & Dumoulin, 2017b). In the current study, we used a 771 

stimulus configurations total surface area held constant across numerosity, ensuring equal 772 

luminance in all the numerosity displays. The stimuli were presented in a larger central visual 773 

field of 4 than the original setting of 1.5, as this configuration allows larger numerosity 774 
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stimuli to have enough space to individuate each item. But in this stimulus configuration 775 

density increases with numerosity and total item perimeter decreases, for example. We believe 776 

the response we observe reflect numerosity because this has been conclusively demonstrated 777 

in the same maps in our previous studies(B. M. Harvey et al., 2013; Ben M. Harvey & 778 

Dumoulin, 2017a; Ben M. Harvey et al., 2015), although it was not possible to design the 779 

experiment to conclusively demonstrate this in the current data with the large numerosity range. 780 

Based on these results, we suggest that differences in neural properties within the same 781 

topographic map underlie the different cognitive behaviours of numerosity perception. This is 782 

commonly seen in visual field maps with perceptual differences between central (foveal) and 783 

peripheral vision. Visual field maps show changes in cortical magnification and receptive field 784 

size with eccentricity. Specifically, more of the cortical area is devoted to central vision with 785 

smaller receptive fields. Such differences in cortical magnification and receptive field size may 786 

reflect different perceptual processing requirements(Wandell et al., 2007). Therefore, like 787 

visual cortex, we suggest that, not only are topographic maps a core principle of brain 788 

organization, but the differential features of cognitive topographic maps underlie differences 789 

in cognition.  790 

 791 

Methods 792 

Participants  793 

We present data from eight participants (one female, age range 25 – 45 years). All the 794 

participants had normal or correct-to-normal visual acuity. All were well educated, with good 795 

mathematical abilities. Written informed consent was obtained before every MRI session. All 796 

experimental procedures were approved by the ethics committee of University Medical Centre 797 

Utrecht. 798 

  799 

Stimuli and experiment design 800 

Visual stimuli were presented on a 69.84 x 39.29 cm LCD screen (Cambridge Research 801 

Systems) behind the MRI bore. Participant was required to lie still and view the display through 802 

a mirror attached to the head coil. The total distance from the attached mirror to the display 803 

screen was 220 cm. The display resolution was 1920 x 1080 pixels. Visual stimuli were 804 

generated in Matlab using PsychToolbox(Brainard, 1997; Denis G Pelli, 1997). A large 805 

diagonal cross composed of thin red lines was displayed consistently across the entire screen, 806 

which allows accurate fixation. Participants were asked to fixate the intersection of the cross. 807 

Stimuli consisted of a group of dots with a constant total surface area presented in the central 808 
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4° (diameter) of the visual field. Dots were randomly positioned at each presentation so that 809 

each dot fell entirely within this area, to distribute contrast energy equally across the stimulus 810 

area for all numerosities (Figure 2.5). Each numerosity presentation that contained the same 811 

number of dots was placed in a new, random position, so no specific visual position was 812 

associated with any numerosity. To prevent perceptual grouping, individual items were 813 

distributed roughly homogeneously across the stimulus area. All of the numerosity 814 

presentations were displayed as black or white dots on a grey background. Dot patterns were 815 

presented briefly (300ms) to ensure participants did not have time to count. A new random 816 

pattern was presented every 650ms, with 350ms presentation of a uniform grey background 817 

between dot pattern presentations. This was repeated six times, over 3900ms, corresponding to 818 

two fMRI volume acquisitions (TRs), before the numerosity changed. On 10% of numerosity 819 

presentations, the dots were shown in white instead of black. Participants were instructed to 820 

press a button when white dots were shown to ensure they were paying attention to the stimulus 821 

during the fMRI acquisition and responded to 90-100% of white dot presentations within each 822 

functional run. No numerosity judgements were required. Main stimuli in the small numerosity 823 

range consisted of 1 to 7 dots, with 20 dots as the baseline, while large numerosities consisted 824 

of 1 to 64 dots and a baseline of 512 dots. To test neural populations responses to larger 825 

numerosities, a third numerosity range consisted of only large numerosities from 8 to 64 dots 826 

and a baseline line of 512 dots was introduced, namely, the large-control range (Supplementary 827 

Fig. 1a). The main numerosity stimuli were first presented in ascending order, followed by a 828 

longer period (15.6 seconds) where presented with the baseline stimuli (20 or 512 dots in the 829 

small or large range respectively), then followed by the main numerosities in descending order, 830 

followed by another identical baseline period. This sequence was repeated four times (4 cycles) 831 

for each functional run. The long baseline period had a similar function to the blank periods 832 

used in visual field mapping stimuli in population receptive field experiments(Dumoulin & 833 

Wandell, 2008). During this period, little neural response was expected from numerosity-834 

selective neurons preferring  the main numerosities of interest, as such a relatively large 835 

numerosity should be well outside of the numerosity range that elicits strong responses. This 836 

long period also allows hemodynamic responses to return to baseline between blocks of 837 

changing numerosity. 838 
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 839 

Figure 2.5. Illustration of stimuli and experimental design. (A) A full example stimulus as 840 

seen by the participants in the scanner. The dot pattern covered the central 4° (visual angle) 841 

diameter within an 10.2° diameter mean-luminance (grey) field. A large, thin, red fixation cross 842 

passes diagonally through the center of the display, and through the center of the dot pattern. 843 

Participants fixated at the intersection of the cross. (B) Example numerosity stimuli, where the 844 

total surface area of the dot pattern is constant across numerosities. c The sequence of the 845 

numerosity stimuli presented to the participants at the small and large ranges, respectively. 846 

  847 

MRI acquisition and preprocessing  848 

Anatomical MRI data were acquired from a Philips 7T scanner (Philips Medical Systems, Best, 849 

NL). MP2RAGE T1 anatomical MRI data were acquired at the spatial resolution of 0.64 x 0.64 850 

x 0.64 mm3 (resampled to 1 x 1 x 1 mm3 for the follow-up processing), repetition time (TR) 851 

was 6.2 ms, echo time (TE) was 3 ms, and flip angle was 5/7 degrees. Functional T2*-weighted 852 

multi-band (factor=2) 2D echo planar images (EPI) were acquired on a Philips 7T scanner 853 

using a 32 channel head coil (Philips Nova Medical) at a resolution of 1.75 x 1.75 x 1.75 mm3, 854 

with a full-brain-coverage field of view (FOV=106 x 112 x 236) covering 64 slices. TR was 855 

1950ms, TE was 25ms, and flip angle was 70 degrees. Functional runs were each 182 time 856 

frames (354.9 seconds) in duration, of which the first six time frames (11.7 seconds) were 857 

discarded to ensure the signal was at a steady state. Within each session eight functional runs 858 

were acquired with the small and large numerosity ranges interleaved to avoid adaptation. Each 859 

participant was scanned for two sessions on separate days. In addition, we collected eight 860 

functional runs on seven of our participants with the large-control range.  861 
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T1 anatomical scans were automatically segmented using CBS tools (www.nitrc.org) 862 

and then manually edited to minimize segmentation errors using ITK-SNAP(Yushkevich et al., 863 

2006) (www.itksnap.org). This provides a highly accurate description of the cortical surface, 864 

an anatomical segmentation space used for analysis of cortical organization. The cortical 865 

surface was reconstructed at the grey-white matter border and rendered as a smoothed 3D 866 

surface. Head movement and motion artefacts between and within functional scans were 867 

measured and corrected for in AFNI(Cox, 1996). Motion-corrected functional data were then 868 

averaged and the resulting mean image was co-registered to the segmented anatomy. Individual 869 

functional images were then co-registered to the same anatomical space using the same 870 

transformation. 871 

  872 

fMRI data analysis 873 

Functional data analysis was performed in mrVista, which is freely available at 874 

(https://github.com/vistalab/vistasoft). First, data from separate sessions was imported into the 875 

same anatomical space for each participant. Functional runs (n = 8) collected for the same 876 

condition (small or large range) were averaged to produce a dataset with strong signal strength. 877 

Second, the averaged functional dataset was collapsed onto the nearest point on the cortical 878 

surface across depth to further increase on signal strength, which generated a (folded) 2D grey 879 

matter surface. Then we performed the canonical numerosity modelling developed to estimate 880 

the tuning properties of numerosity-selective neural populations(Dumoulin & Wandell, 2008; 881 

B. M. Harvey et al., 2013). Briefly, a one-dimensional neural model defined as a Gaussian 882 

function in logarithmic space was adopted. The Gaussian function characterized by a set of 883 

parameters: preferred numerosity (mean) and tuning width (standard deviation). The model 884 

predicts neural responses by taking the presented numerosity at each time point and evaluating 885 

the Gaussian function’s amplitude at this numerosity. Then convolving these predicted neural 886 

response time course with a hemodynamic response function (HRF) to generate predicted fMRI 887 

time courses. The predicted fMRI time course with the minimum sum of squared errors (R2) 888 

residuals to the recorded signal was chosen, and the Gaussian function parameters that 889 

generated this prediction were used to summarize the recording site’s response. The goodness 890 

of model fit (R2, i.e. variance explained) was thresholded at 30% to select recording sites with 891 

clear numerosity selective responses: recording sites with lower variance explained were 892 

excluded from further analysis. The modelling procedure allows preferred numerosity 893 

estimates outside the range of the presented stimuli, ensuring estimates within the stimulus 894 

range are not just the best of a limited set. We excluded from analysis any recording sites where 895 

http://www.nitrc.org/
http://www.itksnap.org/
https://github.com/vistalab/vistasoft
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the preferred numerosity was outside the presented range accordingly. Finally, the preferred 896 

numerosity data was projected onto the smoothed cortical surface.  897 

 898 

Definition of region of interest 899 

We defined regions of interest (ROI) where the numerosity-selective neural populations are 900 

organized topographically similar to previously reported numerosity maps(Ben M. Harvey & 901 

Dumoulin, 2017a). In total, six ROIs were drawn for the right hemisphere in the  temporo-902 

occipital cortex, parieto-occipital cortex, parietal cortex, and superior frontal cortex, 903 

corresponding to six numerosity maps: NTO, NPO, NPC1, NPC2, NPC3, NF. In each ROI, we 904 

defined map borders on the lowest and highest preferred numerosities (white lines) and the 905 

map edges around the local increase in model goodness of fit (black lines) (Figure 2.1A-B & 906 

Supplementary Figure 2.1B). 907 

 908 

Correlation analysis between numerosity preferences  909 

Pearson correlation analysis was performed between numerosity preference estimated from the 910 

small and large ranges. This included the recording sites that had variance explained above 911 

30% in both conditions. Taking into account the functional resolution of the recording sites, 912 

the total number of data points (n) used to calculate correlation’s probability was reduced by 913 

the factor by which functional voxels were up-sampled onto the 2D cortical surface. 914 

To quantify the similarity between the numerosity preferences estimated from the two 915 

ranges, we calculated the percentage deviation. We calculated the difference of the slopes 916 

between the linear fit line of the numerosity preference correlation and the unity line (y = x). 917 

The percentage deviation of the unity line was set to 0, indicating that the estimates of small 918 

and large numerosity preference are equal. The largest possible deviation is indicated by the 919 

best fit function of y = 10.5x-9.5, where the estimate of the largest numerosity at small range 920 

(i.e. 7) corresponds to the estimate of the largest numerosity at the large range (i.e. 64). The 921 

percentage deviation of this best possible fit was set to 1. Thus, for each map, the percentage 922 

deviation = (p-1)/9.5, where p is the slope of the best fit of the correlation. We performed a 923 

Wilcoxon signed rank test (two-tailed) to the percentage deviations of all maps in all 924 

participants. A two-way ANOVA was performed to test the statistical difference in the 925 

percentage deviations between maps and participants, followed by post hoc analysis with 926 

Bonferroni correction for multiple comparisons.  927 

 928 

Analysis of change of numerosity preferences along maps 929 
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For each ROI, we calculated the distance of each recording site to the nearest points on the 930 

borders of the map with the lowest and highest numerosity preferences. The ratio between the 931 

distances to each border was computed, which gives a normalized distance along the ROI in 932 

the primary direction of preferred numerosity change. Then we multiplied this normalized 933 

distance by the mean length of the ROI in this direction, which gives a measure of the distance 934 

along the ROI for each recording site.  935 

We binned the data points within every 2 mm distance interval along each ROI. The 936 

mean and standard error of the preferred numerosity of the points within the bin was calculated. 937 

We fitted logarithmic functions to bootstrapped samples of the bin means. From these 938 

bootstrapped fits we took the median slope and intercept as the best fitting numerosity 939 

progression. We determined 95% confidence intervals by plotting all lines generated during 940 

bootstrapping iterations and finding the 2.5 and 97.5 percentiles values for these fits. The 941 

statistical significance of the slopes was determined with a permutation analysis, where the 942 

order of distance bins was randomized (10,000 times). The slopes were fitted at each 943 

permutation, and the probability of finding the observed slope by chance was calculated as the 944 

number of times where the slope in the randomized permutation was equal to or greater than 945 

the observed slope.  946 

We normalized the cortical distance of each ROI to visualize the progression of 947 

numerosity preference in a similar way. We binned the recording sites within every 10% 948 

interval of the normalized cortical distance along each ROI. To visualize the location of neural 949 

populations selectively responding to larger numerosities (above 7), we sorted neural 950 

populations preferred large numerosities into three subranges (i.e. 7-16; 16-32; 32-64) at each 951 

bin. We calculated the proportion of these recording sites among all the selected recording sites 952 

in the same bin. The proportions of each subrange at each bin of all maps in all participants 953 

were averaged and stacked. Last, we extracted the largest preferred numerosity of each map 954 

estimated from the large range and calculated the correlation between these preferred 955 

numerosities and the cortical distance of the maps. 956 

 957 

Analysis of change of tuning width with numerosity preference 958 

In each ROI, we binned data based on preferred numerosities at each range, with numerosity 959 

increments of 0.25 between bins. The mean and standard error of each bin were calculated. We 960 

fitted linear functions to bootstrapped samples of the bin means. We determined 95% 961 

confidence intervals by plotting all lines generated during bootstrapping iterations and finding 962 

the 2.5 and 97.5 percentiles values for these fits. Similar permutation analysis, as described 963 
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above, was used to calculate the probability of finding the observed tuning width change by 964 

chance. Unstable fits are common seen in some ROIs where there are little information in the 965 

data set to distinguish tuning widths.   966 

 967 

Cross validation analysis 968 

We cross validated the results by splitting the data into two halves for each condition, based on 969 

odd versus even runs, resulting in four half cross validation datasets (i.e. small-odd, small-970 

even, large-odd and large-even). Two types of cross validations were done: within-condition 971 

and cross-condition. We selected the recording points from each cross validation datasets based 972 

on the criterion that the preferred tuning from 1 to 7, which present at both the small and the 973 

large ranges.  974 

For the within-condition validation, we extracted the model prediction of the selected 975 

voxels from one dataset (e.g. large-odd) and fitted that to the other dataset (e.g. large-even) of 976 

the same condition and vice versa, namely the “small → small” and “large → large” 977 

validations. This resulted in two iterations of each condition and we calculated the cross-978 

validated variance explained (cvR2) of each iteration. For the cross-condition validation, we 979 

extracted the model prediction from one cross validation dataset (e.g. small-odd) and fitted that 980 

to the two datasets of a different condition (e.g. large-odd & large-even), namely the “small → 981 

large” and “large → small” validations. This resulted in eight iterations of cross validation by 982 

taking the model prediction from each dataset in turn. We then calculated the averaged within-983 

condition and cross-condition cvR2 across all iterations and across maps and participants. A 984 

within-subject repeated measures two-way ANOVA analysis was performed using JASP to 985 

compare within- and cross-condition validations (Fig. 2e)(JASP Team, 2020).  986 

To validate the results of the large range data, we selected the voxels with the criteria 987 

that the preferred tuning fell at the large range and with the cvR2 larger than 30%. We replicated 988 

the main analyses using the cross validation datasets (see Supplementary Fig. 5).  989 
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Abstract 1065 

Numerosity, the set size of a group of items, helps guide behaviour and decisions. Previous 1066 

studies have shown that neural populations respond selectively to numerosities. How 1067 

numerosity is extracted from the visual scene is a longstanding debate, often contrasting low-1068 

level visual with high-level cognitive processes.  Here, we investigate how attention influences 1069 

numerosity selective responses. The stimuli consisted of black and white dots within the same 1070 

display. Participants’ attention was focused on either black or white dots, while we 1071 

systematically changed the numerosity of black, white and total dots. Using 7T fMRI, we show 1072 

that the numerosity-tuned neural populations respond only when attention is focused on their 1073 

preferred numerosity, irrespective of the unattended or total numerosities. Without attention, 1074 

responses to preferred numerosity were inhibited. Unlike traditional effects of attention in the 1075 

visual cortex where attention enhances already existing responses, these results suggest that 1076 

attention is required to drive numerosity selective responses. 1077 

 1078 
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Introduction  1099 

Perception of numerosity, i.e. the set size of a group of items, guides human and animals’ 1100 

behaviour and decisions (Brannon & Terrace, 1998; S. Dehaene, 2001; Andreas Nieder, 2020a; 1101 

Andreas Nieder & Dehaene, 2009). Behaviour often requires numerosity perception, for 1102 

example choosing the bag or tree with the most fruits when shopping or foraging. 1103 

Neurophysiological experiments have described neurons tuned to numerosity, responding 1104 

maximally when a specific numerosity is displayed, with responses decreasing with distance 1105 

increases from this preferred numerosity, in non-human primates (A. Nieder & Merten, 2007; 1106 

Andreas Nieder et al., 2002a), crows (Ditz & Nieder, 2015, 2016a) and humans (Kutter et al., 1107 

2018). Functional magnetic resonance imaging (fMRI) experiments also revealed responses to 1108 

numerosity comparison tasks (A. S. Dehaene et al., 2016) and later to specific numerosities 1109 

(Eger et al., 2009; Piazza et al., 2004). We have since used population receptive field (pRF) 1110 

modelling (Dumoulin & Wandell, 2008) to show these responses to specific numerosities 1111 

reflect neural populations tuning for different numerosities in each fMRI recording site (B. M. 1112 

Harvey et al., 2013). These neural populations are organized in topographic maps where 1113 

preferred numerosity changes gradually across the cortical surface. A network of topographic 1114 

numerosity maps is found throughout the human brain (Cai, Hofstetter, van Dijk, et al., 2021a; 1115 

Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; Tsouli, Cai, et al., 2021). 1116 

There is a longstanding debate on how numerosity is extracted from the visual scene. 1117 

While some have proposed that numerosity perception follows non-numerical image features 1118 

such as area and density that are often correlated with numerosity (Steven C. Dakin, Tibber, 1119 

Greenwood, Kingdom, & Morgan, 2011; Durgin, 2008; Gebuis, Gevers, & Cohen Kadosh, 1120 

2014), growing convergent research indicates numerosity itself is perceived directly by humans 1121 

and represented in the brain akin to other visual features such as colour and motion (D. Burr & 1122 

Ross, 2008). This evidence is provided from psychophysical (Cicchini, Anobile, & Burr, 2016; 1123 

DeWind, Adams, Platt, & Brannon, 2015), neuroimaging (DeWind, Park, Woldorff, & 1124 

Brannon, 2019; Ben M. Harvey & Dumoulin, 2017b, 2018; Park, Dewind, Woldorff, & 1125 

Brannon, 2016) and computational (Kim et al., 2021; Stoianov & Zorzi, 2012; Zorzi & Testolin, 1126 

2018) approaches. Numerosity may be estimated from early visual representations, such as 1127 

spatial frequency domain image representations (Steven C. Dakin et al., 2011; Paul, van 1128 

Ackooij, ten Cate, & Harvey, 2021). Such estimation of numerosity may also underlie the 1129 

similarity of numerosity to low-level visual properties like position, orientation and spatial 1130 

frequency in aspects of its perception (e.g., adaptation (D. Burr & Ross, 2008)) and neural 1131 

representation (e.g., neural tuning and topographic mapping (Tsouli, Harvey, et al., 2021)). 1132 
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Despite the potentially low-level estimation of numerosity by the visual system, higher-level 1133 

processes are clearly involved in numerosity perception, such as for example grouping 1134 

(Maldonado Moscoso, Castaldi, Burr, Arrighi, & Anobile, 2020; Pan, Yang, Li, Zhang, & Cui, 1135 

2021), connectedness (L. He, Zhou, Zhou, He, & Chen, 2015; Kirjakovski & Matsumoto, 1136 

2016), multisensory integration (Anobile, Arrighi, Togoli, & Burr, 2016a; Andreas Nieder, 1137 

2012) and attention (Anobile, Stievano, & Burr, 2013; Ansari, Lyons, Van Eimeren, & Xu, 1138 

2007; D. C. Burr et al., 2010). 1139 

Behavioural studies investigating the role attention plays in numerosity processing have 1140 

provided mixed results, and whether and to what extent attention modulates neural responses 1141 

to numerosity remain unknown. Numerosity perception has been argued to be pre-attentive, i.e. 1142 

numerosity is perceived spontaneously even when participants are not involved in a numerosity 1143 

task and when their focus of attention is not directed towards the stimulus (Hesse et al., 2017). 1144 

On one hand, enumerating small number of objects up to 4 items, i.e. subitizing, shows fast 1145 

and error-free behavioural results, and has therefore traditionally been assumed to be pre-1146 

attentive (Trick & Pylyshyn, 1993, 1994). On the other hand, attention is needed in numerosity 1147 

processing, even in the subitizing range. It has been demonstrated that subitizing required 1148 

attentional processes by using an inattentional blindness paradigm (Railo, Koivisto, Revonsuo, 1149 

& Hannula, 2008). This view was supported by recent studies using cross-sensory dual tasks 1150 

and documented that subitizing and mapping numerosity onto space are attentional-demanding 1151 

(Anobile, Cicchini, & Burr, 2012; Anobile, Turi, et al., 2012). Even more attentional resources 1152 

are needed for subitizing than in the estimation range, i.e. for a smaller than a larger number of 1153 

items (D. C. Burr et al., 2010; Pomè, Anobile, Cicchini, Scabia, et al., 2019). 1154 

Here we ask how neural responses, specifically in neural populations tuned to 1155 

numerosity, are affected by attention. In the visual cortex, neural responses reflect both 1156 

stimulus-driven responses and attentional modulation (Carrasco, 2011; Reynolds & Chelazzi, 1157 

2004; Ungerleider, 2000). Typically, the attentional modulation is conceptualized as a gain 1158 

factor that modulates neural responses (Maunsell & Treue, 2006; McAdams & Maunsell, 1159 

1999a; Reynolds & Heeger, 2009). In neural mechanisms of numerosity perception, the 1160 

balance between stimulus-driven responses and attentional modulation is unclear. Some studies 1161 

have explicitly used tasks (e.g. a delayed match-to-numerosity task) manipulating attention 1162 

towards the numerosity of presented stimulus (Ditz & Nieder, 2016b; A. Nieder & Merten, 1163 

2007; Andreas Nieder et al., 2002a). Others observed similar responses in the absence of an 1164 

explicit numerosity task (e.g. a color discrimination task), and speculatively, in the absence of 1165 

attention to the numerosity per se (Cai, Hofstetter, van Dijk, et al., 2021a; B. M. Harvey et al., 1166 
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2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; Hofstetter & Dumoulin, 1167 

2021; Tsouli, Cai, et al., 2021; Viswanathan & Nieder, 2013). However, all of these studies 1168 

displayed only one set of items, and so do not require attention to be focused on some items 1169 

but not others. 1170 

Here we determined how established numerosity selective responses change when the 1171 

participant pays attention to different subsets of items within the display. We recorded blood 1172 

oxygen level dependent (BOLD) signals using ultra-high field (i.e. 7 Tesla) fMRI (Cai, 1173 

Hofstetter, van der Zwaag, Zuiderbaan, & Dumoulin, 2021) in three consecutive experiments 1174 

and analysed these responses using neural model-based analyses (Dumoulin & Wandell, 2008). 1175 

 1176 

Results  1177 

Behavioural tasks modulate attention  1178 

In Experiment 1, we presented a stimulus consisting of black and white dots of a fixed total 1179 

numerosity (Figure 3.1A) while systematically varying the ratio of the two subsets (Figure 1180 

3.1B,C), and instructed participants to pay attention to (the shape of) one or the other subset. 1181 

No numerosity judgements on either dot subset were required (Figure 3.1A,C), and the same 1182 

stimulus was presented regardless of which subset was attended. Participants were told which 1183 

dot subset they should attend and perform the shape detection task on with a verbal instruction 1184 

(‘attend black’ or ‘attend white’) through the scanner’s intercom. The participants responded 1185 

with a button press when the attended dot subset changed from circular to oval. The aspect 1186 

ratio of the ovals was adjusted so that difficulty was equated between participants 1187 

(Supplementary Table 3.1). 1188 

To evaluate the task performance, we computed the discriminability index (d’) (Figure 1189 

3.1D). We found significantly higher d’ values for the attended than the unattended dot subset 1190 

in both the ‘attend black’ and ‘attend white’ conditions in Experiment 1 (Paired t-test, tab = 1191 

22.6, pab = 8.2 x10-21; taw = 19.3, paw = 8.5 x10-19). Based on participant reports, we assume the 1192 

d’ above zero for the unattended dot subset is primarily driven by accidental hits when 1193 

responding to the attended dot subset, namely false alarms. These results show that participants 1194 

were paying attention to the cued dot subset during scanning (see Supplementary Table 3.1 for 1195 

task performance of individual participants). 1196 
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 1197 

Figure 3.1. Stimuli, study design and task performance in Experiment 1. (A) Two example 1198 

stimuli. A large, thin red fixation cross passed diagonally through the centre of the display. The 1199 

dot pattern consisting of a black dot subset and a white dot subset covered the central 3° 1200 

(diameter) of the visual field on a grey screen with 10.2° vertical extent. In 20% (each dot 1201 

subset accounts for 10%) of the stimulus presentations the dots were shown as ovals instead of 1202 

circles, like the white dots in the left panel. (B) Numerosity stimulus sequence: while the white 1203 

dot subset systematically increased from 1 to 7, the black dot subset systematically decreased 1204 

from 26 to 20. So the overall numerosity presented was always 27. This sequence repeated 1205 

with colour switched and then continued with the smaller subset decreasing and the larger 1206 

subset increasing. (C) Presentations of an example numerosity stimulus (yellow box in B) 1207 

within one fMRI volume acquisition (TR = 1950 ms). Participants were verbally instructed to 1208 

attend either the black or white dot subset and perform the shape detection task on the attended 1209 

subset. (D) Behavioural performance evaluated as discriminability indices (d’) in the ‘attend 1210 
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black’ (circles) and ‘attend white’ (triangles) conditions. Filled markers denote detection 1211 

performance on the attended subset, i.e. hits, and open markers on the unattended subset, i.e. 1212 

false alarms. *, p < 0.00001 by paired t-test.  1213 

 1214 

Numerosity responses follow the numerosity of the attended set  1215 

To illustrate the attentional modulation of numerosity-tuned responses, we extracted the fMRI 1216 

response time courses elicited by the ‘attend black’ and ‘attend white’ condition of an example 1217 

recording site in the superior parietal lobule at the right hemisphere of one participant (Figure 1218 

3.2A, black point). In Experiment 1,  27 dots were constantly displayed. However, we found 1219 

these two time courses (Figure 3.2B, left panel) show opposite neural response patterns, with 1220 

the peak response occurring after the presentation of low numerosities in the attended set in 1221 

each condition. The difference in response indicates the underlying neural populations are 1222 

modulated by the attentional task which requires focus on a specific subset of dots presented 1223 

on the screen. The numerosity pRF model was fit using only the numerosity of the attended set, 1224 

and its predictions captured most of the response variance (R2 > 70%) in these time courses 1225 

(Figure 3.2B, left panel). The pRF models give similar preferred numerosity estimates in both 1226 

conditions (Figure 3.2B, right panel). This result suggests that numerosity responses follow the 1227 

numerosity of the attended set.  1228 

 1229 
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Figure 3.2. Modulation of numerosity selective neural responses by attention. (A) 1230 

Anatomical rendering of the right cerebral cortex of one participant. Black point indicates the 1231 

cortical location in the superior parietal lobule from which we selected an example recording 1232 

site. (B) Two fMRI response time courses from this recording site, elicited by the ‘attend black’ 1233 

and ‘attend white’ conditions, respectively. Left panel: the time courses show very different 1234 

response patterns to the identical stimulus presentations (top). The responses follow the 1235 

numerosity of the attended set. Points represent mean response amplitudes over repeated 1236 

measurements. The pRF models tuned to the attended set’s numerosity predict these responses 1237 

well (black and white lines, R2 denotes variance explained). Right panel: neural tuning models 1238 

that best predict these time courses. This recording site preferred similar numerosities (Pref 1239 

num), irrespective of the attention condition. (C) Cross-validated variance explained by the 1240 

models in the numerosity maps, evaluated within and between attention conditions. Bars show 1241 

the mean variance explained across hemispheres, shapes indicate each individual participant 1242 

and hemisphere. (D) A similar network of numerosity maps at both hemispheres derived from 1243 

the two attention conditions. Maps show numerosity preferences estimated from responses to 1244 

numerosities of the attended set at those recording sites with R2 > 30%. White lines denote 1245 

maps borders following the lowest and highest preferred numerosities seen in each map. Black 1246 

lines outline the other borders of each map. (E) Preferred numerosity estimates derived from 1247 

the two conditions were well correlated. Bars show mean Pearson correlation coefficients 1248 

across participants. In all panels, error bars represent standard errors of the mean.  1249 

 1250 

We split the data into two halves and performed cross validation analyses using within- 1251 

and between-condition validations. The model parameters determined from one data half 1252 

closely predicted the responses to the attended numerosity in the other half well, regardless of 1253 

which dot subset was attended (Figure 3.2C). Repeated measures ANOVA analysis shows no 1254 

significant difference in model fits among all the cross validation combinations (p > 0.025, 1255 

two-sided, Bonferroni corrected for multiple comparisons). Therefore numerosity-tuned 1256 

responses followed the numerosity of the attended set similarly, and did not depend which dot 1257 

subset was attended. 1258 

As previously shown (Cai, Hofstetter, van Dijk, et al., 2021a; B. M. Harvey et al., 2013; 1259 

Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; Tsouli, Cai, et al., 2021), we found 1260 

the numerosity-tuned neural populations were organized in a network of topographic 1261 

numerosity maps (Figure 3.2D, Supplementary Figure 3.1). Within each map, the neural 1262 

preferred numerosity varied gradually across the cortical surface. For example, in a map in the 1263 
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superior parietal cortex (NPC1), numerosity preference increased systematically from medial 1264 

to lateral (white lines in Figure 3.2D). The numerosity maps derived from the two attention 1265 

conditions were very similar, indicating the preferred numerosities of the neural populations 1266 

they contain were independent of which dot subset was attended. To quantify the similarity 1267 

between the pRF estimates derived from the two attention conditions, we performed a Pearson 1268 

correlation analysis. The preferred numerosity estimates within the maps from the two 1269 

conditions were repeatably positively correlated (two-sided Wilcoxon signed rank test of 1270 

correlation coefficients, z = 5.97, p = 2.4x10-9, df = 47), indicating a similar spatial distribution 1271 

numerosity preferences of the neural populations on the cortical surface (Figure 3.2E). 1272 

 1273 

No stimulus-driven response of the preferred but unattended numerosities  1274 

In Experiment 1, we established that neural responses are dominated by the numerosity in the 1275 

attended set. However, Experiment 1 does not reveal what the neural responses to the 1276 

unattended set are. For example, the unattended set may elicit smaller responses, no response, 1277 

or may even suppress the response. Thus, in Experiments 2, we used a 2 x 2 block design to 1278 

establish the response amplitude to the preferred, but unattended numerosities. 1279 

In Experiment 2, we focussed on neural populations preferring the numerosities of 2 to 1280 

4 in the numerosity maps (see ROI definition in the Methods section). The dot subset with the 1281 

preferred numerosities consisting of 2/3/4 dots were presented at the 1st block and 3rd block, 1282 

while being attended and unattended (Figure 3.3A). The total numerosity was fixed at 40. We 1283 

predicted the response time courses (Figure 3.3B) and response amplitudes (Figure 3.3C) 1284 

according to two hypotheses. In Hypothesis 1, the neural populations respond to the preferred 1285 

but unattended numerosities, but to a smaller degree than to the preferred and attended 1286 

numerosities. In other words, the neural responses follow the preferred numerosity. This 1287 

hypothesis follows visual cortical responses where attention boosts responses, but without 1288 

attention there is still a stimulus-driven response (O’Craven, Rosen, Kwong, Treisman, & 1289 

Savoy, 1997). In Hypothesis 2, there is no response to the preferred numerosities in the absence 1290 

of attention, namely the neural responses follow the attended numerosity. Note that Hypothesis 1291 

2 predicts a decrease in response amplitude during the block of the preferred but unattended 1292 

numerosities. This decrease is driven by the higher numerosities in the attended set (36/37/38) 1293 

which are further away from the preferred numerosities (2/3/4) than the baseline numerosity 1294 

(20) is.    1295 
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 1296 

Figure 3.3. Study design, hypotheses and responses in Experiment 2. (A) Experimental 1297 

design. Stimuli consisted of a subset of 2/3/4 dots in one color and another subset of 38/37/36 1298 

dots in the opposite color, or two equal subsets of 20 black and 20 white dots, presented 1299 

simultaneously. The preferred numerosities of 2 to 4 were either in the attended or unattended 1300 

set of black or white dots. (B) Hypothesized numerosity responses under attentional 1301 

modulation in the two conditions. Hypothesis 1 (H1) is that neural responses follow preferred 1302 

numerosities. Stronger responses occur when preferred numerosities (2/3/4) are in the attended 1303 
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set than when they are in the unattended set in a given condition. Hypothesis 2 (H2) is that 1304 

neural responses follow the attended numerosity only. Increased responses occur when 1305 

preferred numerosities are in the attended set, while no response or decreased responses occur 1306 

when they are in the unattended set. Black and white lines indicate the ‘attend black’ and 1307 

‘attend white’ conditions, respectively. (C) Predicted response amplitudes of preferred 1308 

numerosities in the attended set (red) and unattended set (blue) following H1 (top) and H2 1309 

(lower). (D) Measured response time courses and general linear model (GLM) predictions. 1310 

Compared to the baseline of 20 dots in both subsets, increased responses occurred when 1311 

preferred numerosities were in the attended set, while decreased responses occurred when they 1312 

were in the unattended set. Points represent mean response amplitudes over repeated 1313 

measurements. Solid lines show the GLM predictions. T values demonstrate statistically 1314 

significant difference in response amplitudes between conditions where preferred numerosities 1315 

were in the attended (tattn) or unattended set (tunattn), compared to the baseline, in a given 1316 

condition. *, p < 0.05; **, p < 0.01; ***, p < 0.0001. (E) Averaged response amplitudes when 1317 

the preferred numerosities were in the attended (red) and unattended (blue) sets across both 1318 

conditions at individual maps. In all panels error bars represent standard error of the mean. 1319 

 1320 

We extracted and averaged the time courses of the voxels within all the numerosity 1321 

maps that had the preferred numerosities of 2 to 4 (defined from Experiment 1). General linear 1322 

models (GLM) were fitted to these time courses (Figure 3.3D). T-tests demonstrated significant 1323 

different responses between the conditions where the preferred numerosities were in the 1324 

attended or unattended sets (compared to the baseline of 20 dots in both subsets) (Figure 3.3D). 1325 

Response amplitudes of preferred numerosities in the attended set and unattended set were 1326 

computed for individual maps (Figure 3.3E). In line with the ROI definition, increased response 1327 

amplitudes were seen when participants attended the dot subsets with the preferred 1328 

numerosities. Furthermore, in line with Hypothesis 2, decreased response amplitudes were seen 1329 

when the preferred numerosities (2/3/4) were in the unattended set. We then performed a 1330 

repeated measures ANOVA analysis on the response amplitudes, followed by post hoc 1331 

analyses with Bonferroni correction for multiple comparisons. The main effect for attention 1332 

was statistically significant (F(1, 2) = 81.577, p = 0.012), while the main effect for maps (F(5, 10) 1333 

= 1.140, p = 0.400) and the interaction between attention and maps (F(5, 10) = 0.877, p = 0.530) 1334 

did not reach a significant level. Therefore, there appears to be no stimulus-driven response to 1335 

the preferred but unattended numerosities. 1336 

 1337 
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Suppression of preferred but unattended numerosities  1338 

In Experiment 2 the overall numerosities were kept constant while the non-preferred 1339 

numerosity varied. Therefore, it is not clear to what extent the decreased responses were 1340 

induced by the non-preferred numerosities (38/37/36) in the attended set, or by the preferred 1341 

numerosities (2/3/4) in the unattended set. Decrease in response may be explained by the 1342 

numerosities of the attended set alone: a lower response would be expected because 36/37/38 1343 

is further away from the preferred numerosity than 20 is. Alternatively, the decrease in response 1344 

could be due to the presentation of the preferred, but unattended numerosities. Therefore, in 1345 

Experiment 3 only one non-preferred numerosity was shown, and as a result the total 1346 

numerosity varied while the non-preferred numerosity in the attended set was fixed at 20 1347 

(Figure 3.4A). Following Hypothesis 2, which  suggests neural responses follow the 1348 

numerosity of the attended set, we predict no increased response when the preferred 1349 

numerosities are in the unattended set in Experiment 3 (Figure 3.4B, C).  1350 

 1351 

Figure 3.4. Suppressive neural population responses modulated by preferred but 1352 

unattended numerosities. (A) Study design of Experiment 3. A subset of 2/3/4 dots was either 1353 
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attended or unattended while keeping the non-preferred numerosity constantly at 20 dots in 1354 

another subset, regardless of attended or unattended. (B) Predicted responses following 1355 

Hypothesis 2: neural responses follow the numerosity in the attended set, thus no response to 1356 

the preferred but unattended numerosity is expected. (C) Predicted response amplitudes when 1357 

the preferred numerosities are in the attended set (yellow) and unattended (green) set. (D) 1358 

Measured response time courses and GLM predictions. Compared to the baseline of 20 dots in 1359 

both subsets, increased responses occurred when preferred numerosities are in the attended set, 1360 

while decreased responses occurred when they are in the unattended set. Black and white 1361 

symbols indicate the ‘attend black’ and ‘attend white’ conditions, respectively. Points represent 1362 

mean response amplitudes over repeated measurements. Solid lines represent the GLM 1363 

predictions. T values demonstrate statistical difference in response amplitudes between 1364 

conditions where preferred numerosities were in the attended (tattn) or unattended set (tunattn), 1365 

compared to the baseline, in a given condition. *, p < 0.05; **, p < 0.01; ***, p < 0.0001. (E) 1366 

Averaged response amplitudes when the preferred numerosities were in the attended set 1367 

(yellow) and unattended (green) set across both conditions at individual maps. In all panels 1368 

error bars represent standard error of the mean.  1369 

 1370 

In line with the definition of the ROI and Experiment 2, the neural population showed 1371 

increased responses when the preferred numerosities were in the attended set. However, they 1372 

still revealed decreased responses when the preferred numerosities were in the unattended set, 1373 

compared to the baseline. This result is not only visible in the response time series (Figure 1374 

3.4D) but also in statistical comparisons of response amplitudes in individual maps (Figure 1375 

3.4E). Repeated measures ANOVA analysis was performed on the response amplitudes, 1376 

followed by post hoc analyses with Bonferroni correction for multiple comparisons. Analogous 1377 

to the results of Experiment 2, the main effect for attention was statistically significant (F(1, 2) 1378 

= 19.311, p = 0.048), while the main effect for maps (F(5, 10) = 1.662, p = 0.231) and the 1379 

interaction between attention and maps (F(5, 10) = 1.065, p = 0.434) did not reach a significant 1380 

level. This result does not support Hypothesis 2’s prediction that the neural response only 1381 

follows the attended set’s numerosity, and will therefore remain at baseline during the 1382 

unattended blocks. The decreased responses induced when the preferred numerosities were in 1383 

the unattended set suggest that, in the absence of attention, the preferred numerosities actively 1384 

suppress the neural population responses.  1385 

 1386 

Discussion 1387 
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Here we studied how attention affects numerosity-tuned neural responses. In three experiments 1388 

we changed the numerosity of black and white dot subsets within the same display, while 1389 

participants performed an attention-demanding, non-numerical task on either the black or white 1390 

dot subset. In Experiment 1, we analysed responses to these stimuli using pRF models tuned 1391 

to the numerosity of the attended set, and found that numerosity-tuned neural responses 1392 

followed the numerosity of the attended set. In Experiments 2 and 3 we investigated the 1393 

responses to the unattended set. We did not observe any stimulus-driven response without 1394 

attention and even observed suppression of responses by the preferred numerosities when 1395 

unattended. Therefore, we propose that attention drives numerosity selective responses even 1396 

when non-numerical features are attended, with the non-attended sets producing inhibitory 1397 

responses in neural populations that would otherwise prefer the numerosities of the non-1398 

attended sets.  1399 

Our results suggest that attention drives numerosity responses. Importantly, attention 1400 

was directed to one subset of the dot pattern using a shape-task and no numerosity judgement 1401 

was required. In line with these observations, in animals, neural responses to numerosity are 1402 

typically measured while animals are performing numerosity comparison tasks that they have 1403 

been thoroughly trained in (Ditz & Nieder, 2015; A. Nieder & Merten, 2007; Andreas Nieder 1404 

et al., 2002a). These tasks require attention to both the dot set and its numerosity. Similar 1405 

responses were observed in untrained animals that paid attention to the dot color but paid 1406 

attention to the dot pattern nevertheless (Viswanathan & Nieder, 2013). Likewise, our previous 1407 

studies directed attention towards the stimulus using a dot-color task (Cai, Hofstetter, van Dijk, 1408 

et al., 2021a; B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 1409 

2021; Hofstetter & Dumoulin, 2021; Tsouli, Cai, et al., 2021). Thus, in both human and animal 1410 

studies that do not require numerosity judgements, the participant pays attention to the dot set 1411 

itself.  Therefore, it seems that attention to some feature of the stimuli is always involved to 1412 

some degree. Our study shows that this focus of attention is essential to numerosity processing.  1413 

In the visual cortex, attention enhances stimulus-driven responses of neurons preferring 1414 

the attended location or feature (Corbetta, Miezin, Dobmeyer, Shulman, & Petersen, 1990; 1415 

Treue & Maunsell, 1996). For example, spatial attention increases responses of neurons with 1416 

receptive fields at the attended location (Connor, Preddie, Gallant, & Van Essen, 1997; Moran 1417 

& Desimone, 1985); attention to a specific orientation increases the responses of V4 neurons 1418 

preferring this orientation (McAdams & Maunsell, 1999a, 1999b); attention to a specific 1419 

motion direction increases the responses of MT neurons preferring that direction (Treue & 1420 

Martínez Trujillo, 1999). Even which feature within a complex display is attended affects 1421 
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response amplitudes: in a display with both stationary and moving dots, attention to the moving 1422 

dots produces larger response than attention to the stationary dots in the motion-responsive 1423 

area MT. Yet, even with attention diverted away, stimulus-driven motion alone still elicits 1424 

neural responses albeit to a smaller degree (O’Craven et al., 1997). This appears different from 1425 

numerosity responses. Attention appears required for numerosity-selective neural responses, 1426 

driving or gating the responses. Thus, unlike responses in the early visual cortex, which happen 1427 

whenever the preferred stimulus is shown, both bottom-up and top-down mechanisms appear 1428 

necessary to drive numerosity responses. We speculate that this may be because numerosity-1429 

tuned responses emerge at later stages of visual processing, while previously-studied 1430 

orientation tuned (McAdams & Maunsell, 1999b, 1999a), motion direction tuned (Treue & 1431 

Martínez Trujillo, 1999; Treue & Maunsell, 1996), and spatially tuned (Connor et al., 1997; 1432 

Martinez-Trujillo & Treue, 2004) responses are present in the primary visual cortex. 1433 

More recent findings further demonstrate that the facilitation of responses when the 1434 

attended feature matches the neuron’s response preference is accompanied by an inhibition of 1435 

responses in neurons with tuning preferences far from the attended feature (Martinez-Trujillo 1436 

& Treue, 2004). Martinez-Trujillo and Treue recorded the responses of direction-selective 1437 

neurons in macaque area MT while systematically changing the attended direction in a task 1438 

outside the neuron’s receptive field. Changing from a neuron’s preferred to its anti-preferred 1439 

direction caused a systematic change of the attentional modulation from an enhancement to a 1440 

suppression. This is in line with a feature similarity gain model of attention (Maunsell & Treue, 1441 

2006; Treue & Martínez Trujillo, 1999). In the current experiments, we recorded responses in 1442 

the neural populations preferring small numerosities (2/3/4) and neural responses were highest 1443 

when the numerosity of the attended set also had a small numerosity. When the attended set 1444 

had a large numerosity (20/36/37/38), the decreased responses we observed could be attributed 1445 

to the dissimilarity between the attended numerosity and the preferred numerosity of the 1446 

underlying neural populations. Alternatively, our results might be explained within the 1447 

framework of a normalization model of attention (Reynolds & Heeger, 2009), which 1448 

incorporates three basic components: the stimulation field, the normalization field and the 1449 

attention field. The attention field acts as a gain field and is also suggested to have an inhibitory 1450 

surround (Puckett & Deyoe, 2015). If the normalization field operates in the feature space of 1451 

numerosity the model is similar to the feature similarity gain model of attention. In both cases, 1452 

our results suggest that the attention filed has both a faciliatory and an inhibitory component.  1453 

 1454 
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Can these results be explained by other features of our stimulus or task, such as attention to a 1455 

specific spatial location or shape changes? In our stimulus design, the smaller dot subset with 1456 

the preferred numerosities (of the neural populations of interest) was always grouped together, 1457 

so this likely to be grouped based on spatial proximity (Anobile, Castaldi, Moscoso, Burr, & 1458 

Arrighi, 2020; Maldonado Moscoso et al., 2020; Zhao & Yu, 2016). Numerosity response 1459 

seems likely to be enhanced by spatial attention at this location, given that numerosity must 1460 

ultimately be derived from early visual image representations (Steven C. Dakin et al., 2011; 1461 

Paul et al., 2021). However, we believe the spatial distribution of the two dot subsets is not 1462 

sufficient to account for the effect of attention we observed. First, the dot subset with a 1463 

preferred numerosity was displayed simultaneously with the other dot subset with a non-1464 

preferred numerosity. Second, the position of the other dot subset was randomized on each 1465 

display so no location was associated with any particular numerosity. Finally, the shape of the 1466 

dots was changed homogenously within the same dot subset, thus there was no grouping effect 1467 

within each dot subset. 1468 

To summarize, here we have shown that attention to a group of items strongly 1469 

modulates neural responses to its numerosity, even though numerosity itself is not task-relevant 1470 

or endogenously attended. We propose that both lower-level and higher-level processes are 1471 

required in numerosity perception. On one hand, numerosity is perceived spontaneously even 1472 

without an explicit numerical task, including the current study (Cai, Hofstetter, van Dijk, et al., 1473 

2021a; B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; 1474 

Tsouli, Cai, et al., 2021; Viswanathan & Nieder, 2013). On the other hand, higher-level 1475 

cognitive control, such as attention, also plays an important role in processing numerical 1476 

information. We live in a complex world in which a single scene may have many different 1477 

types of objects with different numerosities. Representing the numerosity of task-relevant 1478 

objects while ignoring the numerosity of other objects may therefore be vital to the effective 1479 

numerosity perception in natural scenes.  1480 

 1481 

Methods 1482 

Participants  1483 

We present data from four participants in three different consecutive experiments (two females, 1484 

age range 27 – 32 years). Each experiment replicates and builds on the previous experiment, 1485 

thus this study focuses on internal replication and number of trials per participant rather than 1486 

number of participants with limited trials (Baker et al., 2020). All the participants had normal 1487 

or corrected-to-normal visual acuity. All were well educated, with good mathematical abilities. 1488 
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Written informed consent was obtained before every MRI session. All experimental procedures 1489 

were approved by the ethics committee of VU University Amsterdam. 1490 

 1491 

Stimuli and experimental design  1492 

Visual stimuli were presented on a 69.84 x 39.29 cm LCD screen (Cambridge Research 1493 

Systems) behind the MRI bore. Participants were required to lie still and view the display 1494 

through a mirror attached to the head coil. The total distance from the attached mirror to the 1495 

display screen was 220 cm. The display resolution was 1920 x 1080 pixels. A button box 1496 

recorded behavioural responses. Visual stimuli were generated in Matlab using PsychToolbox 1497 

(Kleiner, Brainard, & Pelli, 2007). In all the experiments, a large diagonal cross composed of 1498 

thin red lines was displayed consistently across the entire screen, serving as a fixation marker. 1499 

The numerosity stimuli consisted of black and white dots presented simultaneously in the 1500 

central 3° (diameter) of the visual field. In 10% of the total stimuli presentations, black dots 1501 

were shown in ovals instead of circles, and in another 10% of the stimulus presentations, white 1502 

dots were shown as ovals. The aspect ratio of the ovals was adjusted in practice runs prior to 1503 

scanning so that difficulty was equated between participants (for aspect ratios for each 1504 

participant see Supplementary Table 3.1). At the start of each scan run, participants were 1505 

verbally instructed which group they should pay attention to through the scanner’s intercom 1506 

system, using the instructions ‘attend black’ or ‘attend white’. The order of these two 1507 

conditions alternated every two runs in each session, and was counterbalanced between 1508 

sessions in the same participant. Participants fixated the red cross throughout the experiments, 1509 

and pressed a button when they detected a subtle shape change (from circular to oval) of the 1510 

group they were instructed to pay attention to. No numerosity judgement was required. Task 1511 

performance was quantified using the discriminability index (d’) of the signal detection theory, 1512 

which denotes participants’ sensitivity to the difference between the signal present and signal 1513 

absent distributions (Green & Swets, 1966). We determined a response as a hit if it occurred 1514 

within 2 seconds after a signal presentation, otherwise it was classified as a false alarm. 1515 

 1516 

Experiment 1  1517 

In previous studies, the stimulus systematically varied total numerosity (Cai, Hofstetter, van 1518 

Dijk, et al., 2021a; B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter 1519 

et al., 2021; Hofstetter & Dumoulin, 2021; Tsouli, Cai, et al., 2021). In Experiment 1, we fixed 1520 

the total numerosity (i.e. 27 dots) and systematically varied the ratio of black and white dots. 1521 

Specifically, the numerosity stimulus consists of a subset of black dots and another subset of 1522 
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white dots in the same display. The numerosities of these two sets systematically increased and 1523 

decreased to map responses to their numerosities, but the changes of the two subsets were 1524 

coordinated so the total numerosity of the whole display remained constant at 27. The dots 1525 

were randomly positioned at each presentation so that each dot fell entirely within the stimulus 1526 

area and no specific visual position was associated with any numerosity. Individual dots were 1527 

distributed roughly homogeneously to avoid perceptual grouping. Dots in the subset with a 1528 

smaller set size were presented next to each other (Figure 3.1A).  1529 

We used a similar design as was previously used to uncover numerosity maps (Cai, 1530 

Hofstetter, van Dijk, et al., 2021a; B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 1531 

2017a; Hofstetter et al., 2021; Hofstetter & Dumoulin, 2021; Tsouli, Cai, et al., 2021). 1532 

Specifically, the numerosity of the white dot subset increased from 1 to 7, while the black dot 1533 

subset decreased from 26 to 20 (Figure 3.1B). Then, the black dot subset increased from 1 to 1534 

7, while the white dot subset decreased from 26 to 20. Then, the white dot subset decreased 1535 

from 7 to 1, while the black dot subset increased from 20 to 26. Finally, the black dot subset 1536 

decreased from 7 to 1, while the white dot subset increased from 20 to 26. This sequence was 1537 

repeated three times at each functional run. Participants 1 and 3 were shown with this 1538 

presentation sequence, while the other participants were shown with the same sequence but in 1539 

the opposite dots color (i.e. first the black dot subset increased from 1 to 7, while the white dot 1540 

subset decreased from 26 to 20 accordingly). We analysed the responses to the stimuli focusing 1541 

the numerosity of the attended set. For example, when participants attended the white dot 1542 

subset ( ‘attend white’ condition), the numerosity of the attended set first increased from 1 to 1543 

7, then decreased from 26 to 20, then decreased from 7 to 1, then increased from 20 to 26. We 1544 

have previously shown that most numerosity-tuned neural populations have a numerosity 1545 

preference below seven (Cai, Hofstetter, van Dijk, et al., 2021a). When the numerosity of the 1546 

attended set was in the 1-7 range, we therefore expected a large response from these neural 1547 

populations and a large modulation of the response by the changes in numerosity. When the 1548 

numerosity of the attended set was in the 20-26 range, we expected little response from these 1549 

neural populations and little modulation of the response as well. Thus, a long period of 1550 

attending a dot subset with a large numerosity serves as a baseline period, allowing the 1551 

haemodynamic responses to return to baseline.    1552 

Each numerosity dot pattern was presented briefly (300 ms) to ensure participants did 1553 

not have time to count  (Figure 3.1C). A new random pattern was presented every 650 ms, with 1554 

a 350 ms presentation of a uniform grey background between dot pattern presentations. This 1555 

was repeated three times, over 1950 ms, corresponding to one fMRI volume acquisition (i.e., 1556 
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TR). Each numerosity was presented six times, corresponding to 2 TRs, before moving to next 1557 

numerosity in the stimulus sequence.  1558 

 1559 

Experiment 2 1560 

In order to investigate the extent to which numerosity responses were modulated by numerosity 1561 

preference and attentional state, we applied a 2 (preferred numerosity vs. non-preferred 1562 

numerosity) x 2 (attended vs. unattended) block-design experiment (Fig. 3A). We focused on 1563 

the neural populations that had preferred numerosities of 2 to 4, determined from Experiment 1564 

1, given that the large proportions of neural populations tuned to these numerosities (Cai, 1565 

Hofstetter, van Dijk, et al., 2021a; A. Nieder & Merten, 2007). To maintain a constant total 1566 

numerosity of 40 in the stimulus displays, the stimuli consisted of a small subset of 2/3/4 dots 1567 

and a large subset of 38/37/36 dots in the opposite color, or two equal-sized subsets of 20 black 1568 

dots and 20 white dots. 1569 

Each dot pattern was presented similarly to Experiment 1 with 300 ms presentation of 1570 

a dot pattern followed by 350 ms presentation of a grey background. This was repeated six 1571 

times for each numerosity when the stimuli consisted of variable-sized dot subsets 1572 

(presentations of 2+38, 3+37 or 4+36 dots) and 18 times when the stimuli consisted of two 1573 

equal-sized subsets (presentations of 20+20 dots). The presentations of the numerosities of 1574 

2/3/4 were randomized within the block, yet keeping the total numerosity to 40 dots. The total 1575 

surface area of each dot pattern remained constant. 1576 

The stimuli were presented in four blocks, each block lasted 11.7 seconds. As in 1577 

Experiment 1, participants were informed to which dot subset they should perform a shape 1578 

change detection task on by verbal instructions at the start of each scan run. This block-design 1579 

stimulus sequence was repeated seven times at each run. This block structure produces robust 1580 

BOLD responses, ensuring a sufficient blank period for the hemodynamic responses to return 1581 

to baseline between blocks.  1582 

 1583 

Experiment 3 1584 

In Experiment 2 the non-preferred numerosities varied to match the preferred numerosity so as 1585 

to remain the total numerosity constant at 40. Thereby the non-preferred numerosities in the 1586 

attended or unattended set also varied. To further understand numerosity responses to preferred 1587 

numerosities in the unattended set, in Experiment 3 we fixed the non-preferred numerosity at 1588 

20, both in the attended or unattended set. Specifically, we used stimuli that consisted of a 1589 

subset of 2/3/4 dots in one color and another subset of 20 dots in the opposite color, or two 1590 
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equal subsets of 20 black dots and 20 white dots (Fig. 4A). In other words, the non-preferred 1591 

numerosity was constant but the total numerosity varied. Stimulus presentations were identical 1592 

to Experiment 2.  1593 

 1594 

MRI acquisition and preprocessing  1595 

MRI data were acquired from a Philips 7 Tesla scanner (Philips Medical Systems, Best, 1596 

Netherlands). T1 anatomical data were acquired with an MP2RAGE sequence (Marques et al., 1597 

2010) at the spatial resolution of 0.7 mm3, repetition time (TR) was 6.2 ms, echo time (TE) 1598 

was 2.5 ms, and flip angle (FA) was 5 degrees. Functional T2*-weighted two-dimensional echo 1599 

planar images (EPI) were acquired using a 32-channel head coil (Philips Nova Medical) with 1600 

the following parameters: isotropic resolution of 1.75 mm3, full-brain-coverage field of view 1601 

(FOV = 234 x 112 x 184 mm) covering 64 slices, TR/TE = 1950/25 ms, and FA = 70°, multi-1602 

band factor = 2. Each functional run had 174 TRs and lasted 339.3 seconds. Top-up scans that 1603 

included the opposite phase-encoding direction were acquired following each functional run. 1604 

Each scanning session included eight functional runs. Experiment 1 included two scanning 1605 

sessions that were collected on separate days, resulting in eight runs for the ‘attend black’ and 1606 

‘attend white’ conditions, respectively. Three of the participants were scanned for Experiments 1607 

2 and 3 on separate days. Each experiment had one session including eight runs. The order of 1608 

the two attention conditions was randomised between sessions and participants. One functional 1609 

run of the ‘attend black’ condition in Experiment 1 of Participant 3 was excluded due to signal 1610 

dropout in the image data. 1611 

T1 anatomical scans were resampled to an isotropic resolution of 0.6 mm3 and 1612 

preprocessed and automatically segmented grey and white matter using cbs-tools 1613 

(https://www.cbs.mpg.de/institute/software/cbs-hrt). Segmentation errors were manually 1614 

edited using ITK-SNAP (Yushkevich et al., 2006). The cortical surface was reconstructed at 1615 

the grey-white matter border and rendered as a smoothed 3D surface. Functional runs were 1616 

corrected for head movement and motion using AFNI (Cox, 1996). Image distortions in the 1617 

gradient encoding direction were corrected for using the top-up scans (Andersson, Skare, & 1618 

Ashburner, 2003). The first six TRs of each functional run were discarded to ensure steady-1619 

state magnetization. Functional runs were registered to the anatomical images using vistasoft 1620 

(https://github.com/vistasoft/wiki). Functional data were interpolated to the anatomical 1621 

segmentation space using trilinear interpolation. Functional runs from separate sessions were 1622 

imported to the same T1-weighted anatomical space. The time-series data were then aligned to 1623 

the anatomical space and then averaged based on the attention conditions in each experiment, 1624 
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respectively. Data from all recording sites (voxels) were collapsed and averaged onto the 1625 

nearest point on the cortical surface, which generated a (folded) two-dimensional 1626 

representation of the grey matter nodes and increased signal strength. The fMRI data were 1627 

analysed at this space with pRF modelling (Experiment 1) and GLM analyses (Experiments 2 1628 

and 3). No spatial or temporal smoothing was applied to the functional data.  1629 

 1630 

pRF modelling 1631 

pRF modelling was applied to the fMRI data collected in Experiment 1 in order to characterize 1632 

the numerosity tuning of each recording site in the attention conditions (Dumoulin & Wandell, 1633 

2008). Briefly, to characterize numerosity tuning, the pRF model describes the averaged tuning 1634 

of the underlying neural populations using a one-dimensional logarithmic Gaussian function 1635 

(B. M. Harvey et al., 2013). The Gaussian function is characterized by preferred numerosity 1636 

(mean of the Gaussian) and tuning width (standard deviation of the Gaussian). 1637 

The pRF model is estimated based on the fMRI data and the time course of the 1638 

presented numerosities. In Experiment 1 the total presented numerosity was constant (i.e. 27 1639 

dots) throughout the time course and so predicts a constant response and explains no response 1640 

variance. However, the numerosity of the attended set changed, so the pRF model was fitted to 1641 

the attended set’s numerosity rather than the total numerosity. For a large group of candidate 1642 

preferred numerosities and tuning widths, a predicted neural response time course is calculated 1643 

by taking the attended set’s numerosity at each time point and evaluating the candidate 1644 

Gaussian function’s amplitude at each numerosity in the stimulus time course. Each candidate 1645 

predicted neural response time course is then convolved with a canonical hemodynamic 1646 

response function (HRF) to create a candidate predicted fMRI time course. The predicted fMRI 1647 

time course that brings the best agreement to the measured fMRI time course at this recording 1648 

site was chosen. Participant-specific HRF parameters were estimated over the whole fMRI 1649 

volume and applied to refit the pRF (Ben M. Harvey & Dumoulin, 2011). The Gaussian 1650 

function’s parameters that generated the best fit fMRI time course were used to characterize 1651 

the response at this recording site. The pRF fitting procedure allows preferred numerosity 1652 

estimates outside the range of the numerosities in the attended set, ensuring estimates within 1653 

the stimulus range are not just the best of a limited set.  1654 

 1655 

Definition of region of interest 1656 

We rendered the preferred numerosities of the response model from the average of both 1657 

attention conditions in Experiment 1 onto the cortical surface. We excluded recording sites 1658 
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where the preferred numerosity was outside the main attended numerosity range (i.e. 1-7) or 1659 

the variance explained by the pRF model was lower than 30% from further analysis. Six ROIs 1660 

were drawn on each hemisphere corresponding to the six numerosity maps described in 1661 

previous studies (Cai, Hofstetter, van Dijk, et al., 2021a; Ben M. Harvey & Dumoulin, 2017a; 1662 

Hofstetter et al., 2021; Tsouli, Cai, et al., 2021): NTO at the temporo-occipital cortex, NPO at 1663 

the parietal-occipital cortex, NPC1-3 around the postcentral sulcus of the parietal cortex, and 1664 

NF in superior frontal cortex. In each map, we manually defined lines on the lowest and highest 1665 

points of preferred numerosity (“end” borders). The edges of the map (“side” borders) were 1666 

defined around local regions showing good fits of numerosity-tuned response models.  1667 

We extracted voxels within these numerosity maps that had the preferred numerosities 1668 

of 2 to 4 and had more than 30% variance explained by the pRF models in both conditions 1669 

from Experiment 1, resulting in a new ROI. This ROI was then used for further analysis in 1670 

Experiments 2 and 3. 1671 

 1672 

GLM analysis  1673 

We performed GLM analyses on the fMRI data recorded in Experiments 2 and 3. The timing 1674 

of presentations of the preferred numerosities in the attended set and in the unattended set 1675 

served as two predictors in the GLM. This was convolved with a two-gamma HRF to account 1676 

for the delayed and dispersed blood flow responses (Glover, 1999).  Paired t-test was performed 1677 

to demonstrate the different responses between conditions where preferred numerosities were 1678 

in the attended set or in the unattended set, compared to the baseline condition, in a given 1679 

condition. Response amplitudes (betas, denoted as percentage BOLD signal change) of 1680 

individual maps were computed across hemispheres for individual participants. Repeated 1681 

measures ANOVA analysis was performed on the response amplitudes of all participants, with 1682 

the factors of attentional states and individual maps. Post-hoc analyse was performed 1683 

afterwards with Bonferroni correction for multiple comparisons.   1684 

 1685 

Correlations of pRF estimates derived from two attention conditions 1686 

Pearson correlation analysis was performed between numerosity preferences estimated from 1687 

the ‘attend black’ and ‘attend white’ conditions in Experiment 1. Taking into account the 1688 

functional resolution of the recording sites, the total number of data points (n) used was reduced 1689 

by the factor that functional voxels were up-sampled onto the 2D cortical surface to calculate 1690 

the correlation’s probability. The correlation coefficients were transformed into z-scores using 1691 
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Fisher z-transformation before averaging the correlation coefficients across maps and 1692 

participants. 1693 

 1694 

Cross validations 1695 

We cross validated the numerosity tuning response model fits between the ‘attend black’ and 1696 

‘attend white’ conditions. Specifically, we split the data of each condition into two haves based 1697 

on odd or even runs and cross-validated the pRF estimates within- and between-condition. 1698 

Specifically, we fitted the numerosity pRF model on one half dataset and used this to predict 1699 

the responses from the other half. We fitted that model to another dataset of the same condition 1700 

or the opposite condition, giving the cross-validated variance explained (cvR2) in each case. 1701 

We averaged the cvR2 from all the iterations of the cross validation combinations. A repeated 1702 

measures two-way ANOVA analysis was performed in JASP (JASP Team, 2020) to compare 1703 

the cvR2 of the within- and cross-condition validations. 1704 
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Abstract  1758 

Numerosity, the set size of a group of items, helps guide human and animals’ behavior and 1759 

decisions. Numerosity perception is thought to be a precursor of symbolic numerical cognition. 1760 

Previously, we uncovered neural populations selectively tuned to numerosities organized in a 1761 

network of topographic maps. Here we investigate whether these numerosity maps are also 1762 

involved in the processing of symbolic numbers, using ultra-high field fMRI at 7 Tesla and a 1763 

number-detection task. We found that the numerosity map at the temporal-occipital cortex 1764 

(NTO) also respond to symbolic numbers. Furthermore, we found that the numerosity-tuned 1765 

neuronal populations at the NTO map in the left hemisphere are tuned to symbolic numbers. 1766 

These results reveal different functions of the numerosity maps and, in particular, support the 1767 

role of the ventral temporal-occipital cortex in linking non-symbolic numerosity and symbolic 1768 

numerical processing. 1769 

 1770 
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Introduction 1792 

Numerosity, i.e., the set size of a group of items, helps guide humans and animals’ behavior 1793 

and decisions (S. Dehaene, 2001; Andreas Nieder, 2020b, 2021). Humans share the ability to 1794 

perceive numerosity with many animal species, including non-human primates (Brannon & 1795 

Terrace, 1998; Cantlon & Brannon, 2006; Sawamura et al., 2002), birds (Ditz & Nieder, 2015; 1796 

Emmerton et al., 1997), fish (Agrillo et al., 2008), and insects (Cantlon, Platt, & Brannon, 2009; 1797 

Giurfa, 2019). Newborn babies and preverbal infants are also able to perceive non-symbolic 1798 

numerosity (Feigenson et al., 2004; Izard et al., 2009; Strauss & Curtis, 1981). However, only 1799 

human adults possess a unique numerical competence, i.e. symbolic numerical cognition, that 1800 

involves the learning of abstract symbols such as Arabic numerals, number words, math and 1801 

so forth (Ansari, 2008; Andreas Nieder & Dehaene, 2009).  1802 

        Whether non-symbolic numerosity and symbolic numbers are represented in a common 1803 

abstract coding scheme is a longstanding debate (Ansari et al., 2007; Cohen Kadosh et al., 2007; 1804 

S. Dehaene, 1992; Andreas Nieder, 2004; Piazza et al., 2007). Two competing hypotheses have 1805 

been proposed. Based on behavioral observations, some researchers propose the existence of 1806 

two independent numerical systems: one for approximate non-symbolic numerosities and 1807 

another for exact symbolic numbers (X. He et al., 2021; Marinova et al., 2021; Sasanguie et 1808 

al., 2017). In agreement with this view, neuroimaging evidence has shown distinct neural 1809 

activation patterns evoked by non-symbolic and symbolic number formats (J. Bulthé, De Smedt, 1810 

& Op de Beeck, 2014; Eger et al., 2009). More recently, single-cell recordings in the medial 1811 

temporal lobe of neurosurgical patients revealed distinct neurons selectively tuned to non-1812 

symbolic and symbolic numbers (Kutter et al., 2018).  1813 

        Alternatively, another view suggests that non-symbolic numerosity and symbolic 1814 

numbers are interconnected. The approximate number system (ANS) shared by human adults, 1815 

infants and animals, is believed to be the precursor to the development of symbolic numbers 1816 

(Ansari, 2008; S. Dehaene, 2001; Feigenson et al., 2004; Andreas Nieder, 2020a; Piazza, 2010). 1817 

It has often been assumed that number symbols acquire their meaning by being mapped onto 1818 

the pre-existing non-symbolic representations of numerical magnitude, i.e., the ‘mental number 1819 

line’ (Verguts & Fias, 2004). The ANS is characterized by two behavioral characteristics: the 1820 

‘numerical distance effect’ and ‘numerical size effect’ (S. Dehaene, Dehaene-Lambertz, & 1821 

Cohen, 1998). Psychophysics studies have demonstrated that both non-symbolic (Buckley & 1822 

Gillman, 1974) and symbolic (Moyer & Landauer, 1967) numerical magnitudes are subject to 1823 

these two effects (Defever, Sasanguie, Gebuis, & Reynvoet, 2011). Moreover, and crucially, 1824 

performance with non-symbolic numerical tasks predicted children's mathematics performance 1825 
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(Gilmore, McCarthy, & Spelke, 2010; Halberda et al., 2008), and training on non-symbolic 1826 

arithmetic skills improved symbolic math performance (Park, Bermudez, Roberts, & Brannon, 1827 

2016). Brain imaging studies identified regions primarily in the parietal and frontal lobes as 1828 

key areas of both non-symbolic and symbolic number processing (Arsalidou & Taylor, 2011; 1829 

Piazza et al., 2007; Sokolowski, Fias, Mousa, & Ansari, 2017). Examination on brain-damaged 1830 

patients associated deficits at key regions responsible for numerosity processing with 1831 

dyscalculia and acalculia, a learning disability in comprehending and manipulating numbers 1832 

(S. Dehaene, Molko, Cohen, & Wilson, 2004).  1833 

        In the last decades, evidence from single-cell recording in non-human primates (Andreas 1834 

Nieder et al., 2002b), crows (Ditz & Nieder, 2015), and human (Kutter et al., 2018) have shown 1835 

neurons tuned to numerosity, responding maximally when a specific numerosity is displayed, 1836 

with responses decreasing as distance from this preferred numerosity increases. Similar 1837 

numerosity-tuned responses were shown using an fMRI adaptation paradigm (Piazza et al., 1838 

2004). We have since used population receptive field (pRF) modelling (Dumoulin & Wandell, 1839 

2008) to show that these neural population responding to specific numerosities are organized 1840 

in topographic maps where preferred numerosity changes gradually across the cortical surface 1841 

(B. M. Harvey et al., 2013). A network of these numerosity maps were found throughout the 1842 

human cortex, specifically in the temporal-occipital lobe (NTO), parietal-occipital lobe (NPO), 1843 

parietal lobe (NPC1-3) and frontal lobe (NF) (Cai, Hofstetter, van Dijk, et al., 2021b; Ben M. 1844 

Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; Tsouli, Cai, et al., 2021). However, the 1845 

role these maps play in numerosity perception and symbolic numerical cognition is still 1846 

unknown (Tsouli, Harvey, et al., 2021).  1847 

        Here we ask whether numerosity-selective neural populations within the established 1848 

network of numerosity maps are also involved in the processing of symbolic numbers. In our 1849 

former study (Harvey et al., 2013), we did not find evidence to support the involvement of a 1850 

map in the right superior parietal lobe (NPC1) in symbolic number processing. Here, we revisit 1851 

this question with two conceptual advances. First, we evaluate the entire network of 1852 

topographic maps and we speculate that functional specialization of the maps differ (Tsouli, 1853 

Harvey, et al., 2021). We hypothesize that the function of the topographic maps may differ 1854 

(Tsouli, Harvey, et al., 2021), in particular for symbolic number processing. Second, we 1855 

redesigned the stimulus and task. Specifically, we suspect that the lack of response to the 1856 

presentation of numbers might have been due to the failure of perceiving the semantic meaning 1857 

of the presented number symbols, i.e. the number concepts. In the Harvey et al. (2013) study, 1858 

participants judged the color of the stimuli but no number judgements were required. The 1859 
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magnitude information of non-symbolic numerosity (e.g., a dot pattern of “●●”) spontaneously 1860 

emerges with a stimulus presentation in the visual format (D. Burr & Ross, 2008; Cicchini et 1861 

al., 2016). However, this might not be the case for symbolic numbers (e.g., “2” or “two”), of 1862 

which the physical appearance of a symbol bears no numerical information. Furthermore, 1863 

attention appears necessary to numerosity perception (Anobile, Cicchini, et al., 2012; D. C. 1864 

Burr et al., 2010; Pomè, Anobile, Cicchini, Scabia, et al., 2019). Thus, having a task that 1865 

involves judgment of symbolic numbers will both focus attention on the number and force 1866 

participants to process its magnitude information.   1867 

Using ultra-high field fMRI at 7 Tesla (Cai, Hofstetter, van der Zwaag, et al., 2021), we 1868 

recorded blood oxygen level dependent (BOLD) signals while participants were engaged in a 1869 

symbolic number experiment with a number-detection task. We analysed the neural responses 1870 

to symbolic numbers using a general linear model (GLM) analysis throughout the cortex, and 1871 

within the participant’s numerosity maps. We applied a neural model-based analysis, i.e. pRF 1872 

modelling (Dumoulin & Wandell, 2008) to investigate whether numerosity-tuned neural 1873 

populations at the numerosity maps are also tuned to symbolic numbers. 1874 

 1875 

Methods 1876 

Participants  1877 

We present data from seven participants (three females, age range 24 – 48 years, two left-1878 

handed). All the participants had normal or corrected-to-normal visual acuity. All were well 1879 

educated, with good mathematical abilities. Written informed consent was obtained before 1880 

every MRI session. All experimental procedures were approved by the ethics committee of VU 1881 

University Amsterdam (Netherlands). 1882 

 1883 

Stimuli and experimental Design  1884 

Visual stimuli were presented on a 69.84 x 39.29 cm LCD screen (Cambridge Research 1885 

Systems) behind the MRI bore. Participants were required to lie still and view the display 1886 

through a mirror attached to the head coil. The total distance from the attached mirror to the 1887 

display screen was 220 cm. The display resolution was 1920 x 1080 pixels. A button box 1888 

recorded behavioural responses. Visual stimuli were generated in Matlab using PsychToolbox 1889 

(Kleiner et al., 2007). A large diagonal cross composed of thin red lines was displayed 1890 

consistently across the entire screen, serving as a fixation marker.  1891 

 1892 

Localizing non-symbolic numerosity maps 1893 
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We first ran a localizer experiment to identify the numerosity maps of our participants. We 1894 

used the same study design as was previously used (Cai, Hofstetter, van Dijk, et al., 2021b; B. 1895 

M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; Tsouli, 1896 

Cai, et al., 2021). Specifically, a sequence of numerosity stimuli consisting of 1 to 7 dots were 1897 

first presented in ascending order, followed by a long period (15.6 seconds) where presented 1898 

with the baseline numerosity of 20 dots, then followed by the same sequence in descending 1899 

order and another identical baseline period (Figure 4.1A). This sequence was repeated four 1900 

times for each fMRI scan run. 1901 

 1902 

Figure 4.1. Illustration of experimental design and stimulus presentations. (A) The 1903 

sequence of the presented non-symbolic numerosity used to localize the numerosity maps. (B) 1904 

Schematic representation of an example stimulus presentation in the numerosity maps localizer 1905 

experiment (blue frame in A) within one fMRI volume acquisition (i.e. one TR). Each dot 1906 

pattern was presented briefly (300 ms) at the central 4° of the visual field, followed by a 350 1907 
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ms presentation of a gray background before a new random positioned dot pattern presentation. 1908 

Each pattern of the same numerosity was repeatedly presented six times, corresponding to two 1909 

TRs, before the numerosity changed. Participants fixated the red cross at the centre and pressed 1910 

a button when dots were shown in white rather than black. (C) The sequence of presented 1911 

symbolic numbers. (D) Schematic representation of an example trial of symbolic number ‘3’ 1912 

in the symbolic experiment (green frame in C) within one TR. Each symbol was presented 1913 

briefly (300 ms) at the central 1.5° of the visual field, with an inter-stimulus-interval of 350 ms 1914 

of a gray background. Each number was presented six times before moving to the next number. 1915 

Participants fixated at the red cross and responded when the presented number increased in 1916 

magnitude by one as compared to the previous presented number. (E) Letters, similar in 1917 

morphology to the target numbers, were used as distractors.  1918 

 1919 

      Numerosity stimuli consisted of a group of dots with a constant total surface area presented 1920 

in the central 4° (diameter) of the visual field. Dots were randomly positioned at each 1921 

presentation so that each dot fell entirely within this area, to distribute contrast energy equally 1922 

across the stimulus area for all numerosities. Each numerosity presentation that contained the 1923 

same number of dots was placed in a new, random position, so no specific visual position was 1924 

associated with any numerosity. To prevent perceptual grouping, individual items were 1925 

distributed roughly homogeneously across the stimulus area. All of the numerosity stimuli were 1926 

displayed as black or white dots on a gray background. Dot patterns were presented briefly 1927 

(300 ms) to ensure participants did not have time to count. A new random pattern was presented 1928 

every 650 ms, with 350 ms  presentation of a uniform gray background between dot pattern 1929 

presentations. This was repeated six times, over 3900 ms, corresponding to two fMRI volume 1930 

acquisitions (TR), before the numerosity changed (Figure 4.1B). On 10% of numerosity 1931 

presentations, the dots were shown in white instead of black. Participants were asked to fixate 1932 

at the red cross in the center and press a button when whites dots were shown to ensure they 1933 

were paying attention to the stimulus during fMRI acquisition. Participants responded to 90-1934 

100% of the white dots presentations within each run. No numerosity judgements were required. 1935 

 1936 

Symbolic number experiment  1937 

We used a similar sequence as the numerosity stimulus sequence, but instead of dots we 1938 

showed Arabic numbers from 1 to 7, and a baseline period using the number ‘0’ (zero). The 1939 

number ‘0’ was used instead of ‘20’ in order to keep all the stimuli as single-digit numbers 1940 

(Figure 4.1C) as ‘20’ may be interpreted as containing two items (Jessica Bulthé, De Smedt, & 1941 
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Op de Beeck, 2015). This stimulus sequence was presented in ascending (1 - 7), then 1942 

descending order (7 - 1) followed by a baseline period, respectively. This sequence also 1943 

repeated four times (cycles) for each functional run. 1944 

        Symbolic number stimuli were randomly presented in the central 1.5° (diameter) of the 1945 

visual field. Each number was presented briefly (300 ms) with an inter-stimulus-interval of 350 1946 

ms of a uniform gray background between stimulus presentations. Each number was repeated 1947 

six times, over 2 TRs before the number changed. Participants fixated the red cross and pressed 1948 

a button when the number increased in magnitude by one as compared to the previous presented 1949 

number. A list of capitalized letters that were morphologically similar to the symbolic numbers 1950 

from 1 to 8 were used as distractors: ‘L’, ‘Z’, ‘E’, ‘A’, ‘S’, ‘G’, ‘T’, ‘B’ (Figure 4.1E). All the 1951 

numbers and letters were displayed in the font of ‘Arial Unicode MS’ with the font size of 27. 1952 

When the stimulus sequence was presented in an ascending order, there were always seven 1953 

regular stimulus changes in symbolic number in one cycle that would require a response 1954 

(‘embedded trials’, e.g. when the stimulus changed from 1 to 2, 2 to 3, etc.). In addition to the 1955 

embedded trials, at random points along the sequence the stimuli presented was a number 1956 

increased by one as compared to the previous number (‘catch trials’), or a letter that was 1957 

morphologically similar to the target number (‘distract trials’) (Figure 4.1E). The ‘catch trials’ 1958 

and ‘distract trials’ correspond to 20% of the total number of stimulus presentation trials. 1959 

Percentage of correct responses were calculated for the ‘embedded trials’ and ‘catch trials’, 1960 

respectively. Responses to the distractor letters or any trials other than the ‘embedded trials’ 1961 

and ‘catch trials’ were counted as false alarms. Task performance was quantified using the 1962 

discriminability index (d’) of the signal detection theory, which denotes participants’ 1963 

sensitivity to the targets (Green & Swets, 1966). We determined a response as a hit if it occurred 1964 

within 2 seconds after a signal presentation, otherwise it was classified as a false alarm. 1965 

 1966 

MRI acquisition and preprocessing 1967 

All MRI data were acquired using a Philips 7T scanner (Philips Medical Systems, Best, NL). 1968 

MP2RAGE (Marques et al., 2010) T1 anatomical MRI data were acquired at the spatial 1969 

resolution of 0.64 ✕ 0.64 ✕0.64 mm3 (resampled to 0.6 ✕0.6 ✕0.6 mm3 for following 1970 

processing). Repetition time (TR) = 6.2 ms, echo time (TE) = 3 ms, and flip angle (FA) = 5°. 1971 

Functional T2*-weighted multi-band (factor = 2) 2-dimensional echo planar images (EPI) were 1972 

acquired using a 32 channel head coil (Philip Nova Medical) at a resolution of 1.75 ✕ 1.75 ✕ 1973 

1.75 mm3. A full-brain-coverage field of view (FOV = 106 ✕ 112 ✕ 236) covering 64 slices 1974 
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was used. TR = 1950 ms, TE = 25 ms, FA = 70°. Each functional scan run has 182 TRs (354.9 1975 

seconds in duration), of which the first six TRs were discarded to ensure the signal was at a 1976 

steady state. Participants were scanned for eight functional runs in one session to localize the 1977 

numerosity maps, except for participant 4 who had nine runs. For the symbolic number 1978 

experiment, each participant was scanned for two sessions on separate days, resulting in fifteen 1979 

to seventeen functional runs in total. 1980 

        T1 anatomical images were automatically segmented using cbs-tools 1981 

(https://www.nitrc.org/projects/cbs-tools/) and then manually edited to minimize segmentation 1982 

errors using ITK-SNAP (Yushkevich et al., 2006). This provides a highly accurate description 1983 

of the cortical surface, an anatomical segmentation space used for analysis of cortical 1984 

organization. The cortical surface was rendered as a smoothed 3D surface. Head movement 1985 

and motion artefacts between and within functional images were measured and corrected for 1986 

in AFNI (Cox & Hyde, 1997). Using Vistasoft (https://github.com/vistalab/vistasoft/wiki), the 1987 

motion-corrected functional images were co-registered to the same anatomical space using the 1988 

same transformation. The time-series data were aligned to the anatomy and then averaged. Data 1989 

were imported to the anatomical segmentation space using trilinear interpolation. To increase 1990 

signal strength, data from all recording sites (voxels) were collapsed onto the nearest point on 1991 

the cortical surface layer. This formed a (folded) 2D representation of the gray matter nodes. 1992 

pRF modelling and subsequent statistical analyses were performed at this space.   1993 

 1994 

pRF modelling of responses to non-symbolic numerosity  1995 

PRF modelling was applied to estimate numerosity responses (Dumoulin & Wandell, 2008; B. 1996 

M. Harvey et al., 2013). Briefly, a one-dimensional logarithmic model was used to predict 1997 

numerosity responses. This model describes tuning in logarithmic numerosity space using a 1998 

Gaussian function characterized by preferred numerosity (mean of the Gaussian) and tuning 1999 

width (standard deviation of the Gaussian).  2000 

        At each gray matter voxel, the pRF model is estimated based on the recorded signal and 2001 

the predicted time course. A prediction of the neural response time course was produced by 2002 

overlapping the stimulus (numerosity) at each time point with the Gaussian tuning function. 2003 

By convolving this prediction with a hemodynamic response function (HRF), a predicted 2004 

response time course was generated. The pRF parameters for each voxel were chosen by those 2005 

predicted fMRI time courses that bring the best agreement to the recorded signal, denoted as 2006 

variance explained (R2). Last, participant-specific HRF parameters were estimated over the 2007 

whole fMRI volume and these parameters were used to refit the pRF. 2008 

https://github.com/vistalab/vistasoft/wiki
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        The pRF fitting procedure allows preferred numerosity estimates outside the range of the 2009 

presented stimuli, ensuring estimates within the stimulus range are not just the best of a limited 2010 

set. We excluded from analysis any recording sites where the preferred numerosity was outside 2011 

our presented range and the variance explained was lower than 30%. We then projected the 2012 

preferred numerosity of these recording sites on the smoothed cortical surface (Figure 4.2 & 2013 

Supplementary Figure 4.1). 2014 

 2015 

Figure 4.2. Topographic numerosity maps in the human cortex. An example of preferred 2016 

numerosity estimates in one participant for the left and right hemispheres. Black lines outline 2017 

the edge borders of individual numerosity maps and white lines denote the lowest and highest 2018 

preferred numerosities in each map. The map of preferred numerosity estimates is thresholded 2019 

at a variance explained of 30%. LH, left hemisphere. RH, right hemisphere. See Supplementary 2020 

Figure 4.1 for maps of all other participants. 2021 

 2022 

Definition of regions of interest 2023 

We defined regions of interest (ROI) where the numerosity-selective neural populations are 2024 

organized topographically similar to previously reported numerosity maps (Figure 4.2) (Cai, 2025 

Hofstetter, van Dijk, et al., 2021b; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; 2026 

Tsouli, Cai, et al., 2021). In general, a network of six numerosity maps were defined on the left 2027 

and right hemispheres, respectively. These maps lay in the temporal-occipital cortex (NTO), 2028 

parietal-occipital cortex (NPO), parietal cortex (NPC1, NPC2, NPC3) and superior frontal 2029 

cortex (NF). Within each ROI, we manually defined map borders on the lowest and highest 2030 

preferred numerosities (white lines) and the map edges around the local regions with increase 2031 

in model goodness of fit (black lines). 2032 

 2033 

Analysis of neural responses to symbolic numbers 2034 
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First, we performed GLM analyses on the averaged functional data of the symbolic number 2035 

experiment. The GLM analyses included the presentation of the main numbers (i.e., “1-7”) as 2036 

a predictor. We projected the t-values at the recording sites where the GLM model explained 2037 

more than 30% of the variance at the site onto the cortical surface. We then tested the neural 2038 

responses to symbolic numbers within the numerosity maps. We averaged the time-series 2039 

across voxels within each map and fitted the averaged time-series with the GLM model to 2040 

attain the t-values representing the overall responses at individual maps. We performed a 2041 

repeated two-way ANOVA analysis on the t-values of individual maps in both hemispheres of 2042 

all the participants, followed by a post-hoc analysis for multiple comparisons (JASP Team, 2043 

2020). Then, a one sample t-test was performed on the t-values at each map across participants 2044 

to test whether the overall responses at individual maps in each hemisphere are significantly 2045 

higher than zero.  2046 

        Next, to explore whether the neural responses in the NTO maps are also tuned to symbolic 2047 

numbers, we fitted pRF models to the data. In contrast to the numerosity model, we fitted a 2048 

Gaussian tuning function in linear numerical space as symbolic numbers are more precisely 2049 

and linearly represented (Verguts & Fias, 2004). We then averaged the variance explained by 2050 

the pRF models across voxels within bilateral NTO maps, respectively. 2051 

        We cross-validated the results by splitting the data into two halves, based on odd and even 2052 

runs. We fitted both the GLM model and pRF model on each half dataset. The variance 2053 

explained of the pRF prediction from one half dataset was evaluated on the time series of the 2054 

other half dataset, yielding new variance explained at the recording sites. Cross-validated 2055 

variance explained by the GLM model or pRF model were then calculated by averaging the 2056 

resulting variance explained over the two halves datasets, respectively. We then quantified the 2057 

proportion of recording sites where neural activity is better explained by tuning models rather 2058 

than the GLM at bilateral NTO maps, respectively. Differences between the (cross-validated) 2059 

variance explained of the pRF model and (cross-validated) variance explained of the GLM 2060 

were calculated. We performed a pair t-test to compare the degree of the difference in the 2061 

variance explained of the pRF model and GLM model. A Wilcoxon’s sign rank test was 2062 

performed on the degree of difference to investigate whether the difference is significantly 2063 

higher than zero. 2064 

Finally, we performed a Pearson correlation analysis between the preferred numerosity 2065 

estimates and the preferred number estimates at the recording sites responding to both 2066 

numerosity and symbolic numbers in the NTO map. Taking into account the functional 2067 

resolution of the recording sites, the total number of data points (n) used to calculate 2068 
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correlation’s probability was reduced by the factor by which functional voxels were up-2069 

sampled onto the 2D cortical surface. 2070 

 2071 

Conversion to MNI coordinates 2072 

Our analyses were in individual participant space. To identify the location of the NTO map on 2073 

an average brain, we converted these to MNI x, y, z coordinates. We first located at each 2074 

individual participants’ map centres on the cortical surface. We then transformed each 2075 

participant’s anatomical MRI data, together with these map centre locations, into MNI 2076 

averaged template space using MINC toolkit (Collins, Neelin, Peters, & Evans, 1994) 2077 

(http://packages.bic.mni.mcgill.ca) and rigid alignment and linear scaling. We took the mean 2078 

and standard deviation of the resulting MNI coordinates of the NTO map across participants. 2079 

 2080 

Results 2081 

Participants engaged in the task 2082 

All the participants performed the task with a high percentage of correct responses, both of 2083 

detecting changes in symbolic numbers as part of the stimulus sequence (‘embedded trials’, 2084 

mean ± SD: 93.6% ± 3.4%, d’ = 4.1 ± 0.4) and random changes (‘catch trials’, 83.3% ± 9.6%, 2085 

d’ = 3.7 ± 0.4). The percentage correct and d’ suggest that participants were engaged in the 2086 

task and processing the semantic meaning of the presented numbers (see Supplementary Table 2087 

4.1 for the performance of individual participants). 2088 

 2089 

Numerosity map NTO responds to symbolic numbers but not the other maps 2090 

Figure 4.3A shows the results of the GLM analysis of the main testing numbers of “1-7” (red) 2091 

and the baseline number of “0” (blue). Most brain regions responding to symbolic numbers did 2092 

not overlap with the location of the numerosity maps, except for NTO maps in the ventral 2093 

stream of the bilateral temporal occipital cortices (Figure 4.3A lower panel, see also 2094 

Supplementary Figure 4.2 for the results of all other participants). To illustrate the responses 2095 

to symbolic numbers, we extracted a time-series from an example recording site at the NTO 2096 

map of participant 1 (Figure 4.3B). Responses were observed at the presentation of the main 2097 

symbolic numbers (t = 18.6), and the GLM prediction captured most of the variance in the 2098 

signal (R2= 86%). Repeated two-way ANOVA analysis with the factors of hemispheres and 2099 

maps (see Methods) showed a significant effect of maps (F(5,78)= 7.28, p < 0.001), but no 2100 

significant effect of laterality (F(1,78) = 0.142, p = 0.726) and no interaction effect (F(5,78) = 1.124, 2101 

p = 0.379). Based on these results, we averaged t-values of individual maps across hemispheres 2102 

http://packages.bic.mni.mcgill.ca/
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for individual participants (Figure 4.3C, but see results for left and right hemispheres separately, 2103 

in Supplementary Figure 4.3). Post-hoc analysis showed that the NTO map exhibited 2104 

significantly higher responses to symbolic numbers than other maps (Bonferroni corrected for 2105 

multiple comparisons, Figure 4.3C). Furthermore, one-sample t-test performed on the t-values 2106 

of each individual map across participants showed that only the NTO map exhibited responses 2107 

significantly higher than zero (t = 6.12 ✕ 10-7, p = 0.0005). These results indicate that neural 2108 

populations at the NTO map not only respond to non-symbolic numerosity but also to symbolic 2109 

numbers.  2110 

 2111 

Figure 4.3. Stimulus-driven responses to symbolic numbers at numerosity maps. (A) The 2112 

result of an example participant of the GLM analysis which contrasted the responses to the 2113 

number of “0” (blue colors) and “1-7” (yellow-red colors). Lower panel shows the ventral view 2114 

of the cortical surface where the responses to symbolic numbers overlap with the NTO map. 2115 

Only recording sites (i.e. voxels) where the variance explained (R2) by the GLM exceeding 30% 2116 

were projected on the cortical surface. (B) Response time-series to symbolic numbers at an 2117 

example recording site extracted from the NTO map. The GLM prediction (solid line) captured 2118 

86% of the variance at this recording site with a corresponding t-value of 18.6. Dots represent 2119 

the averaged response amplitude and error bars represent standard errors of the mean over 2120 

repeated measures. (C) Averaged t-values at individual maps across hemispheres and 2121 
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participants. Repeated two-way ANOVA analysis (followed by post-hoc analysis for multiple 2122 

comparison) shows that responses at NTO are significantly higher than responses at the other 2123 

maps. Bars represent the mean and error bars represent the standard deviations of the mean. *, 2124 

p = 0.005; **, p = 0.002; ***, p < 0.001. 2125 

 2126 

Are responses at the NTO map also tuned to symbolic numbers? 2127 

Next we asked whether the responses to symbolic numbers at the NTO maps also show tuning 2128 

characteristics which underlies perception (Tsouli, Harvey, et al., 2021), rather than untuned 2129 

stimulus-driven responses. We found that the pRF models explained the data well and captured 2130 

most of the response variance. Figure 4.4A shows a time-series of an example recording site at 2131 

the NTO map of participant 1 (open circles). The pRF model explained about 90% of the 2132 

variance at this site (solid line), and indicated that this recording site prefers the symbolic 2133 

number of about 3.4. Overall, the pRF models achieved considerable variance explained at 2134 

bilateral NTO maps across all the participants (mean ± SD: R2 = 71 ± 16% in the left NTO map 2135 

and 70% ± 20% in the right NTO map) (Figure 4.4B).  2136 

We quantified the proportion of the recording sites where the tuning model explained 2137 

more variance in the neural responses than the GLM (Figure 4.4C-D). Overall, more than half 2138 

of the recording sites at the NTO maps across participants and hemispheres showed higher 2139 

variance explained by the tuning model (mean ± SD: 56 ± 14% in the left NTO map and 52% 2140 

± 11% in the right NTO map). However, only the responses at the left NTO maps were 2141 

significantly higher than zero (Wilcoxon sign rank test, p = 0.0391). Paired t-test showed that 2142 

the left NTO maps had a significantly higher variance explained by the tuning model than the 2143 

right NTO maps (t = 4.53, p = 0.004). These results suggest that numerosity-tuned neural 2144 

populations at the left NTO map are also tuned to symbolic numbers.  2145 

We compared the preferred numerosity estimates and preferred number estimates of 2146 

the neural populations in the left NTO map that responded to both stimuli. We did not find a 2147 

significant correlation between these estimates (Pearson correlation coefficient, mean ± SD: r 2148 

= 0.10 ± 0.2) (Supplementary Figure 4.4). These results suggest that the neural populations 2149 

tuned to symbolic numbers in the left NTO map were distinct from the neural populations tuned 2150 

to non-symbolic numerosity.   2151 

 2152 
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 2153 

Figure 4.4. Numerosity-tuned neural populations at the left NTO map are tuned to 2154 

symbolic numbers. (A) Response time-series of an example recording site at the NTO map of 2155 

participant 1 and the pRF model prediction. Dots represent the mean response amplitude and 2156 

error bars represent standard error of the mean over repeated measures. The best fit neural 2157 

model (solid line) captured more than 90% of the variance at this site. (B) Averaged variance 2158 

explained at bilateral NTO maps across participants of the pRF models fitted with the averaged 2159 

time series across recording sites within the map. (C) Cross-validated variance explained by 2160 

pRF model and GLM at all the recording sites within the NTO map of participant 1. Black line 2161 

indicates an equal variance explained by the GLM and pRF model. Texts indicate the 2162 

proportion of recording sites where the pRF model fit the data better than the GLM. (D) 2163 

Difference in variance explained at bilateral NTO maps derived by pRF and GLM models, 2164 

averaged across participants. The NTO map in the left hemisphere shows significantly higher 2165 

variance explained than zero (indicated by the red *, p = 0.0391), and significantly different 2166 
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from the variance explained of the right NTO map (indicated by the black *, p = 0.004). LH, 2167 

left hemisphere. RH, right hemisphere. 2168 

 2169 

        Last we investigated the NTO map in the context of other regions implicated in functional 2170 

specializations in the ventral cortex, in particular the number form area (NFA). To identify the 2171 

coordinates of the NTO map, we transformed the hemispheres of each participant into Montreal 2172 

Neurological Institute (MNI) space and averaged the coordinates across participants. Table 1 2173 

shows the averaged coordinates (values are given as mean (SD), see Supplementary Table 4.2 2174 

for the coordinates of individual participants) at the centre of the NTO map in the current study 2175 

and in our previous study (Ben M. Harvey & Dumoulin, 2017a). We then compared with the 2176 

coordinates of the NFA previously reported in the inferior temporal gyrus and suggested to be 2177 

specialized for Arabic numeral processing. Though we refrain from statistical analyses on these 2178 

coordinates given all the differences in methods, we propose that NTO is close but distinct 2179 

from the NFA.  2180 

Table 1. The MNI coordinates of the NTO map and the NFA 2181 

Cortical regions Reported studies 
Left hemisphere Right hemisphere 

x y z x y z 

NTO map 

current study 

(n = 7) 
-40(4) -67(8) -8(4) 40(3) -74(4) -7(4) 

Harvey et al., 2017 

(n = 5) 
-42(3) -77(3) 3(8) 44(7) -75(1) -4(3) 

 

NFA 

 

Shum et al., 2013 

(n = 5) 
- - - 51 -54 -24 

Abboud et al., 2015 

(n = 9) 
- - - 54 -45 -17 

Hermes et al., 2017 

(n = 10) 
- - - 57 -51 -17 

Yeo et al., 2017 

(meta-analysis) 
- - - 51 -49 -15 

Grotheer et al., 2016 

(n = 24) 
-60 -57 -17 61 -45 -17 

(n: number of participants; -: no data) 2182 

 2183 

Discussion 2184 
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Here we studied whether numerosity-tuned neural populations within a network of topographic 2185 

maps respond to symbolic numbers. We used a number-detection task that requires participants’ 2186 

attention and forced processing of the semantic meaning of the presented Arabic numbers. 2187 

Behavioral measures indicate that the participants indeed processed the semantic meaning of 2188 

the numbers. We found that neural populations in the ventral temporal occipital cortex (NTO), 2189 

but not the other numerosity maps, respond to symbolic numbers. The neural populations 2190 

within the left NTO map were also found to be tuned to the presented numbers. 2191 

Previously, our colleagues explored neural responses to symbolic numbers (B. M. 2192 

Harvey et al., 2013). In that study, however, the focus was only on the superior parietal cortex 2193 

(NPC1) and with a task that did not require participants to attend or process the semantic 2194 

meaning of the numbers. Here, we revisit this question exploring the established network of 2195 

numerosity maps throughout the brain covering the temporal, parietal and frontal cortices (Cai, 2196 

Hofstetter, van Dijk, et al., 2021b; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021; 2197 

Tsouli, Cai, et al., 2021), together with a number-detection task requiring the participants to 2198 

process the semantic meaning of numbers. In the human visual cortex, multiple visual field 2199 

maps are specialized for specific functions (Wandell et al., 2007). Analogous to the visual field 2200 

maps, we suspect that different numerosity maps are also specialized for different functions 2201 

(Tsouli, Harvey, et al., 2021). In line with our previous findings, we did not observe responses 2202 

to symbolic numbers in the NPC1 map on the parietal cortex. We did find responses to 2203 

symbolic numbers in the NTO map at the ventral stream of the occipitotemporal region (VOT). 2204 

 We not only found that NTO map responds to symbolic numbers, we also found that 2205 

neuronal populations in the left NTO are tuned to symbolic numbers, i.e. preferentially respond 2206 

to a specific number. Tuning to symbolic number was uncorrelated to tuning to numerosity 2207 

suggests that these are distinct but overlapping populations (Ben M. Harvey, Dumoulin, 2208 

Fracasso, & Paul, 2020; Hofstetter et al., 2021). We found tuning to numbers in the left NTO, 2209 

which is in line with the observation that single neurons are tuned to symbolic numbers in 2210 

human medial temporal lobe (Kutter et al., 2018). We did not find evidence for tuning to 2211 

symbolic numbers in right NTO, which may be a genuine hemispheric difference, but can also 2212 

be attributed to methodological issues, such as the size of the map (Cai, Hofstetter, van Dijk, 2213 

et al., 2021b) or larger (scatter) of tuning preferences of individual neurons thereby blurring 2214 

the tuning properties at the population level.    2215 

The human VOT region contains functional areas that exhibit strong selectivity for 2216 

categories such as faces, bodies, word forms, visual objects and scenes (Op de Beeck, Pillet, & 2217 

Ritchie, 2019) and, in addition, visual number symbols (S. Dehaene & Cohen, 1995). Previous 2218 
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studies have revealed a reproducibly localized NFA in the inferior temporal gyri (Abboud, 2219 

Maidenbaum, Dehaene, & Amedi, 2015; Grotheer, Herrmann, & Kovács, 2016; Hannagan, 2220 

Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; Hermes et al., 2017; Shum et al., 2013; 2221 

Yeo, Wilkey, & Price, 2017). In line with the functional specialization in ventral occipital 2222 

cortex, our findings suggest that the numerosity-selective neural populations at the NTO map 2223 

also respond to symbolic numbers, indicating that numerosity-tuned neural populations in the 2224 

VOT region also play a critical role in symbolic number processing. 2225 

Representations of numerosity in parietal and frontal brain regions are well investigated 2226 

in both humans and nonhuman primates (S. Dehaene, 2003; B. M. Harvey et al., 2013; Andreas 2227 

Nieder & Dehaene, 2009). Studies have demonstrated increased functional connectivity 2228 

between ventral temporal regions with parietal and frontal regions during calculation (Park, 2229 

Hebrank, Polk, & Park, 2012), and even in the blind (Abboud et al., 2015). Our results show 2230 

that the NTO map in the VOT region is involved in symbolic number processing. However, 2231 

we did observe responses in other brain regions but not in the remainder of network of 2232 

numerosity maps.  2233 

Representation of symbolic numbers is suggested to evolve from non-symbolic 2234 

numerosity representations (S. Dehaene & Cohen, 2007; Piazza et al., 2007). The high-level 2235 

human numerical ability of processing numbers are believed to be linked to evolutionarily 2236 

conserved numerosity representation during cognitive development (Halberda et al., 2008; 2237 

Szkudlarek & Brannon, 2017). The finding of human number neurons also support the 2238 

hypothesis that symbolic number cognition is rooted in biologically determined mechanisms 2239 

(Kutter et al., 2018). In line with these findings, our results that the neural populations in the 2240 

NTO map at the ventral temporal-occipital lobe respond to numerosity and number symbols, 2241 

support a link between non-symbolic and symbolic numerical processing. 2242 

 2243 

Conclusions 2244 

To conclude, we found neural populations in the NTO map at the human temporal-occipital 2245 

cortex responding to numerosity and number stimuli, while the neural populations in the left 2246 

NTO map are also tuned to symbolic numbers. These results support the hypothesis that 2247 

numerosity perception is the precursor of the human-unique numerical abilities of processing 2248 

number symbols. 2249 
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Abstract  2317 

The field of cognitive neuroscience is weighing evidence about whether to move from the 2318 

current standard field strength of 3 Tesla (3T) to ultra-high field (UHF) of 7T and above. The 2319 

present study contributes to the evidence by comparing a computational cognitive neuroscience 2320 

paradigm at 3T and 7T. The goal was to evaluate the practical effects, i.e. model predictive 2321 

power, of field strength on a numerosity task using accessible pre-processing and analysis tools. 2322 

Previously, using 7T functional magnetic resonance imaging and biologically-inspired 2323 

analyses, i.e. population receptive field modelling, we discovered topographical organization 2324 

of numerosity-selective neural populations in human parietal cortex. Here we show that these 2325 

topographic maps are also detectable at 3T. However, averaging of many more functional runs 2326 

was required at 3T to reliably reconstruct numerosity maps. On average, one 7T run had about 2327 

four times the model predictive power of one 3T run. We believe that this amount of scanning 2328 

would have made the initial discovery of the numerosity maps on 3T highly infeasible in 2329 

practice. Therefore, we suggest that the higher signal-to-noise ratio and signal sensitivity of 2330 

UHF MRI is necessary to build mechanistic models of the organization and function of our 2331 

cognitive abilities in individual participants. 2332 

 2333 
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Introduction 2351 

Cognitive neuroimaging studies typically require fast whole brain image acquisitions with high 2352 

signal-to-noise ratio (SNR) and maximal sensitivity to small blood oxygenation level 2353 

dependent (BOLD) signal changes for reliable detection. This is especially the case for 2354 

computational neuroimaging where we go beyond the detection of activation to build 2355 

computational models of neural function in individual participants (De Martino et al., 2018; 2356 

Dumoulin & Knapen, 2018; Dumoulin & Wandell, 2008; Kay, Naselaris, Prenger, & Gallant, 2357 

2008; Naselaris, Kay, Nishimoto, & Gallant, 2011; Wandell, 1999; Wandell & Winawer, 2015). 2358 

The use of magnetic resonance imaging (MRI) systems operating at field strengths greater than 2359 

3 Tesla (3T), i.e., ultra-high field (UHF) at 7T and above, is becoming popular in cognitive 2360 

neuroscience since these systems provide greatly increased SNR and sensitivity to BOLD 2361 

contrast. 2362 

One of the earliest discoveries using UHF in the field of cognitive neuroscience was 2363 

the existence of topographic maps that represent dimensions of numerical cognition (Cai, 2364 

Hofstetter, van Dijk, et al., 2021a; B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2365 

2017a). Following studies, extended this finding of cognitive topographic maps and uncovered 2366 

maps representing object size (Ben M. Harvey et al., 2015), time duration (Ben M. Harvey et 2367 

al., 2020; Protopapa et al., 2019) and haptic numerosity (Hofstetter et al., 2021). These 2368 

discoveries suggested that topographic principles common in primary sensory and motor 2369 

cortices may also be an organizational principle of cognitive functions in association cortex. 2370 

However, all these studies used 7T functional MRI (fMRI), and anecdotal reports suggested 2371 

failure to reconstruct these maps at lower field strengths. 2372 

Here, we ask whether these cognitive topographic maps can be reconstructed at 3T and 2373 

we will use these maps and computational models to quantify the differences between 3T and 2374 

7T. We focus on visual topographic numerosity maps. Numerosity, the set size of a group of 2375 

items, is critical to guide human and animals’ behaviour and decision (D. Burr & Ross, 2008; 2376 

Carey, 2001; Andreas Nieder & Dehaene, 2009). Previously, using population receptive field 2377 

(pRF) modelling (Dumoulin & Wandell, 2008) at 7T, we have demonstrated that neural 2378 

population in fMRI recording sites (voxel) are selectively responding, i.e., tuned, to certain 2379 

preferred numerosities and that this numerosity tuning can be captured with a logarithmic 2380 

Gaussian model. Furthermore, different cortical locations have different preferred numerosities 2381 

and these preferred numerosities increase systematically across the parietal cortex, i.e., forming 2382 

a numerosity topographic map (Cai, Hofstetter, van Dijk, et al., 2021a; B. M. Harvey et al., 2383 

2013; Ben M. Harvey & Dumoulin, 2017a; Hofstetter et al., 2021). 2384 
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In this study, we measure BOLD responses to a range of numerosities at 3T and 7T, 2385 

respectively, and use pRF modelling to evaluate the responses of the numerosity-selective 2386 

neural populations. We compare the variance explained by the numerosity model to the 2387 

measured responses at the two field strengths as a function of the number scan runs. In this 2388 

way, we quantify the extent to which 7T outperforms 3T in terms of the model predictive power. 2389 

Though there is already an extensive literature on comparisons between field strengths (Duong 2390 

et al., 2003; Alexander Geißler et al., 2013; Pohmann, Speck, & Scheffler, 2016; van der Zwaag 2391 

et al., 2009), this work directly compares the dependence of model predictive power on field 2392 

strength in the field of computational neuroimaging. 2393 

 2394 

Methods 2395 

Participants 2396 

We present data from three participants (one female, age range 22 – 45 years). All participants 2397 

had normal or correct-to-normal visual acuity. All participants were well educated, with good 2398 

mathematical abilities. Written informed consent was obtained before every scanning session. 2399 

All experiments were approved by the ethic committee at University Medical Centre Utrecht. 2400 

 2401 

Stimulus presentation 2402 

Visual stimuli were presented on a 69.84 x 39.29 cm LCD screen (Cambridge Research 2403 

Systems) placed behind the 3T and the 7T MRI bores which was viewed through a mirror 2404 

mounted on the coil. The distance from the mirror to the display screen was 210 / 220 cm at 2405 

the 3T / 7T scanner rooms, respectively. The stimuli were adjusted to have equal visual angle 2406 

on the two display screens. The display resolution was 1920 x 1080 pixels. 2407 

The visual stimuli were generated in Matlab using PsychToolbox (Brainard, 1997; 2408 

Kleiner et al., 2007; D G Pelli, 1997). A large red diagonal cross was displayed continuously 2409 

across the entire screen (10.2 diameter), which served as an accurate fixation marker for 2410 

participants. Stimuli consisting of various number of dots presented in the central 1.5 2411 

(diameter) of the visual field in a grey background. We used the “constant area” configuration 2412 

from the original study (B. M. Harvey et al., 2013), which keeps the total surface area of all 2413 

the presented dots combined constant of all the numerosities, ensuring equal luminance across 2414 

all the dot arrays. The main numerosity stimuli of 1 to 7 dots were presented sequentially in 2415 

ascending order, followed by a longer baseline period (13.5 s) containing 20 dots. Then the 2416 

main stimuli were presented in descending order, followed by another baseline period (Figure 2417 
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5.1A). This sequence was repeated 4 times in each functional run. Before the first cycle 2418 

initialized, there was a pre-scan period (12 s) presenting the baseline numerosity of 20 dots. 2419 

Dots of all the numerosities were positioned randomly and homogenously to avoid any links 2420 

between numerosity and visual position and grouping effects (Figure 5.1B). Numerosity 2421 

stimuli were presented briefly (300 ms) as black dots to ensure participants did not have time 2422 

to count. This was repeated every 750 ms, each time with a new random dot pattern presented, 2423 

with 450 ms presentation of a uniform grey background between pattern presentations. Each 2424 

pattern of the same numerosity was repeatedly presented six times, over 4500 ms, 2425 

corresponding to 3 fMRI volume acquisitions (repetition time, i.e., TR), before the numerosity 2426 

changed (Figure 5.1C). In 10% of the stimuli presentations, dots were shown in white instead 2427 

of black. Participants were instructed to press a button when they saw white dots to ensure they 2428 

were paying attention to the stimuli during fMRI acquisition. No numerosity judgements were 2429 

required during the experiment. Participants responded correctly on 90-100% of the white dots 2430 

presentations in each run.  2431 

 2432 

Figure 5.1. Illustration of the experimental design and stimuli presentation. (A) Presented 2433 

stimulus sequence in which numerosities consisting of 1 to 7 dots were shown in an ascending 2434 

order followed by a baseline period containing 20 dots, then descended from 7 to 1 followed 2435 

by another baseline period. (B) Two examples of numerosity stimuli presented to the 2436 
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participant in the scanner. The dot array covered the central 1.5 (visual angle) diameter within 2437 

a 10.2 diameter mean-luminance (grey) screen. A large, thin, red fixation cross passed 2438 

diagonally through the center of the display, and through the center of the dot array. Participants 2439 

were asked to fixate on the intersection of the cross and press a button when dots were shown 2440 

in white. (C) Schematic representation of stimuli presentation in one fMRI volume acquisition 2441 

(TR). Numerosity stimulus was presented briefly (300 ms), followed by a 450 ms presentation 2442 

of a uniform grey background before a new random positioned dot pattern presentation. Each 2443 

pattern of the same numerosity was repeatedly presented six times, over 4500 ms, 2444 

corresponding to 3 TRs, before the numerosity changed. 2445 

 2446 

MRI acquisition  2447 

Scanning was carried out on two Philips Achieva scanners operating at 3T and 7T. Functional 2448 

data were acquired using 32-channel receive head coils (Philips at 3T and Nova Medical at 7T). 2449 

A multi-slice, single-shot gradient echo (GE) echo planar imaging (EPI) sequence was used at 2450 

both scanners. Acquisition parameters for the EPI are listed in Table 1. At both systems, all 2451 

functional runs had 248 volumes and each session had 8 runs. Three 3T and two 7T sessions 2452 

were acquired for each participant on separate days. Anatomical images of each participant 2453 

were collected at 7T using an MP2RAGE sequence (Marques et al., 2010) in separate sessions. 2454 

The key MR parameters of the T1 were as follows: matrix size = 273  367  367, voxel size 2455 

= 0.64  0.64  0.64 mm3, TRMP2RAGE = 5.5 s, TR/TE = 6.2/2.2 ms, TI1/TI2 = 0.8/2.7 s, flip 2456 

angle = 7/5. MP2RAGEs are relatively insensitive to the B1-inhomogeneities present at 7T 2457 

and yield good segmentation and co-registration results at high spatial resolution (Haast, 2458 

Ivanov, & Uludağ, 2018; Huntenburg, Steele, & Bazin, 2018). 2459 

Table 1. Acquisition parameters for the acquired EPI at 3T and 7T 2460 

Field strength (B0) TR (ms) Voxel size (mm3) TE (ms) FA () FOV (mm2) 

3T 1500 1.98 x 1.98 x 2.00 28 80 46 x 190 x 190 

7T 1500 1.98 x 1.98 x 2.00 25 70 50 x 190 x 190 

 2461 

Data pre-processing  2462 

Anatomical data pre-processing included skull stripping and resampling to a spatial resolution 2463 

of 0.6  0.6  0.6 mm3. T1 images were automatically segmented using cbs-tools (Bazin et al., 2464 

2014)  and then manually edited to minimize auto-segmentation errors using ITK-SNAP 2465 
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(Yushkevich et al., 2006) (www.itksnap.org/). This provides a highly accurate description of 2466 

the cortical surface, an anatomical segmentation space used for analysis of cortical organization. 2467 

The cortical surface was reconstructed at the grey-white matter border and rendered as a 2468 

smoothed 3D surface. Pre-processing of the functional data was performed using AFNI (Cox, 2469 

1996; Cox & Hyde, 1997). The first 8 volumes of each run were discarded to account for signal 2470 

equilibrium and participants’ adaptation to the immediate environment. Head movement and 2471 

motion artefacts between and within the remaining volumes were measured and corrected for. 2472 

All functional images collected at the same session were averaged to generate a common mean 2473 

EPI image.  2474 

Pre-processed functional data were then analysed in mrVista, which is freely available 2475 

at (https://github.com/vistalab/vistasoft). For each participant, at every session, the mean EPI 2476 

image was aligned to the anatomy. Individual functional images were then imported and co-2477 

registered to the same anatomical space using the same transformation. To vary the signal 2478 

strength, functional images were averaged with a variable number of runs, e.g., 8, 16 or 24 runs 2479 

from the 3T and 8 or 16 runs from the 7T sessions. Subsequently, the averaged datasets were 2480 

collapsed onto the nearest point on the cortical surface across depth, which generated a (folded) 2481 

2-dimentional grey matter surface. pRF modelling and subsequent statistical analyses were 2482 

done at this space, except for the validation analyses using data points across cortical depth 2483 

(i.e., un-collapsed data, see below). No spatial or temporal smoothing was applied to the 2484 

functional data. 2485 

 2486 

Numerosity pRF modelling  2487 

We applied pRF modelling to the data using a model that was developed to estimate numerosity 2488 

tuning properties in human brains (Dumoulin & Wandell, 2008; B. M. Harvey et al., 2013). 2489 

Specifically, a one-dimensional logarithmic model was adopted to predict neuronal responses 2490 

at each stimulus time point of the numerosity presentation. The model describes tuning in 2491 

logarithmic numerosity space using a Gaussian function characterized by two parameters: 2492 

preferred numerosity (central position) and tuning width (standard deviation). A prediction of 2493 

the neural response time course was produced by overlapping the stimulus at each time point 2494 

with this tuning model. Then by convolving this prediction with a haemodynamic response 2495 

function (HRF), a predicted time course was generated. For each voxel on the 2D cortical 2496 

surface, the parameters were chosen from the prediction that fits the data most closely by 2497 

minimizing the sum of squared errors between the predicted and observed fMRI time series. 2498 

The model goodness-of-fit was described by the variance explained (R2). The neural responses 2499 

http://www.itksnap.org/
https://github.com/vistalab/vistasoft
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of each voxel were described by the pRF model with a particular set of parameters. This 2500 

modelling procedure was applied to the pre-processed functional data averaged with a variable 2501 

number of runs, e.g., 8, 16 or 24 runs from the 3T or 8 and 16 runs from the 7T sessions. Thus, 2502 

we reconstructed the numerosity maps at each field strength, for each participant, respectively.  2503 

 2504 

Definition of region of interest  2505 

We defined region of interest (ROI) on the participants’ right hemispheres at the intraparietal 2506 

sulcus (IPS), a key brain region for numerosity perception (S. Dehaene, 2001; Feigenson et al., 2507 

2004; Kutter et al., 2018; Andreas Nieder, 2016; Andreas Nieder et al., 2002b), and was the 2508 

first location where a topographic map of numerosity was found (B. M. Harvey et al., 2013). 2509 

In this study, we refer to this ROI as NPC1 (numerosity map in parietal cortex 1) as defined in 2510 

previous studies (Ben M. Harvey & Dumoulin, 2017a) and following naming conventions of 2511 

newly discovered visual field maps in human cortex where homologues to non-human primates 2512 

are unclear (Wandell et al., 2007). NPC1 lays in the right hemisphere, on the gyrus posterior 2513 

to the superior postcentral sulcus, and its center position was found at (22, -61, 60) in Montreal 2514 

Neurological Institute (MNI) coordinates (B. M. Harvey et al., 2013; Ben M. Harvey & 2515 

Dumoulin, 2017a). 2516 

 2517 

Model-based analysis  2518 

To compare the model predictive power of the two field strengths, without relying on a 2519 

predefined model for the functional responses, reference datasets were generated by averaging 2520 

8 functional runs from each field strength, respectively (Figure 5.2A). The remaining 2521 

individual functional runs were taken as independent test datasets (Figure 5.2D). Every session 2522 

was taken as the reference dataset in turn, including all 3T or 7T sessions. Hence, when taking 2523 

one 7T session as the reference dataset, the independent test dataset included 8 functional runs 2524 

from the other 7T session and 24 runs from the 3T sessions, etc. More comparisons between 2525 

reference dataset and independent dataset were made by averaging runs across scanning 2526 

sessions. The functional runs of the two 7T sessions were mixed based on odd or even order, 2527 

resulting in 4 new reference datasets. Similarly, we created 3 new reference datasets consisting 2528 

of eight 3T runs by recruiting every 2 runs from the total 24 3T functional runs. Thus, for each 2529 

field strength, six different reference datasets and the remaining runs as test datasets were 2530 

generated for further analysis. 2531 

We selected voxels from the reference dataset based on two criteria: (1) variance 2532 

explained (R2) exceeded 30% and (2) the preferred tuning fell within the presented numerosity 2533 
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range (Figure 5.2B). Model predicted time series of the selected voxels in NPC1 were extracted 2534 

as the reference model (Figure 5.2C). For each selected voxel, we extracted the time series of 2535 

each individual run in the independent test datasets (Figure 5.2D). These time series were 2536 

shuffled (n = 100) and averaged with increasing number of runs included to produce a new 2537 

time series of the voxel (Figure 5.2E). By fitting the reference model with the averaged time 2538 

series, we obtained the variance explained (R(n)
2) of the reference model as a function of 2539 

increasing number of runs (Figure 5.2F).  2540 

We iterated this procedure 6 times for each field strength while splitting the data into 2541 

different pairs of reference and test datasets. We averaged the results of each field strength to 2542 

compare the model predictive power between the two field strengths as a function of number 2543 

of runs. We then performed a linear fit of how many 3T runs are required to have the same 2544 

variance explained of one 7T run. This procedure was done for each participant individually. 2545 

Finally, an overall factor between 3T and 7T in terms of number of runs was obtained by 2546 

averaging the linear fits across participants.  2547 

 2548 

 2549 

Figure 5.2. Flowchart of the model-based analysis procedure comparing the predictive power 2550 

between field strengths. (A) Eight functional runs (as one session) of either 3T or 7T were 2551 

averaged and regarded as a reference dataset. (B) Numerosity modelling was performed for 2552 
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each reference dataset. Voxels with more than 30% of the variance explained (R2) were selected. 2553 

(C) The ‘reference model’ was extracted from each selected voxel. (D) The remaining 2554 

individual functional runs were taken as independent test datasets, i.e., the 3T and 7T test data. 2555 

(E) The test data was averaged with increasing number of runs to produce averaged time series 2556 

at 3T (grey dots) and 7T (black dots), respectively. (F) By fitting the averaged time series with 2557 

the reference model, we calculated the variance explained of the reference model as a function 2558 

of increasing number of runs (R(n)
2). We iterated this procedure 6 times while splitting the data 2559 

into different reference and test datasets.  2560 

 2561 

Calculation of noise ceiling  2562 

To quantify the maximum explainable variance given the noise in the data, we computed the 2563 

noise ceiling (NC) (Lage-Castellanos, Valente, Formisano, & De Martino, 2019; Machens, 2564 

Wehr, & Zador, 2004; Mante, Frazor, Bonin, Geisler, & Carandini, 2005). Specifically, we 2565 

employed the method described by Machens et al. (2004). Briefly, we calculated the noise 2566 

ceiling as the fraction of variance in the residual noise (2) over the variance in the response 2567 

power (s
2): 2568 

      (1) 2569 

This is basically the maximal variance explained given the noise in the data. The response 2570 

power is defined as the average variance over the session (st) with t = 1 … M time-points:  2571 

        (2) 2572 

the variance in the residual noise is estimated as: 2573 

      (3) 2574 

where n indicates the number of sessions, angular brackets denote averaging over sessions. 2575 

Basically, adding up the variance of independent sessions will include the noise in each session, 2576 

while computing the variance after averaging the sessions will remove the noise between 2577 

sessions. Their difference is an estimate of the residual noise. The assumptions behind this 2578 

estimation are minimal: the noise should have zero mean and a non-infinite variance, and 2579 

should be independent between sessions.  2580 

As we used one session as a reference dataset in the analysis, we computed the noise 2581 

ceiling across sessions each consisting of 8 runs either at 3T or 7T. Since the number of voxels 2582 
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selected for further analysis varied based on the reference sessions (see Figure 5.2 of the 2583 

analysis flowchart), the noise ceiling was calculated with the voxels selected based on different 2584 

reference sessions in turn for each iteration. We averaged the noise ceiling of all the six 2585 

iterations to have the noise ceiling of one session (i.e. 8 runs) at each field strength. 2586 

 2587 

Calculation of tSNR  2588 

Temporal SNR (tSNR) is defined on a voxel-wise manner as the ratio of the mean across time 2589 

divided by the standard deviation across time. To avoid bias by large response in active grey 2590 

voxels, we calculated tSNR in white matter (WM) in addition to grey matter (GM). A whole-2591 

brain WM mask was defined from the segmented anatomy for each participant. The ROI for 2592 

calculating tSNR in GM is confined to the numerosity map NPC1. We calculated tSNR as the 2593 

average tSNR across voxels in the WM mask and GM ROI of each individual run at 3T and 2594 

7T, respectively. We reported the average tSNR across runs and participants at each field 2595 

strength, respectively. 2596 

 2597 

Comparing preferred numerosity and tuning width estimates at 3T and 7T 2598 

Pearson correlation analysis was performed between numerosity preference and tuning width 2599 

estimates derived from the 3T and 7T data. This included the voxels that had variance explained 2600 

above 30% in the maps constructed using all the acquired 3T (24 runs) or 7T (16 runs) data, 2601 

and the preferred tuning fell within the presented range. Taking into account the functional 2602 

resolution of the recording sites, the total number of data points used to calculate correlation’s 2603 

probability was reduced by the factor by which functional voxels were up-sampled onto the 2604 

2D cortical surface. We quantified the similarity between the pRF estimates at 3T and 7T by 2605 

dividing the subtraction of two estimates (e.g., X7T and X3T) by their mean, and converted to 2606 

percentage: ((X7T – X3T) / ((X7T + X3T)/2) *100%.  2607 

 2608 

Validation analyses  2609 

In the model-based analysis we used the reference model and compared the variance explained 2610 

to the test datasets at 3T and 7T. This analysis depends on the accuracy of the model. In order 2611 

to perform a model-free analysis, we extracted the time series of the selected voxels (same 2612 

criteria as in the model-based analysis) from the reference datasets as a reference time series. 2613 

Analogous to the model-based analysis, the time series of each individual run in the test 2614 

datasets (3T or 7T) were averaged with increasing number of runs to produce the averaged time 2615 

series for each voxel. Applying with a Pearson correlation analysis, we obtained the correlation 2616 
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coefficients between the reference time series and the averaged time series from the test 2617 

datasets as a function of increasing number of runs (r(n)). This procedure is illustrated in 2618 

Supplementary Figure 5.1.  2619 

Furthermore, we validated our results by performing both the model-based and model-2620 

free analyses using all data points across the cortical depth (i.e., un-collapsed data), and using 2621 

all the data points within the ROI, without any threshold. 2622 

 2623 

3. Results  2624 

BOLD responses of numerosity-selective neural populations at 3T and 7T 2625 

In Figure 5.3A, we show two examples of representative time series and models. The 2626 

representative recording site was selected randomly from the 3T data points which has the 2627 

averaged variance explained among the selected voxels. We extracted the time series of this 2628 

recording site from the datasets that averaging 24 and 16 runs at 3T and 7T, respectively. The 2629 

7T time series (blue points) exhibits larger response amplitude than the 3T time series (red 2630 

points). The two model predictions explain 61% and 77% of the variance in these time series 2631 

recorded at 3T (red line) and 7T (blue line), respectively. The higher percentage BOLD signal 2632 

change and variance explained at 7T confirms the higher BOLD signal sensitivity and SNR at 2633 

ultra-high field. The pRF models with a particular set of parameters that best fitted to each time 2634 

series are shown in Figure 5.3B. The peak response amplitude indicates the preferred 2635 

numerosity and the full width half maximum (FWHM) reflects the tuning width of the pRF of 2636 

this voxel. At this example recording site, the preferred numerosity was slightly smaller and 2637 

the tuning width was larger when estimated at the 3T data (upper panel) than at the 7T data 2638 

(lower panel).  2639 

 2640 
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Figure 5.3. Numerosity-selective neural population responses recorded at 3T and 7T. (A) 2641 

Example fMRI time series extracted from the 3T dataset (average of 24 runs; red points) and 2642 

7T  dataset (average of 16 runs; blue points), respectively. Points represent mean response 2643 

amplitudes and error bars represent standard error across four repeated stimulus cycles. 2644 

Coloured lines indicate the model predictions of the 3T (red) and 7T (blue) time series and R2 2645 

denotes the amount of variance explained by the model. (B) Profiles of the pRF models that 2646 

best fitted the 3T (upper panel) and the 7T (lower panel) time series in A. The pRF model is 2647 

described by a logarithmic Gaussian tuning function with two parameters: preferred 2648 

numerosity (pref num), indicated by the peak response amplitude, and tuning width, defined 2649 

by the full width at half maximum (FWHM). Dash lines indicate numerosities outside the 2650 

presented stimulus range. 2651 

 2652 

Numerosity map is more reliably detected at 7T than at 3T 2653 

Figure 5.4 presents the reconstructed numerosity maps of participant 1 using increasing number 2654 

of runs acquired at 3T and 7T. Consistent with previous studies (Cai, Hofstetter, van Dijk, et 2655 

al., 2021a; B. M. Harvey et al., 2013; Ben M. Harvey & Dumoulin, 2017a), we found 2656 

numerosity-selective neural populations in the parietal cortex that are topographically 2657 

organized. We found a larger cortical extend above the variance explained threshold of 30% at 2658 

the 7T (mean number of voxels  SE: 904  56) than the 3T data (695  28). The 3T data were 2659 

noisier and therefore could not be adequately captured by the model. At both field strengths, 2660 

as the number of runs increased, the noise reduced and the topographic maps became more 2661 

robust.  2662 
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 2663 

Figure 5.4. The topographic numerosity maps become more robust with increasing 2664 

numbers of runs, both at 3T and 7T. (A) Anatomical rendering of the right cerebral cortex. 2665 

Black frame outlines the region of interest (i.e. NPC1) in the intraparietal sulcus at the right 2666 

hemisphere of participant 1. (B) Topographic maps of numerosity-selective neural populations 2667 

at NPC1 (black box in A) reconstructed using data of 8 functional runs at the two 7T scanning 2668 

sessions, and all the runs across sessions (n=16). (C) Topographic maps reconstructed using 2669 

data of the three 3T scanning sessions, and all the runs across sessions (n=24). Maps show 2670 

preferred numerosities of cortical recording sites with over 30% of the variance explained. A 2671 

larger cortical extend above the threshold at the 7T maps than the 3T maps. These maps become 2672 

more reliable and comparable at 7T and 3T, with increasing number of runs (right panels).  2673 

 2674 

As Figure 5.4 shows, the numerosity maps obtained at 3T were similar to those obtained 2675 

at 7T. This was also found for the other participants (Supplementary Figure 5.2). We then 2676 

quantified the similarity between the preferred numerosity and tuning width estimates at the 2677 

two field strengths by a Pearson correlation analysis. The Pearson correlation analysis indicated 2678 

that the numerosity preference estimates derived from the two field strengths were highly 2679 

correlated (r > 70%) (Supplementary Figure 4.3A). However, this was not the case for tuning 2680 

width (Supplementary Figure 5.3B). Overall, the preferred numerosity estimates at 7T were 2681 

slightly higher than at 3T, while the tuning width estimates were broader when recorded at 3T 2682 

(Supplementary Figure 5.3C). We speculate that the smaller tuning width at 7T maybe 2683 
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mediated by the larger sensitivity to smaller vessels (Duong et al., 2003; Yacoub et al., 2001), 2684 

and the small differences in preferred tuning maybe influenced by the tuning width. However, 2685 

given the sensitivity of tuning width estimates to algorithmic consideration, e.g., the HRF 2686 

estimations (Dumoulin & Wandell, 2008; Lerma-Usabiaga, Benson, Winawer, & Wandell, 2687 

2020) and data quality, we refrain from drawing too strong a conclusion. 2688 

 2689 

One 7T run has four times the model predictive power of one 3T run 2690 

Figure 5.5A shows the variance explained by the 7T reference model as a function of increasing 2691 

number of runs of 3T and 7T data, together with the noise ceiling of the 7T data in one session 2692 

(i.e. 8 runs, dashed lines). The variance explained increased as the number of runs increased at 2693 

both field strengths. However, the increase in variance explained was faster at 7T than at 3T. 2694 

In other words, more 3T runs were required to reach the same predictive power at 7T. 2695 

Furthermore, the reference model always captured more variance of the 7T responses, thus the 2696 

resulting variance explained was always higher than that at 3T. For example, averaging 24 3T 2697 

runs (R2 = 53%) still could not reach the same variance explained of averaging 8 7T runs (R2 2698 

= 59%) for any of the participants.  2699 

The model predictive power is constrained by the noise present in the actual response. 2700 

To quantify the maximum explainable variance (in one session) given the noise in the data, we 2701 

computed the noise ceiling (see Methods). As shown in Figure 5.5A, averaging 24 3T runs or 2702 

averaging 8 7T runs always yielded a lower predictive power than the noise ceiling of one 7T 2703 

session (8 runs).  2704 

Next, we then calculated how many 3T runs were required to achieve the same model 2705 

predictive power as a function of the number of 7T runs (Figure 5.5B). On average, one 7T run 2706 

has 4 times the variance explained of one 3T run using the 7T reference model. 2707 

 2708 

Figure 5.5. Quantification of field strength effects on pRF model predictive power as a 2709 

function of number of runs, using the reference model derived from 7T reference datasets. 2710 

(A) The variance explained of the reference model as a function of increasing number of runs 2711 
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at 3T (red) and 7T (blue). Shaded areas indicate standard errors of the mean over iterations 2712 

using different reference datasets (n=6). The noise ceiling (dashed line) with 95% confidence 2713 

intervals (grey bars) represents the maximum explainable variance (of one 7T session, i.e. 8 2714 

runs) given the noise in the data. (B) Linear fits of the number of runs required at 3T to have 2715 

equivalent model predictive power of one 7T run. Coloured-coded texts indicate the factor 2716 

between 3T and 7T runs to achieve the same variance explained for each participant. On 2717 

average, one 7T run has 4 times the model predictive power of one 3T run using the 7T 2718 

reference model (black).  2719 

 2720 

Similar results were obtained using the reference model derived from 3T reference 2721 

datasets (Supplementary Figure 5.4). Averaging the same number of 3T runs (n = 8) could not 2722 

reach the noise ceiling of one 3T session. However, the predictive power on the 3T and 7T data 2723 

increased with increasing number of runs and ultimately outperformed the noise ceiling of 3T 2724 

when more than 8 runs were included (Supplementary Figure 5.4A). When using the 3T 2725 

reference model, the number of 3T runs to match the 7T data was smaller (Supplementary 2726 

Figure 5.4B), likely due to the noisier data quality at 3T as indicated by the lower noise ceiling, 2727 

and which likely also resulted in a noisier reference model. Overall, the 7T data had a higher 2728 

noise ceiling (mean  SD: 72%  2.6%) than the 3T data (55%  3.7%). These results suggest 2729 

that 3T data is noisier and the benefits in model predictive power is due to improved data 2730 

quality, rather than model accuracy.  2731 

Last, we found similar results using model-free analyses of voxel-wise time series 2732 

correlation (Supplementary Figure 5.5), model-based analyses using un-collapsed data points 2733 

(Supplementary Figure 5.6) and using all data points within NPC1, i.e. no thresholding 2734 

(Supplementary Figure 5.7).  2735 

 2736 

Comparison of tSNR at 3T and 7T 2737 

Figure 5.6 shows the tSNR maps of one example individual run at 3T (Figure 5.6A) and 7T 2738 

(Figure 5.6B), and the averaged tSNR in white matter and grey matter across all runs and 2739 

participants at the two field strengths (Figure 5.6C). On average, one 7T run has higher tSNR 2740 

in white matter (mean  SE: 79  4) than that at 3T (72  2). However, at the cortical grey 2741 

matter of the numerosity map (NPC1), on average, 3T has higher tSNR (74  4) than 7T (66  2742 

6) in an individual run. The difference between cortical GM and WM tSNR likely reflects the 2743 
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increased contributions of stimulus-driven BOLD signal fluctuations and physiological noise 2744 

present in cortex at 7T. 2745 

 2746 

Figure 5.6. Comparison of tSNR at 3T and 7T. (A, B) Example tSNR maps of one 3T run 2747 

(A) and one 7T run (B). Black lines outline the white matter (WM) mask determined from the 2748 

segmented anatomy of the same participant. (C) The averaged tSNR of 3T and 7T in grey 2749 

matter (GM) at the region of interest of the numerosity map NPC1 (grey bars) and WM (white 2750 

bars) in a functional run. Error bars indicate the standard errors of the mean over all the 2751 

individual runs of all the participants. Overall, 7T has higher tSNR in WM, while 3T has higher 2752 

tSNR in the task-related GM, which likely reflects the increased contributions of stimulus-2753 

driven BOLD signal fluctuations and physiological noise present in the cortex at 7T. 2754 

 2755 

Discussion 2756 

We recorded BOLD responses of numerosity-selective neural populations in human parietal 2757 

cortex at 3T and 7T, respectively. We used identical numerosity stimuli and tasks and a similar 2758 

functional MRI sequence which we optimized for each field strength. We applied identical pre-2759 

processing pipeline and analysed the data using biologically-inspired model-based analyses 2760 

(Dumoulin & Wandell, 2008). Subsequently, we quantified the number of runs required to 2761 

detect reliable numerosity maps at 3T, compared to 7T, for individual participants. Field 2762 

strength effects on the functional data were examined using model predictive power. We were 2763 

able to reconstruct the topographic numerosity maps in the intraparietal sulcus at 3T. However, 2764 

the topographic maps derived from the 3T data were less reliable and required much more data 2765 

than typically acquired in the field. The numerosity maps at both field strengths became more 2766 

reliable with increasing number of runs, though the rate of increase was higher at 7T. On 2767 

average across participants, one 7T run had about 4 times the model predictive power of one 2768 

3T run.  2769 
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To acquire comparable data at the two different field strengths, we utilized a GE EPI 2770 

sequence that we optimized to ensure a good SNR and signal strength at both field strengths. 2771 

Specifically, a voxel volume size of 1.98  1.98  2.00 mm3 was used at both fields. At 7T, the 2772 

TE was close to the tissue T2
* and hence optimum for BOLD contrast, while the TE at 3T (28 2773 

ms) was relatively short compared to the grey matter T2
* (Peters et al., 2007). Such a short TE 2774 

is very widely used at 3T to allow acquisition of a higher number of slices in an achievable TR 2775 

(Clare, 1997; Volz, Callaghan, Josephs, & Weiskopf, 2019). At both field strengths the FA was 2776 

set close to the Ernst angle, and as a result, it was slightly higher at 3T (80) than at 7T (70). 2777 

Though obviously, these settings influence the results, we do not believe that they bias the 2778 

results to favour one field strength over the other. 2779 

Previous studies show that imaging at UHF provides a leap forward in both higher SNR 2780 

and BOLD signal sensitivity. In the context of fMRI, the static image SNR reflects MRI signal 2781 

strength over the noise present in the image in the absence of signal. Pohmann et al., (2016) 2782 

demonstrated that the image SNR showed a distinctly supralinear increase with field strength 2783 

by a factor of 3.10  0.20  from 3T to 7T, and 1.76  0.13 from 7T to 9.4T over the entire 2784 

cerebrum. However, fMRI signals include contributions from thermal noise and correlated 2785 

interference due to head motion, scanner instability and non-neuronal physiological noise 2786 

arising from cardiac and respiratory fluctuations. As the magnetic field strength increases, the 2787 

relative contribution of non-neuronal physiological noise is also increased (Triantafyllou et al., 2788 

2005). If physiological noise contributions dominate over the thermal noise in the imaging 2789 

voxel, the SNR is independent of signal strength (Krüger & Glover, 2001), resulting in a 2790 

reduced ability to detect activation-induced signal changes. Although the physiological noise 2791 

contribution is higher at UHF, the noise effect would be cancelled out when averaging multiple 2792 

functional runs as the cardiac and respiratory signals are not task-locked. Thus, we believe that 2793 

the data here presented after averaging over runs have only a small contribution from 2794 

physiological noise sources.  2795 

Furthermore, magnetic field strength increase leads to significant increase of the BOLD 2796 

contrast (Gati, Menon, U??urbil, & Rutt, 1997; Krasnow et al., 2003). The BOLD signal arises 2797 

from the field inhomogeneity differences induced by the paramagnetic deoxyhaemoglobin in 2798 

the capillaries and venous vessels and the surrounding tissue, which manifests as signal 2799 

changes in the order of a few percent (Logothetis, 2002). This BOLD contrast scales 2800 

approximately linearly with field strength. A quantitative analysis conducted by van der Zwaag 2801 

et al., (2009) found that in brain tissue, the BOLD contrast (approximated by the relaxation 2802 
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rate change, R2
*) increases linearly with field strength (0.98  0.08 at 3T and 2.55  0.22 at 2803 

7T). Yacoub et al., (2001) found a supralinear field strength dependence of BOLD contrast that 2804 

increased by a factor of 2.13  0.23 when going from 4T to 7T. The resulting increase in BOLD 2805 

contrast is of great benefit for fMRI studies and can be exploited to reduce the number of 2806 

functional runs required to demonstrate robust activation.  2807 

In the current study, the BOLD responses recorded at 7T benefit both from the 2808 

increased SNR and augmented BOLD contrast, resulting in the factor of 4 times the number of 2809 

3T runs required to achieve equivalent model predictive power of one 7T run. The factor of the 2810 

number of 3T runs to match the 7T data was smaller using 3T data as reference compared to 2811 

using 7T data as reference. We suspect this is due to the noisier data quality of 3T data. Noisier 2812 

data results in a pRF model that is less accurate, which in turn limits the amount of variance in 2813 

the test data it can explain. The lower noise ceiling of 3T data than 7T data also indicate the 2814 

noisier data quality at 3T. Overall, the 7T data is less noisy than the 3T data, yielding the higher 2815 

noise ceiling. However, taking into account the noise in the 3T data, the model predictive power 2816 

is comparable between different field strength. In other words, relative to the noise ceiling, the 2817 

pRF model is applicable and independent to field strengths. Furthermore, the similar results 2818 

obtained from the model-free analysis suggest that the benefits of using less 7T runs to obtain 2819 

robust numerosity maps is induced by data quality but not model accuracy. 2820 

Akin to previous studies we found 7T has higher tSNR than 3T in white matter. The 2821 

higher tSNR in white matter at 7T is related to the higher SNR at UHF as tSNR will increase 2822 

with increasing image SNR, until a field-strength dependent plateau value is reached (Krüger 2823 

& Glover, 2001; Triantafyllou et al., 2005). The tSNR is lower in grey matter (i.e., NPC1) at 2824 

7T than 3T. This is likely caused by the larger (stimulus-driven) BOLD responses and higher 2825 

physiological noise contributions at 7T. The different behaviour of tSNR in grey and white 2826 

matter is more pronounced in this study because of the extra task-induced variance and the 2827 

relatively short TE at 3T, e.g., compared to studies that fixed TE=T2
* in a resting state 2828 

acquisition (Triantafyllou et al., 2005). The discrepancy that the grey matter tSNR at 7T is 2829 

lower than at 3T while the noise ceiling is higher, is due to the fact that task-induced BOLD 2830 

fluctuations are ‘signal’ when calculating the noise ceiling, while they contribute to ‘variance’ 2831 

in the tSNR calculation. 2832 

This finding is in agreement with previous literature. To achieve a significant statistical 2833 

power, many runs of a single participant and/or groups of participants are acquired at 2834 

conventional field strength scanner (i.e. 3T). In such a way, noise present in fMRI time series 2835 
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is reduced when multiple runs are averaged together, which leads to a monotonic increase in 2836 

statistical significance as increasing number of runs. Using a GO/NOGO task, Torrisi et al. 2837 

(2018) compared GLM-based activation analyses and showed significant gains in statistical 2838 

power at 7T and fewer subjects were necessary at group level to match the same power at 3T. 2839 

Gonzalez-Castillo et al. (2012) acquired 100 functional runs at each of the 3 participants at 3T 2840 

and later performed a similar study at 7T (Gonzalez-Castillo et al., 2015), where much less 7T 2841 

runs (~25 runs) were required to reach the same percent of grey matter voxels above a statistical 2842 

threshold (activated) as 100 3T runs could achieve. This is a similar factor of 4 times 2843 

improvement as we suggest here. At UHF scanner (i.e. 7T), higher SNR and tSNR will reduce 2844 

the number of runs required from a single participant to detect activation with an expected 2845 

statistical power (Murphy, Bodurka, & Bandettini, 2007). We note that this is particularly 2846 

relevant for computational neuroimaging, where signals of single voxels differ and are 2847 

modelled separately. Furthermore, because the topographic map locations, size and 2848 

orientations vary between participants (Dumoulin et al., 2000; B. M. Harvey et al., 2013; 2849 

Wandell et al., 2007), averaging of participants in a common space is often not feasible.  2850 

This study differs from other studies comparing field strengths dependence on BOLD 2851 

signal in three aspects: first, we used a numerosity task that activated brain regions associated 2852 

with high level cognition. This experimental design was the same as the paradigm initially used 2853 

to uncover the topographic representation of numerosity at UHF (B. M. Harvey et al., 2013). 2854 

Previous studies that compared the BOLD signal sensitivity between different field strengths 2855 

mainly used simple tasks, e.g., flicker stimulation or finger tapping, to activate the primary 2856 

sensory and/or motor cortex (Duong et al., 2003; A. Geißler et al., 2014; Alexander Geißler et 2857 

al., 2013; Schäfer et al., 2008). Only a few studies adopted high level cognitive tasks to 2858 

compare lower field and UHF. For example, Jerde et al. (2008) compared the task-induced 2859 

activation at 4T and 7T (Gourtzelidis et al., 2005) using a mental maze solving paradigm, and 2860 

Geißler et al. (2014) compared the language network with a standard overt language fMRI 2861 

paradigm between 3T and 7T. Although there have been many studies comparing field 2862 

strengths performed by experts in physics and engineering (Alexander Geißler et al., 2013; 2863 

Hutton et al., 2011; Li, 2013; Pohmann et al., 2016; Vaughan et al., 2001), additional empirical 2864 

evidence using neurocognitive tasks may also aid the cognitive neuroscientist’s decision to 2865 

execute fMRI experiments at UHF (De Martino et al., 2018; van der Zwaag et al., 2016). 2866 

Second, rather than using conventional univariate analysis, such as GLM, we used a custom-2867 

built computational pRF modelling. Though the pRF model is conceptually similar to GLM by 2868 

taking the best model fit as the predictor in the design matrix, there are several advantages of 2869 



 99 

using pRF model to quantify the field strength dependent effect on model predictive power. (i) 2870 

The pRF model is an explicit computational model and is expressed in terms of input-referred 2871 

parameters (Dumoulin & Wandell, 2008; Wandell & Winawer, 2015) such as locations in the 2872 

visual field rather than in terms of a statistic of the fMRI time series. Compared to a GLM, the 2873 

pRF model characterizes the responses of neural populations that preferentially tuned to 2874 

different stimuli (e.g., numerosities). The response differences to the presented numerosities 2875 

could be converted into tuning functions, allowing for a comparison of the tuning parameters 2876 

(i.e., preferred numerosity and tuning width), and model predictive performance (i.e., variance 2877 

explained) of the fMRI signals. (ii) Our approach was motivated by the anecdotal suggestion 2878 

that numerosity maps as discovered by the pRF modelling at 7T could not be reproduced at 3T. 2879 

As such, the comparison between 3T and 7T became relevant for the pRF modelling. Though 2880 

we show that we can reconstruct the numerosity maps at 3T, this requires much more data than 2881 

typically acquired in the field. Last, we used model-based, model-free and other validation 2882 

analyses, and these analyses showed similar results. 2883 

One of the limitations of the current study is that we only have three participants, but 2884 

each participant was scanned for three sessions at 3T and two sessions at 7T. We prefer 2885 

scanning multiple sessions on fewer participants than scanning more participants with fewer 2886 

sessions for several reasons. First, the aim of the current study is to investigate whether we 2887 

could detect numerosity maps at 3T and quantify how many functional runs are required at 3T 2888 

to reach equivalent model predictive power at 7T. Thus, for each individual participant, it is 2889 

necessary to have more than one 3T session so as to have enough signal strength to compare 2890 

to a 7T session. Second, pRF model is commonly used to map functionally specialized brain 2891 

regions on individual participant, for example, numerosity maps in the intraparietal sulcus. We 2892 

ran the model in the native space of each participant’s cortical area thus it is not helpful to 2893 

average these individual-specific cognitive maps across participants. Third, having more 2894 

sessions on the same participant would help to reduce the confounds of between-subject 2895 

variability for comparing different field strengths. To counter-balance the variability of the 3T 2896 

data collection on separate days, we also collected two 7T sessions on two days. Each session 2897 

was used as the reference dataset in turn to reduce session-specific variability (Viessmann & 2898 

Polimeni, 2021). Last, statistical power is a trade-off between number of trials per participant 2899 

and number of participants (Baker et al., 2020). Studies with fewer participants but more trials 2900 

can have the same statistical power as more participants with fewer trials. Thus, we opt for 2901 

collecting more sessions on the same participant rather than having one session on multiple 2902 

participants. 2903 
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 2904 

Conclusion  2905 

With the increasing popular application of computational model in neuroimaging, UHF MRI 2906 

brings tremendous advantages in advancing our understanding of the brain function, such as 2907 

increased sensitivity and greater spatial resolution. This study brings out another benefits of 2908 

UHF MRI and demonstrates higher model predictive power at UHF. These results suggest that 2909 

future cognitive neuroscience studies may benefit from UHF by collecting less data and 2910 

preserving strong statistical power. Thus, UHF functional MRI paves the way for 2911 

individualized cognitive neuroscience.  2912 

Originally, with all the control experiments involved, it took about 5 hours of scanning 2913 

at 7T per individual participant to discover the numerosity maps (B. M. Harvey et al., 2013). 2914 

Based on the results we report here, it would have required around 20 hours per participant to 2915 

uncover the numerosity maps at 3T, which would have made the initial discovery of numerosity 2916 

maps at 3T highly unfeasible in practice. To sum up, UHF benefits cognitive neuroscience with 2917 

higher SNR and BOLD sensitivity, and thus reduces the number of runs (trials) required to 2918 

achieve reliable activation compared to lower field strength.  2919 
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The present thesis focuses on numerosity perception and its underlying neural mechanisms in 2968 

the human brain. We utilized methodological advances in neuroimaging and computational 2969 

modelling, such as UHF MRI and pRF modelling, to examine the neural tuning of numerosity 2970 

and thereby study several profound questions in the field.  2971 

First, in Chapter 2, we tested two competing hypotheses on whether small and large 2972 

numerosities are represented under two separate systems or a single mechanism. We 2973 

demonstrated that topographic numerosity maps cover both the subitizing and estimation 2974 

ranges, suggesting a single neural mechanism underlying small and large numerosities. 2975 

Furthermore, as discussed below, these results also support the link between neural tuning and 2976 

perception. Second, in Chapter 3, we investigated the role of attention in numerosity perception. 2977 

We used three consecutive experiments to show that attention drives numerosity responses and 2978 

that the neural populations displayed decreased responses when their preferred numerosities 2979 

are shown but not attended (which would otherwise drive maximal response). Third, in Chapter 2980 

4, we asked whether numerosity maps are also involved in symbolic number processing. We 2981 

found that the numerosity maps at the temporal-occipital cortex also respond to numbers, 2982 

supporting a link between numerosity and number symbol processing at the ventral stream. 2983 

Last, in Chapter 5, we assessed if the numerosity maps could be reconstructed at the current 2984 

standard field strength of 3T MRI. We were able to detect the numerosity maps at 3T, though 2985 

averaging more functional runs was required to reconstruct robust maps as compared to those 2986 

at 7T. We further quantified that one 7T run had about four times the model predictive power 2987 

of one 3T run, which makes the initially uncovering of the numerosity maps infeasible in 2988 

practice. Overall, the findings in the current thesis establish links between neural tuning, with 2989 

numerosity perception, attention and symbolic number processing, and contribute to the field 2990 

in comparing MR systems at different field strengths. Here, we will discuss these results in 2991 

more detail, together with a discussion regarding conceptual implications and future directions. 2992 

 2993 

Neural tuning underlies known numerosity perceptual phenomena  2994 

In Chapter 2 we demonstrated that small and large numerosities are represented continuously 2995 

within the same maps, suggesting a single neural mechanism. Furthermore, our results suggest 2996 

that the neural tuning properties, such as cortical magnification and tuning width, account for 2997 

the known differential perception on subitizing and larger numerosities. Specifically, the quick 2998 

and precise numerosity perception at the subitizing range can be explained by more cortical 2999 

areas that are devoted to small numerosities and that neurons tuned to small numerosities have 3000 

sharper tuning curves.  3001 
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Neural numerosity tuning can account for other perceptual phenomena, including the 3002 

numerical distance and size effects (Tsouli, Harvey, et al., 2021). The tuning curves of neurons 3003 

preferring numerically close numerosities (e.g., 8 and 9) overlap more than those preferring 3004 

numerically distant numerosities (e.g., 4 and 8), resulting in more similar responses and thereby 3005 

more difficult to discriminate (the numerical distance effect). As shown in Chapter 2, the tuning 3006 

width increases progressively with increasing numerosity. Therefore, at a given numerical 3007 

distance (e.g., a difference of 1), the tuning curves of neurons preferring larger numerosities 3008 

(e.g., 8 and 9) overlap more than those preferring smaller numerosities (e.g., 3 and 4), resulting 3009 

in less discriminable responses (the numerical size effect).  3010 

In addition, neural numerosity tuning can explain perceptual aftereffects of adaptation. 3011 

Psychophysical studies have demonstrated that numerosity perception is highly susceptible to 3012 

adaptation: adapting to a low numerosity leads to an overestimation of a numerosity 3013 

subsequently presented, whereas adapting to a high numerosity leads to an underestimation (D. 3014 

C. Burr, Anobile, & Turi, 2011; D. Burr & Ross, 2008; Tsouli, Dumoulin, te Pas, & van der 3015 

Smagt, 2019). For example, after adapting to the numerosity of 20, the subsequently presented 3016 

numerosity of 10 will be subjectively perceived as the numerosity of 9, i.e., an underestimated 3017 

bias. Recently, colleagues and ourselves provided evidence that adaptation to visual 3018 

numerosity changes neural numerosity selectivity (Tsouli, Cai, et al., 2021). We speculated 3019 

that the neural tuning can explain this phenomenon by viewing the perceptual consequence as 3020 

the sum of responding neurons’ preferred numerosity states, weighted by those neurons’ 3021 

response amplitude levels ((Clifford, Wenderoth, & Spehar, 2000; Tsouli, Harvey, et al., 2021). 3022 

Repeated stimulation with a specific adapter numerosity (i.e. 20) suppresses the responses of a 3023 

population of neurons depending on the amplitude of their responses to the adapter stimulus. 3024 

Specifically, the suppressive responses maximize at neurons preferring the adapter numerosity, 3025 

and decline at neurons preferring numerosities that are numerically distant to the adapter 3026 

numerosity (i.e. <10). Thus, the population responses to numerosities near the adapter will be 3027 

biased away from the adapter, accounting for a repulsive shift.  3028 

Moreover, neural tuning also underlies interactions between different quantities and 3029 

sensory modalities. Previous studies have shown overlapping brain activation evoked by 3030 

quantity perception in different sensory modalities (Anobile, Arrighi, Togoli, & Burr, 2016b; 3031 

Eger et al., 2003) and also perceptual interactions between quantity dimensions (Arrighi, 3032 

Togoli, & Burr, 2014), suggesting a common neural mechanism for different quantities (A. 3033 

Nieder, 2012). However, colleagues and ourselves have recently found that while topographic 3034 

maps of different quantities, including object size (Ben M. Harvey et al., 2015), timing (Ben 3035 
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M. Harvey et al., 2020) and haptic numerosity (Hofstetter et al., 2021), spatially overlap in the 3036 

cortex, they are all comprised of distinct neural populations (Tsouli, Harvey, et al., 2021). This 3037 

finding suggests that observed commonalities in neural and behavioral representation between 3038 

quantities are not accounted for by a common neural representational code across quantities, 3039 

but by the interaction of spatially intermingled neural populations which are independently 3040 

tuned to different quantities and modalities. 3041 

 3042 

Attention is a necessary ingredient to elicit numerosity selective response 3043 

In the primary sensory cortex, attention usually gains responses by boosting the neural 3044 

responses of neurons preferring the attended location or feature, at the expense of neural 3045 

responses to other spatial positions or other features (Martinez-Trujillo & Treue, 2004; 3046 

McAdams & Maunsell, 1999b; O’Craven et al., 1997). Convergent evidence from 3047 

psychophysical (e.g. adaptation) (D. Burr & Ross, 2008), neuroimaging (e.g. topographic maps) 3048 

(B. M. Harvey et al., 2013) and computational research (Kim et al., 2021; Nasr et al., 2019; 3049 

Stoianov & Zorzi, 2012) indicates that numerosity is a primary attribute, akin to color and 3050 

orientation, etc. However, unlike responses in the early visual cortex, which happen whenever 3051 

the preferred stimulus is shown, we have found that both bottom-up and top-down processing 3052 

appear necessary to drive numerosity responses (Chapter 3). Former studies showed that these 3053 

two processes interact in humans to control attention and modulate neural responses to target 3054 

stimuli (Carrasco, 2011; Corbetta & Shulman, 2002). Of note, in our study the top-down 3055 

attentional control is directed to the stimulus, but not necessarily to the numerosity feature of 3056 

the stimulus. Many previous studies have found numerosity-selective responses with tasks that 3057 

did not ask for attention directed towards the numerosity feature (B. M. Harvey et al., 2013; 3058 

Viswanathan & Nieder, 2013), and even with orthogonal tasks that directed attention away 3059 

from numerosity feature (Castaldi et al., 2019). However, in all of these studies, participants 3060 

performed some tasks and thereby always attended the stimulus itself. Furthermore, we found 3061 

that in the absence of attention, neural populations tuned to the numerosities in the unattended 3062 

set displayed suppressive responses. These results suggest that top-down attentional control 3063 

gates numerosity responses by selectively modulating sensory processing of numerosity targets 3064 

(Hopfinger, Buonocore, & Mangun, 2000). 3065 

Our study focuses on how the neural response amplitude is influenced by attentional 3066 

modulation, but whether attention alters numerosity selectivity remain unknown. It is up to 3067 

future studies to explore whether attentional modulation alter the tuning properties, such as the 3068 

selectivity and tuning width, of the neural populations. Previously, our colleagues have 3069 
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demonstrated that spatial attention attracts pRF to the preferred positions systematically across 3070 

the entire visual field, using a model incorporating a stimulus-driven receptive field (represents 3071 

neural populational selectivity in the absence of attention) and an attention field (represents 3072 

attention’s influences and is centered at the attended location) (Klein, Harvey, & Dumoulin, 3073 

2014). In consistent with these findings, colleagues and ourselves found adaptation alters 3074 

numerosity selectivity (Tsouli, Cai, et al., 2021). Thus, we speculate that attention would 3075 

change neural response selectivity of numerosity-tuned neurons throughout the numerosity 3076 

maps in a similar manner. It is up to future studies to apply computational models that 3077 

conceptualizes attention’s influence (i.e., the attention field) and its interactions with the 3078 

stimulus-driven neural responses properties.  3079 

 3080 

Overlap, but distinct neural populations tuned to numerosity and number 3081 

The very first study investigating the functions of the numerosity maps is presented in Chapter 3082 

4, where we found that the NTO maps in both hemispheres respond to symbolic numbers, but 3083 

that only the one in the left hemisphere also show tuned responses. These findings are in 3084 

agreement with previous studies that link numerosity and symbolic number processing 3085 

(Libertus, Feigenson, & Halberda, 2011; Andreas Nieder, 2020a; Piazza et al., 2007), and with 3086 

laterality biases for number processing in the left side of the human brain (Ansari & Dhital, 3087 

2006; Venkatraman, Ansari, & Chee, 2005). However, we did not observe a correlation 3088 

between the preferred numerosity and preferred number estimates, suggesting that distinct 3089 

neural populations respond to different number formats. This is in line with the recent 3090 

observation on single neuron recordings in epilepsy patients (Kutter et al., 2018). Akin to the 3091 

observation of the spatially overlapping representations of different quantities and modalities 3092 

(Tsouli, Harvey, et al., 2021), as discussed above, we speculate that the neural tuning underlies 3093 

the behavioural interactions between numerosity perception and symbolic number processing. 3094 

Several reports indicate that numerical education and numerosity perception interact 3095 

(Butterworth, 2018). Therefore, numerosity tuning may be influenced by education, and that 3096 

neural tuning may undergo further refinement during developmental stages (Ansari, 2008; 3097 

Butterworth, 2018; Halberda & Feigenson, 2008). 3098 

Moreover, we also found activations elicited by symbolic numbers in the vicinity of the 3099 

numerosity maps. As it was out of the scope of this study, we did not perform further analyses 3100 

on these parts of the data. It is up to future studies to examine these responses and what is the 3101 

organization of number-selective neural populations, i.e. whether number-tuned neural 3102 

populations are also organized as topographic maps.  3103 
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 3104 

The BOLD signals and neural population responses 3105 

There are important factors to consider when attempting to translate fMRI finding to 3106 

constituent biophysical mechanisms (Logothetis, 2002; Logothetis & Wandell, 2004). 3107 

Numerosity selectivity in this thesis was determined by fitting a pRF model to fMRI BOLD 3108 

data within a recoding site (i.e. voxel). As such, the numerosity preference is the aggregate of 3109 

the receptive fields of all neurons within a fMRI voxel, namely, the averaged preferred 3110 

numerosity of a neural population. Therefore, the heterogeneous contribution from different 3111 

neurons of the populations at the same voxel may give a different overall response, indicated 3112 

by different preferred numerosity estimates depending on the presented numerosity stimuli, 3113 

though the neural tuning of single neuron remains stable (Chapter 2).  3114 

Another related effect on the preferred numerosity estimates is the voxel size. A larger 3115 

voxel will have more heterogeneous neurons, which will result in changes in the overall tuning, 3116 

typically to a biased preferred numerosity by averaging more neural populations’ tuning 3117 

estimates. A novel and recent development in fMRI technique of recording BOLD responses 3118 

at very high spatial resolution (i.e. < 1mm) (Ress, Glover, Liu, & Wandell, 2007) might help 3119 

to resolve this issue. At such resolution, voxels can also be assigned to different lamina within 3120 

the cortical gray matter (Fracasso, Petridou, & Dumoulin, 2016; van Dijk, Fracasso, Petridou, 3121 

& Dumoulin, 2020). As feedforward and feedback signals are processed differently across the 3122 

lamina, this method could be used to separate feedforward and feedback processing signals of 3123 

numerosity responses (van Dijk, Fracasso, Petridou, & Dumoulin, 2021). Although there are 3124 

many technical challenges, such as requiring very precise alignment between functional and 3125 

anatomical volumes and dealing with tiny neurovascular coupling across the lamina, this 3126 

method provides a great promise in the neuroscience fields towards imaging at the human 3127 

mesoscopic scale (Dumoulin, Fracasso, van der Zwaag, Siero, & Petridou, 2018). Thus, it is 3128 

up to future studies to further explore numerosity neural representation at a finer resolution, 3129 

across gray laminar and columnar.  3130 

One also needs to be cautious when interpreting the suppressive responses elicited by 3131 

the preferred but unattended numerosity as a ‘negative’ BOLD response (Chapter 3). As the 3132 

BOLD responses reflect input and intracortical processing rather that pyramidal cell output 3133 

activity (Barbieri, Mazzoni, Logothetis, Panzeri, & Brunel, 2014), it is difficult to infer a 3134 

suppressive response from the observed modulation of BOLD activity. In the context of our 3135 

findings, negative responses indicate decreased response relative to the baseline response 3136 

amplitudes where a zero response was predicted. It is up to future studies to examine this effect 3137 
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using optimized computational models, such as difference-of-Gaussian model (Zuiderbaan, 3138 

Harvey, & Dumoulin, 2012), compress spatial summation (CSS) model (Kay, Winawer, Mezer, 3139 

& Wandell, 2013), or normalization model (Aqil, Knapen, & Dumoulin, 2021) that have been 3140 

applied in visual field mapping. 3141 

Last, in Chapter 5, we compared numerosity maps at 3T and 7T. To compensate for the 3142 

data quality at the lower field strength, we used an isotropic resolution of about 23 mm, which 3143 

is far from the optimal spatial resolution at the UHF (Peters et al., 2007; Triantafyllou et al., 3144 

2005; van der Zwaag et al., 2009). Compared to 7T, the BOLD signals at 3T have lower SNR 3145 

and sensitivity, thus much more data points (trials) are required to reconstruct numerosity maps 3146 

at 3T (Baker et al., 2021). Moreover, our findings show that the numerosity tuning properties, 3147 

e.g., numerosity preference and tuning width, remain stable at different field strengths. This is 3148 

in line with our recent study using an alternative fMRI data acquisition technique, i.e. recording 3149 

vascular space occupancy (VASO) signals based on changes in cerebral blood volume (CBV), 3150 

to reconstruct the visual field maps (Oliveira et al., 2022). These results suggest that the 3151 

vascular component of pRF tuning response is not dominating in either VASO-CBV or BOLD 3152 

signals, and that pRF model provides a great promise to characterize tuning properties of 3153 

numerosity-selective neural populations with variable data measurements. 3154 

 3155 

Conclusions 3156 

In conclusion, we examined in this thesis the neural mechanism of numerosity perception and 3157 

the links between neural tuning and perception by combining ultra-high field fMRI recordings 3158 

with biological-inspired modelling analyses. We found that neural populations tuned to small 3159 

and large numerosities are ordered in the same topographic maps, suggesting a single 3160 

processing mechanism. These results are suggested that numerosity neural tuning properties 3161 

can account for the well-documented perceptual differences in the subitizing and estimation 3162 

ranges. We demonstrated that attention to the stimulus is essential to drive numerosity selective 3163 

responses. By acting as a top-down control mechanism, attentional selection modulates neural 3164 

responses to attended information at the expense of information that is not attended. 3165 

Specifically, numerosity-tuned neural populations respond maximally to attended stimulus 3166 

with their preferred numerosity, and suppress responses when their preferred numerosity was 3167 

not attended. We found that numerosity maps at the ventral occipital-temporal cortex also 3168 

implant symbolic numbers, indicating links between numerosity perception and symbolic 3169 

numerical cognition. Finally, we demonstrated that numerosity maps are detectable using high 3170 
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field fMRI at 3T, however, much more data is required than at 7T. This result suggests that 3171 

ultra-high field MRI systems operating at 7T and above would pave the way for individualized 3172 

cognitive neuroscience, such as to map functionally specialized brain regions on individual 3173 

participants.  3174 
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Appendix A 3203 

Supplementary materials for Chapter 2 3204 

 3205 

 3206 

Supplementary Figure 2.1. Visualization of numerosity maps of all participants and 3207 

relationship of large numerosity preference at the large and large-control ranges. (A) 3208 

Illustration of the large-control range. (B) Visualization of numerosity maps of the small, large 3209 

and large-control ranges. Cortical surface rendering of the right hemisphere of all the 3210 

participants show a constant and similar network of numerosity maps at both the small and the 3211 

large ranges. However, stimulating only with large numerosities (>7, panel a), reveals only 3212 

part of the maps. Only preferred numerosities are shown  where the model explained over 30% 3213 

of response variance within the recording site. Black lines outline individual numerosity maps. 3214 

The boarders of the lowest to the highest preferred numerosity in each map are marked by 3215 

white lines. (C) Numerosity maps with more neural populations tuned to large numerosities 3216 

have more responses elicited by the large-control range. Given the cortical magnification, the 3217 

numerosity maps have few responses to large numerosities, and thus most of the maps show 3218 

little responses to the large-control range. Source data are provided as a source data file. 3219 
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 3220 

Supplementary Figure 2.2. Correlations between numerosity preferences estimated from 3221 

small and large ranges indicate similar numerosity selectivity among individual maps and 3222 

participants (P1–P8). Dots show the estimates from individua recording sites (variance 3223 

explained > 30%), coloured lines indicate the best linear fits between the two estimates, the 3224 

dashed line shows unity (i.e. identical estimates).  3225 
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 3226 

Supplementary Figure 2.3. Cortical progression with numerosity preference estimated from 3227 

viewing small and large ranges in individual maps of all participants (P1–P8). Preferred 3228 

numerosities increase systematically for both conditions. Points represent the mean preferred 3229 

numerosity in each distance bin (every 2mm interval), with error bars showing the standard 3230 

errors of the mean over all data points with each bin. 3231 
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3232 

Supplementary Figure 2.4. Tuning width progresses with preferred numerosity of all maps 3233 

and all participants. Points represent the mean tuning width in each bin, error bars represent 3234 

the standard error of the mean over all data points in each bin. Solid lines are the linear fit to 3235 

the bins, weighted by the inverse of the standard error of each bin. Dashed lines represent 95% 3236 

confidence intervals determined by bootstrapping fits to the binned points (n = 1000). P-values 3237 

give the probability of the observed change from permutation analysis (n = 10000).  3238 
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 3239 

Supplementary Figure 2.5. The cross validation datasets show near identical results. (A) 3240 

Participant1’s NTO numerosity preferences estimated from an example pair of the cross 3241 

validation datasets (e.g. small-odd vs. large-odd) were strongly correlated. Dots show the 3242 

estimates from individual recording sites survived from all cross validations iterations (n = 8, 3243 

variance explained > 30%), the blue line shows the linear fit between the two estimates, the 3244 

dashed line shows unity (i.e. identical preferences). (B) Bars show the mean cross-validated 3245 

percentage deviations for each participant; error bars show the standard errors of the mean over 3246 

maps (n = 6). Only participant 6 has a significant higher deviation from the unity line than 3247 

other participants (two-way ANOVA analysis, followed by post hoc analysis, Bonferroni 3248 

corrected for multiple comparison; F(7,47) = 23.1, * indicates p = 2.3x10-11). (C) Progression 3249 

of numerosity preferences estimated from the split dataset of the large range as a function of 3250 

normalized cortical distance in all numerosity maps, across all participants. The black line 3251 

shows the best logarithmic fit that bins  the data points from all the maps across normalized 3252 

cortical distance. (D) Tuning width increases with preferred numerosity in participant1’s NTO 3253 

map averaged by the two split datasets of the large range. Recording points are bins based on 3254 

preferred numerosity. Points represent the average of the mean tuning width within each bin 3255 

across the two split datasets, error bars represent the standard errors of the mean over the two 3256 

split datasets. Solid line is the linear fit, weighted by the inverse of the standard deviation of 3257 

each bin. (E) Linear fits of tuning width against preferred numerosity of all the numerosity 3258 

maps averaged across the two splits of the large range, across participants (coloured lines) and 3259 

across maps (black line). In panel C - E: dashed lines represent 95% confidence intervals of 3260 

the fits (coloured lines) to the binned points determined by bootstrapping (n = 1000). P-value 3261 

gives the probability of the observed change from permutation analysis (n = 10000). Source 3262 

data are provided as a source data file. 3263 

 3264 
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Supplementary materials for Chapter 3 3266 

 3267 

Supplementary Table 3.1. Task performance of individual participants in Experiment 1 3268 

 

Participant 

(#) 

 

Asymmetry 

level (#) 

Attend black: 

d’ (mean ± std) 

Attend white: 

d’ (mean ± std) 

attended unattended attended unattended 

P1 0.1 3.4 ± 0.4 0.8 ± 0.2 3.0 ± 0.5 1.0 ± 0.3 

P2 0.2 2.8 ± 0.5 1.0 ± 0.3 2.9 ± 0.4 1.0 ± 0.4 

P3 0.2 3.6 ± 0.4 0.8 ± 0.1 3.3 ± 0.4 0.8 ± 0.2 

P4 0.2 3.1 ± 0.5 0.8 ± 0.2 3.0 ± 0.4 0.7 ± 0.2 

Averaged na 3.2 ± 0.5* 0.9 ± 0.2 3.0 ± 0.5* 0.9 ± 0.3 

 3269 

Note: Asymmetry level indicates the degree of oval of the dot shape and 0 suggests the dot was 3270 

shown in circle. Pair t-test was performed to demonstrate the different task performances 3271 

between the attended and unattended sets, in a given condition. *, p < 0.05. 3272 
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 3273 

Supplementary Figure 3.1. Visualization of topographic numerosity maps derived from 3274 

the two attentional conditions of all participants. Cortical surface rendering of both left (LH) 3275 

and right hemispheres (RH) shows a similar network of numerosity maps. Maps show preferred 3276 

numerosities of cortical recording sites, estimated from responses to the numerosities in the 3277 

attended sets (black or white dots), with over 30% of the variance explained by the numerosity 3278 

pRF model. Black lines outline the lateral borders of individual maps. White lines denote the 3279 

lowest and the highest preferred numerosities at each map. See Figure 3.2D for maps on the 3280 

right hemisphere of Participant 1. 3281 
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 3282 

Supplementary Figure 3.2. Behavioural performances of Experiments 2 & 3. Task 3283 

performance was evaluated as discriminability indices (d’) in the ‘attend black’ (circles) and 3284 

‘attend white’ (triangles) conditions. Filled markers denote detection performance on the 3285 

attended set, i.e., hits, and open markers on the unattended set, i.e., false alarms. * indicates p 3286 

< 0.00001 by paired t-tests (Experiments 2: tab = 15.6, pab = 7.6 x 10-9; taw = 12.7, paw = 6.4 x 10-3287 

8; Experiment 3: tab = 12.1, pab = 1.0 x 10-7; taw = 10.5, paw = 4.3 x 10-7).  3288 

 3289 

 3290 

 3291 

 3292 

 3293 

 3294 

 3295 

 3296 

 3297 

 3298 
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 3309 

Supplementary Table 4.1. Task performance of detecting targeted non-symbolic numerals 3310 

Participants 

(#) 

Number of 

runs (#) 

Target detection accuracy (%) 
 

d’ 

Catch trials Embedded trials  

P1 16 70 88 3.7 

P2 15 80 92 3.4 

P3 17 95 96 4.2 

P4 16 88 92 3.7 

P5 16 78 96 3.5 

P6 16 77 93 3.4 

P7 16 95 98 4.3 

Average 16 83 94 3.7 

 3311 

 3312 

Supplementary Table 4.2. MNI coordinates of NTO map of individual participants 3313 

 

Participants 

(#) 

Montreal Neurological Institute coordinates  (x, y ,z) 

Left hemisphere Right hemisphere 

P1 (-35, -80, -8) (35, -72, -8) 

P2 (-47, -60, -9) (42, -71, -11) 

P3 (-39, -70, -6) (44, -71, -5) 

P4 (-42, -70, -1) (40, -74, -5) 

P5 (-36, -71, -12) (40, -81, -7) 

P6 (-42, -61, -15) (41, -73, -14) 

P7 (-39, -56, -7) (36, -77, -2) 

 3314 
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 3315 

Supplementary Figure 4.1. Cortical rendering of numerosity maps of all individual 3316 

participants (akin to Figure 4.2). Black lines outline the edge borders of individual 3317 

numerosity maps and white lines denote the lowest and highest preferred numerosities in 3318 

each map. The map of preferred numerosity estimates is thresholded at a variance explained 3319 

of 30%. LH, left hemisphere. RH, right hemisphere.  3320 

 3321 

 3322 
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 3323 

Supplementary Figure 4.2. Stimulus-driven responses to symbolic numbers at 3324 

numerosity maps for all individual participants (akin to Figure 4.3A). The result of all 3325 

participants of the GLM analysis which contrasted the responses to the number of “0” (blue 3326 

colors) and “1-7” (yellow-red colors). Lower panel shows the ventral view of the cortical 3327 

surface where the responses to symbolic numbers overlap with the NTO map. Only recording 3328 

sites (i.e. voxels) where the variance explained (R2) by the GLM exceeding 30% were projected 3329 

on the cortical surface.  3330 

 3331 

 3332 

 3333 

 3334 

 3335 

 3336 

 3337 

 3338 

 3339 

 3340 

 3341 

 3342 
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 3345 

 3346 

Supplementary Figure 5.1. Flowchart of the model-free analysis procedure comparing 3347 

the predictive power between field strengths. (A) Eight functional runs (as one session) of 3348 

either 3T or 7T were averaged and regarded as a reference dataset. (B) Numerosity modelling 3349 

was performed for each reference dataset. Voxels with more than 30% of the variance 3350 

explained (R2) were selected. (C) The ‘reference time series’ was extracted from each selected 3351 

voxel. (D) The remaining individual functional runs were taken as independent test datasets, 3352 

i.e., the 3T and 7T test data. (E) The test data was averaged with increasing number of runs to 3353 

produce averaged time series at 3T (grey dots) and 7T (black dots), respectively. (F) Pearson 3354 

correlation coefficients of the ‘reference time series’ and the averaged time series derived from 3355 

the test datasets, was calculated as a function of increasing number of runs (r(n)
2). We iterated 3356 

this procedure 6 times while splitting the data into different pairs of reference and test datasets.  3357 



 121 

3358 

Supplementary Figure 5.2. Topographic numerosity maps of the other two participants 3359 

at 3T and 7T. (A, D) Anatomical rendering of the right cerebral cortex. Black frames outline 3360 

the region of interest (NPC1) in the intraparietal sulcus at the right hemisphere of participants 3361 

2 and 3, respectively. (B, E) Topographic maps of numerosity-selective neural populations at 3362 

NPC1 (black box in A/D) reconstructed using data of 8 functional runs at the two 7T scanning 3363 

sessions, and all the runs across sessions (n=16). (C, F) Topographic maps reconstructed using 3364 

data of the three 3T scanning sessions, and all the runs across sessions (n=24). Maps show 3365 

preferred numerosities of cortical recording sites with over 30% of the variance explained. A 3366 

larger cortical extend above the threshold at the 7T maps than the 3T maps. These maps become 3367 

more reliable and comparable at 7T and 3T, with increasing number of runs (right panels). 3368 
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 3369 

Supplementary Figure 5.3. The similarity between preferred numerosity and tuning 3370 

width estimated at 3T and 7T. (A) The numerosity preferences estimated at 3T and 7T are 3371 

highly correlated, suggesting the similar numerosity tuning at the two field strengths. (B) 3372 

Moderate correlation between tuning widths estimated at the two field strengths. (C) Overall, 3373 

the preferred numerosity estimates are slightly higher at 7T, while the tuning width is broader 3374 

at 3T, except for participant 2. 3375 

 3376 

 3377 

 3378 

 3379 

 3380 

 3381 

 3382 

 3383 

 3384 
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 3385 

Supplementary Figure 5.4. Quantification of field strength effects on pRF model 3386 

predictive power as a function of number of runs, using the reference model derived from 3387 

3T reference datasets. (A) The variance explained of the reference model as a function of 3388 

increasing number of runs at 3T (red) and 7T (blue). Shaded areas indicate standard errors of 3389 

the mean over iterations using different reference datasets (n=6). The noise ceiling (dashed line) 3390 

with 95% confidence intervals (grey bars) represents the maximum explainable variance (of 3391 

one 3T session, i.e., 8 runs) given the noise in the data. (B) Linear fits of the number of runs 3392 

required at 3T to have equivalent model predictive power of one 7T run. Coloured-coded texts 3393 

indicate the factor between 3T and 7T runs to achieve the same variance explained for each 3394 

participant. On average, one 7T run has 2.5 times the model predictive power of one 3T run 3395 

using the 3T reference model (black).  3396 

 3397 

 3398 
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 3401 
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 3402 

Supplementary Figure 5.5. Results of the model-free analyses. (A) Pearson correlations as 3403 

a function of increasing number of runs at 3T (red) and 7T (blue), using 7T reference time 3404 

series. Shaded areas indicate standard errors of the mean over iterations using different 3405 

reference datasets (n=6). The noise ceiling (dashed line) with 95% confidence intervals (grey 3406 

bars) represents the maximum explainable variance (of one 7T session, i.e., 8 runs) given the 3407 

noise in the data. Linear fits of the number of runs required at 3T to have equivalent correlation 3408 

coefficient of one 7T run. Coloured-coded lines and texts indicate the factor between 3T and 3409 

7T runs to achieve the same correlation coefficient for each participant, and the black ones 3410 

indicate average across participants. (B) Pearson correlations as a function of increasing 3411 

number of runs at 3T and 7T, using 3T reference time series. The noise ceiling denotes the 3412 

maximum explainable variance (of one 3T session, i.e., 8 runs) given the noise in the data. 3413 

Other symbol representations as denoted in a. These results are in agreement with the results 3414 

of the model-based analyses shown in Figure 5.5 & Supplementary Figure 5. 4. 3415 

 3416 



 125 

 3417 

Supplementary Figure 5.6. Results of the validation analyses using all data points across 3418 

cortical depth. (A) Results of the model-based analyses, using 7T reference model derived 3419 

from reference datasets. (B) Results of the model-based analyses, using 3T reference model. 3420 

(C) Results of the model-free analyses, using 7T reference time series. (D) Results of the 3421 

model-free analyses, using 3T reference time series. These results confirm with the main results.  3422 

 3423 
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 3424 

Supplementary Figure 5.7. Results of the validation analyses using all data points within 3425 

NPC1, without any thresholding. (A) Results of the model-based analyses, using 7T 3426 

reference model derived from reference datasets. (B) Results of the model-based analyses, 3427 

using 3T reference model. (C) Results of the model-free analyses, using 7T reference time 3428 

series. (D) Results of the model-free analyses, using 3T reference time series. These results 3429 

confirm with the main results. 3430 

 3431 

 3432 
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