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Dumoulin, Serge O. and Robert F. Hess. Modulation of V1
activity by shape: image-statistics or shape-based perception? J
Neurophysiol 95: 3654-3664, 2006. First published March 1,
2006; doi:10.1152/jn.01156.2005. It is current dogma that neurons
in primary visual cortex extract local edges from the scene from
which later visual areas reconstruct more meaningful shapes.
Recent neuroimaging studies, however, have shown V1 modula-
tions by the degree of structure in the image (shape). These V1
modulations due to the level of shape coherence have been ex-
plained in one of two possible ways: due to changes in image
statistics or shape-based perceptual influences from higher visual
areas. Here we compare both hypotheses using stimuli composed
of Gabor arrays constructed to form circular shapes that can be
successively degraded by manipulating the orientations of individ-
ual Gabors while maintaining local and global statistics. In a first
experiment, we confirm that V1 responses are inversely correlated
with the degree of structure in the image. In a second experiment,
stimulus predictions are compared based on the degree of circular
shape or change in the image statistic varied (orientation variance)
in the image. We find that these V1 modulations to shape change
are correlated with low-level changes in orientation contrast rather
than shape perception per se.

INTRODUCTION

One of the important roles of our visual system is to detect
and segregate objects. Early visual neurons only process visual
information in a small part of the total visual field. For
example, in primary visual cortex (V1) local, oriented edges
from the visual scene are extracted (Hubel and Wiesel 1959,
1962), and V1 has been considered as a bank of oriented filters
(De Valois and De Valois 1988). These filters are the basis of
shape perception from which later visual areas reconstruct
more meaningful objects.

Recent human neuroimaging studies have identified a region
in ventro-lateral occipital cortex involved in shape processing,
which comprises several areas. These regions respond strongly
to objects but not to textures, noise, or highly scrambled
versions (Grill-Spector 2003; Kanwisher et al. 1997; Malach et
al. 1995, 2002; Puce et al. 1996). At the level of V1, these
structured and unstructured stimuli, used to define object-
related regions, are supposed to be equated. However, recent
studies have revealed modulation of V1 when comparing
structured and unstructured stimuli (Grill-Spector et al. 1998;
Lerner et al. 2001; Murray et al. 2002; Paradis et al. 2000;
Rainer et al. 2001, 2002).

Why is V1 activity modulated by the degree of structure in
the stimuli? Here we consider two possible explanations: one

due to shape-based perceptual influences, the other due to
processes related to changes in image statistics. The perceptual-
based hypotheses proposes that higher-order areas feedback
onto lower areas (e.g., V1), modulating their responses accord-
ing a high-level perceptual hypothesis of the scene. The mod-
ulatory feedback could consist of subtracting out the perceptual
hypothesis, thereby leaving low-level responses to signal the
deviations from these hypotheses (“predictive coding”) (Mur-
ray et al. 2002, 2004; Rao and Ballard 1999). Alternatively,
higher areas may attenuate or amplify aspects of lower areas
input consistent with a perceptual model, thus effectively
sharpening the low-level response profiles (“efficient coding™)
(Murray et al. 2004; Series et al. 2003; Simoncelli and Ol-
shausen 2001). Either explanation suggests that activity in
lower visual areas will decrease when neurons in higher visual
areas are able to account for more shape-based information in
the scene.

The image-statistic explanation states that scrambling im-
ages perturbs low-level image statistics to which cells in V1 are
sensitive. For example, image-scrambling by rearranging stim-
ulus sections introduces new edges and changes in power-
spectra (Rainer et al. 2002). Phase-scrambling preserves global
but not local statistics, such as sparseness (Dakin et al. 2002;
Olman et al. 2004). Even when global and local statistics have
been equated, neuronal interactions beyond the classical recep-
tive field, known to occur in early visual areas, may alter the
functional magnetic resonance imaging (fMRI) signal. For
example it is known that cells in V1 respond not only to the
orientation information within its receptive field but also the
orientation information outside the classical receptive field
(Albright and Stoner 2002; Allman et al. 1985; Fitzpatrick
2000; Series et al. 2003). This kind of explanation may still
involve feedback from higher areas but does not require a
shape-based perceptual hypothesis of the scene and is solely
based on the changes in image statistics. Furthermore, re-
sponses in higher visual areas may not necessarily be related to
the low-level areas.

In this study, we assessed these two competing hypotheses
for why the activity in area V1 can be modulated by global
changes in object shape. We use tightly controlled narrowband
stimuli composed of Gabors in arrangements designed to have
identical local and global properties (Achtman et al. 2003).
Only the orientations of the Gabors were varied to define
circular shape with varying coherences. In agreement with a
previous study using similar stimuli (Achtman et al. 2001), we
confirm the observation that V1 responses vary inversely with
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the amount of circular image structure. We extend these
previous findings by creating random patterns that are not only
matched in their local and global statistics but also have the
same orientation differences between neighboring elements
across the image. Using these specially constructed images, we
compare predictions based on the preceding two competing
explanations for modulation of V1 activity based on global
shape: high-level predictive-coding versus low-level image
statistics. The results suggest that V1 responses can be ex-
plained by low-level interactions beyond the classical receptive
field.

METHODS
Subjects

Six experienced psychophysical observers were used as subjects
(all male, mean age: 39, age range: 30-54). The subjects were
instructed to fixate at a provided fixation point and trained prior to the
scanning session to familiarize them with the task. All observers had
normal or corrected-to-normal visual acuity. All studies were per-
formed with the informed consent of the subjects and were approved
by the Montréal Neurological Institute Research Ethics Committee.

Visual stimuli

The visual stimuli were generated in the MatLab programming
environment using the PsychToobox (Brainard 1997; Pelli 1997) on a
Macintosh G4 Powerbook, and displayed on a LCD projector (NEC
Multisync MT820). The total visual display subtended 20°.

The stimuli consisted of oriented Gabors, i.e., a one-dimensional
(1D) sine-wave enclosed in a two-dimensional (2D) Gaussian enve-
lope (A = 0.2 and o = 0.1°), i.e., the spatial frequency content of the
images was centered on 5 cycles/°. The stimulus was created of 625
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Gabors (stimulus size: 20°, matrix size: 512 X 512). The positions of
the Gabors were jittered around a square grid centered on the image
matrix (grid distance: 0.8°, uniform jitter range: —0.4—0.4°). This
approach creates an approximate uniform Gabor density. The actual
displayed number of Gabors may be <625 because Gabors at the edge
of the display may be jittered out of the image matrix. The contrast of
each Gabor was randomly chosen from a uniform distribution (con-
trast range: 25-100%). The global orientation content was controlled
to be roughly isotropic between —m and 7. Therefore the only
difference between the stimulus conditions is the relative orientations
between Gabors.

In experiment one, four different stimulus types were used (see Fig.
1). The Gabor array was organized to form one full circle approxi-
mately centered around the fixation. The coherence of the array was
deteriorated at four levels (100, 25, 6.25, and 0%) by increasing the
orientation jitter of individual Gabors to give rise to the four image
categories (Achtman et al. 2003).

In the second experiment, five different stimuli types were used (see
Fig. 2). In two image categories, the Gabor array formed circular
shapes, either 1 (A) or 10 (B) circles. Also a random array was
presented to the subjects (C). Please note that A and C are similar to
D and A of Fig. 1. The next two image types were random arrays
where the local orientation gradient (or contrast) was constrained to be
similar to the circular shapes (D and E, respectively). The notion of
orientation contrast is similar to that of curvature, which has been
shown to be encoded in some visual areas, such as macaque V4
(Pasupathy and Connor 1999, 2002). We will refer to these kinds of
images as “flowfield.” The orientations of Gabors in these flowfields
was determined by a band-pass filtered random pixel array scaled to
be isotropic between 0 and 360°. This array was then used as a
look-up table to determine the Gabor’s orientation depending on it’s
xy coordinates. The orientations of all Gabors and their relative
distances were used to calculate the orientation gradient of the image.
The peak frequency of the band-pass function was varied to match the

FIG. 1. Stimulus examples used in the coherence exper-
iment. Coherence was decreased by increasing the orienta-
tion variance. Typically, global structure can be detected

when about 10% of the elements are coherently oriented
(Achtman et al. 2003). Here, coherence levels of 0, 6.25, 25,
and 100% were used, and are shown in A-D, respectively.
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FIG. 2. Stimulus examples used to probe the origin of V1 modulations to image structure. A and B: Gabor arrangements forming circular shapes, consisting
of either 1 or 10 circles respectively. C: random array. A and C are similar to D and A in Fig. 1. D and E: examples from random “flowfield” patterns where
the orientation gradient (or contrast) was matched to that of the circular shapes, i.e., A and B, respectively. The orientation difference, or orientation contrast,
of neighboring elements of all 5 stimulus types is shown in F. G-I: relative ordering of hypothetical response profiles to these images. G: response profile of
a higher visual area sensitive to shape. In this hypothesis, the responses are highest for the circular patterns and intermediate for the flowfield patterns. H and
I: 2 hypothetical response profiles of V1. H: predicted profile in V1 based on the idea that higher visual areas (i.e., G) reduce the responses in V1 according to
the amount that matches a high-level perceptual shape-based hypothesis of the scene. The proposed V1 response profile according to the orientation variance

(F) is illustrated in I.

orientation gradient in the flowfields with the corresponding circular
array. The orientation difference (or contrast) between two Gabor
elements was computed by taking the absolute difference of their
respective orientations. Due to the circular nature of orientation, the
orientation difference was wrapped so that the minimum and maxi-
mum orientation difference between two elements is O and 90°,
respectively. The orientation difference, as well as their respective
distance, was computed for every possible element combination. The

average orientation difference as a function of element distance is
shown in F for all five image categories.

In G-I of Fig. 2, fMRI signal change predictions are shown, the
amplitudes of these predictions reflect the relative orderings of the
signal amplitudes. The predictions in G and H are based on the
amount of circular shape present in each image category where
circular shape is the highest in the images containing circles and
intermediate in the flowfield images. The circular shape prediction can
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be formalized by a putative circular shape detector as suggested by
Achtman et al. (2003). This putative shape detector is shown in Fig.
3A. The model sums the responses of individual elements tangential to
the orientation of a circle, independent of element phase or position.
The average response of this model to the images in Fig. 2, A-E, is
shown in B. In this model, the responses are the highest for the images
containing circles, the intermediate for the flowfields and the lowest
for the random pattern. For more details on the model, see APPENDIX A.
H indicates the reverse pattern of G, which might be hypothesized to
occur in area V1, where the activity of lower areas is reduced
according to the amount of grouping processes in higher regions (i.e.,
G). I, illustrates the fMRI amplitude prediction for areas that respond
according to the amount of orientation contrast in the images (see F).
The fMRI data will be correlated with these predictions.

The different stimulus conditions were alternated in a block design
(block duration 18 or 12 s, in experiments I and 2, respectively). Each
condition (block) was repeated at least five times giving a total
duration of ~6 min per scan. The stimuli were presented time-locked
to the acquisition of fMRI time frames, i.e., every 3 s. To control for
attention, the subjects continuously performed a two-interval forced-
choice (2IFC) contrast-discrimination task. That is, a given stimulus
presentation consisted of two intervals, both displaying a different
image from the same condition either at full or reduced (X0.7)
contrast. The subject indicated which interval contained the high-
contrast stimulus. The contrast of individual Gabors in each pattern
was varied therefore to perform the task the subjects were forced to
attend to the entire—or at least a large part of the—image. Each
image was presented for 500 ms, and the inter-stimulus interval was
500 ms. In the remaining 1.5 s, the subjects’ responses were recorded.
During mean luminance (blank) conditions an identical task was
performed for the fixation dot. The subjects’ performance was on
average 75% correct.

The subjects were experienced psychophysical observers and in-
structed to fixate at the provided fixation point. However, to verify
that the results are not due to eye movements elicited by the different
stimulus conditions, we recorded the subjects’ eye movements while
performing an identical task outside the scanner using a 50-Hz video
eyetracker (Cambridge Research Systems). Eye movements were
measured during both stimulus and inter-stimulus intervals. An esti-
mate of the maximum eye movement per stimulus was computed by
taking the maximum difference between the eye positions during the
stimulus presentation (25 estimates at 50 Hz) and the mean eye
position during the subsequent inter-stimulus interval. We obtained
100 measurements for each stimulus type (see Fig. 2) per subject. The
results are shown in Fig. 4 for three subjects. No differences in eye
movements between the different conditions were observed (ANOV A
P > 0.05).
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FIG. 3. Responses of putative circular shape model to the stimuli in Fig. 2.
A: putative circular shape pattern detector proposed as by Achtman et al.
(2003). The pattern detector pools across subunits with orientations tangential
to a circle independent of their position. B: average responses and SDs (n =
25) of the model in A to the 5 stimulus conditions. The relative height of the
response indicates the amount of circular shape in each stimulus.
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FIG. 4. Average eye-movements and SD of 3 subjects. No differences
between the different stimulus conditions were found.

Magnetic resonance imaging

The magnetic resonance images were acquired with a Siemens
Sonata 1.5T MRI. The experiments were conducted with the subjects
lying on their back with a surface coil (circularly polarized, receive
only) centered over their occipital poles. Head position was fixed by
means of a foam head rest and a bite bar.

Multislice T2*-weighted gradient echo (GE) echo-planar imaging
(EPI) functional MR images (TR/TE: 3000/51 ms, flip angle: 90°,
slices: 30 (contiguous), slice thickness: 4 mm) were acquired using a
surface-coil (receive only) with a 64 X 64 acquisition matrix and a
256 X 256-mm rectangular field of view. The slices were taken
parallel to the calcarine sulcus and covered the entire occipital and
parietal lobes and large dorsal-posterior parts of the temporal and
frontal lobes. One hundred and twenty-eight measurements (time
frames) were acquired. Ten to 14 fMRI scans were performed in each
session. T1-weighted anatomical MR images (aMRI) were acquired
prior to the commencement of the functional scans. This aMRI
utilized a three-dimensional (3D) GE sequence (TR: 22 ms, TE:
9.2ms, flip angle: 30°, 256 X 256-mm rFOV) and yielded 80 saggital
images with a thickness of 2 mm.

In separate sessions, T1-weighted aMRI images were acquired with
a head coil, also with a 3D GE sequence, yielding 160 saggital images
comprising 1 mm?® voxels. Identification of the visual areas was also
performed in another separate session with identical parameters.

Processing of anatomical images

The anatomical MRI scans were corrected for intensity nonunifor-
mity (Sled et al. 1998) and automatically registered (Collins et al.
1994) in a stereotaxic space (Talairach and Tournoux 1988). The
surface-coil aMRI, taken with the functional images, was aligned with
the head-coil aMRI, thereby allowing an alignment of the functional
data with a head-coil MRI and subsequently stereotaxic space. This
alignment was performed with an automated script combining correc-
tion for the intensity gradient in the surface-coil aMRI (Sled et al.
1998) and intra-subject registration (Collins et al. 1994). A validation
of this method was described in a previous study (Dumoulin et al.
2000). The aMRIs were classified into gray-matter, white-matter, and
cerebrospinal fluid (Zijdenbos et al. 2002), after which two cortical
surfaces were automatically reconstructed at the inner and outer edge
of the cortex (MacDonald et al. 2000). The surface normals of the
cortical models were smoothed to produce an “unfolded” model of the
cortical sheet (MacDonald et al. 2000). All processing steps were
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completely automatic and all the data are presented in a stereotaxic
space (Collins et al. 1994; Talairach and Tournoux 1988).

Preprocessing of functional images

The first two time-frames of each functional run were discarded due
to start-up magnetization transients in the data. All remaining time
frames were blurred with an isotropic 3D Gaussian kernel (full-width-
half-maximum: 6 mm) to attenuate high-frequency noise. The func-
tional scans were corrected for subject motion within and between
fMRI scans (Collins et al. 1994).

Identification of visual areas

Early visual cortical areas were identified using volumetric phase-
encoded retinotopic mapping (COBRA package) (Dumoulin et al. 2003).
By combining eccentricity and polar-angle phase maps with the anatom-
ical MRI, the visual field signs of different visual areas could be
segmented. Neighboring visual areas could be identified due to opposite
field signs; i.e., V1, V2, V3/VP, V3a, and V4 (Dumoulin et al. 2003;
Sereno et al. 1995). These visual areas were identified in each subject.
Besides these retinotopic areas, another higher-level visual area in ventral
occipital cortex (VO) was identified. This region was defined in the first
experiment as a group of contiguous ventral occipital voxels beyond V4
that responded stronger to coherent stimuli than incoherent ones. We
refrain from using the term LOC (lateral occipital complex) because LOC
is typically defined by natural objects.

Statistical analysis

The fMRI data were analyzed using software developed by Wors-
ley et al. (2002). The fMRI data were first converted to percent signal
change. The statistical analysis is based on a linear model with
correlated errors. The model incorporated the predictions of the
hypotheses (see Fig. 2, G-I). Runs, sessions, and subjects were
combined using a linear model with fixed effects and SDs taken from
the previous analysis on individual runs. A random effects analysis
was performed by first estimating the ratio of the random effects
variance to the fixed effects variance, then regularizing this ratio by
smoothing with a Gaussian filter. The amount of smoothing was
chosen to achieve 100 effective degrees of freedom. The variance of
the effect was then estimated by the smoothed ratio multiplied by the
fixed effects variance to achieve higher degrees of freedom. The
resulting #-statistical images were thresholded for peaks and cluster
sizes using random field theory (Worsley et al. 1996).

The volume-of-interest analysis (VOI) of the identified visual areas
(V1 to VO) was done in an identical fashion (Worsley et al. 2002).

S. O. DUMOULIN AND R. F. HESS

These visual areas were identified in each subject. Prior to the
statistical analysis, the time-series were converted to percent blood-
oxygen-level-dependent (BOLD) signal change, and all the time series
of voxels responding to all stimuli within a VOI (left and right
hemispheres) were averaged together, with exclusion of voxels dis-
playing artifacts. Because the time series were converted to percent
BOLD signal change prior to the analysis, the effect size of the linear
model (B) is also in percent signal change. The effects sizes and their
SDs, averaged across all subjects, of each condition relative to the
overall mean of the time-series are plotted in the Figs. 6 and 7.

RESULTS

In global shape discrimination for these kinds of patterns,
sensitivity is the highest for circular shape (Achtman et al. 2003;
Kovacs and Julesz 1993; Levi and Klein 2000; Wilson et al.
1997). More general, concentric shape processing has been pro-
posed as an important aspect of intermediate shape processing
(Gallant et al. 1993, 1996; Wilkinson et al. 2000; Wilson and
Wilkinson 1998; Wilson et al. 1997). Orientation jitter is the
primary array parameter that decreased shape perception signifi-
cantly (Achtman et al. 2003). Therefore in this fMRI study, the
patterns consisted of circles and the orientation of the individual
elements were altered to modulate perceived shape perception.

In the first experiment, we aimed to replicate the observation
that V1 is modulated by the degree of shape with our stimulus.
Shape was manipulated by varying the coherence, i.e., amount of
orientation jitter, as shown in Fig. 5. FMRI responses in higher
visual areas correlate with the coherence levels. The region that
responded stronger to coherent as opposed to incoherent stimuli in
ventral occipital cortex beyond area V4 in Fig. 5 was defined as
area VO (ventral occipital). This area VO was defined in every
subject separately. Not surprisingly in the VOI analysis (Fig. 6),
this area is found to respond stronger to coherent than incoherent
stimuli. In area VO, the response to three images with degraded
coherence (Fig. 2, A—C) is similar. This response profile may
correspond to the perceived organization of the images, which, in
absence of a forced-choice shape judgment as in Achtman et al.
(2003), is most apparent only in the most coherent image (D). It
may be of interest to note that this region may in part correspond
to area LOC (lateral occipital complex), which is defined by a
stronger response to whole than scrambled objects (Kanwisher et
al. 1996; Malach et al. 1995). But the regions are not identical

T-values
6

FIG. 5. Average f-statistical maps (4 subjects) dis-
played on their unfolded average cortical surfaces (t =
5.2 corresponds to P = 0.05 corrected for multiple
comparisons). Functional magnetic resonance imaging
(fMRI) activation, which covaried with the coherence
level, is shown. Oblique posterior-medial views are
shown of the left and right hemisphere. These views
reveal all differential activations. The average borders
of the visual areas are drawn (—), thus describing the
probabilistic (P) location of the visual areas. The foveal
representation is indicated (x). As can be seen from
these #-statistical maps, later visual areas increase their
responses with increasing coherence, whereas early vi-
sual areas (V1) respond in an inverse fashion.
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FIG. 6. Average blood-oxygen-level-dependent (BOLD) signal amplitudes
and SDs elicited stimuli of different coherence levels are plotted for the
identified visual areas. The bar graph reveals an inverse dependence of shape
coherence in V1 (negative linear trend and a positive trend with shape
coherence in area VO).

because the stimuli we use are not the same as those typically used
to define LOC.

In early visual areas, however, an inverse dependence is
seen. In the group stereotaxic analysis (Fig. 5), this inverse
dependence reached significance only in the left hemisphere.
We do not attach any significance to this apparent hemispheric
difference, because, first, it is not consistent across subjects.
Second, this difference may have biased by noise fluctuation,
surface-coil placement, and an increased overlap of V1 in the
left hemisphere (which is typically larger) in stereotaxic space
for this particular group of subjects. Last, we cannot attribute
these left-right differences to sensory processes per se. More
specifically, even though the task was designed to encourage
the subject to attend to the entire stimulus, attention to only a
part of the stimulus (e.g., left or right) may still yield accept-
able results. Such a constant attentional bias would not affect
the comparison between different conditions but could explain
the apparent hemispheric difference.

This inverse relationship is further illustrated in a VOI
analysis (see Fig. 6 and Table 1), after visual areas were
identified in each subject using phase-encoded mapping tech-
nology (Dumoulin et al. 2003). V1 modulation with circular
shape perception has been shown in a previous study (Achtman
et al. 2001) and is consistent with other studies reporting
modulation of early visual cortex by the degree of structure in
the image (Grill-Spector et al. 1998; Lerner et al. 2001; Malach
et al. 1995; Murray et al. 2002; Rainer et al. 2001, 2002). Thus
we confirm the observation that activity in primary visual
cortex is modulated by the degree of image structure using a
sparse stimulus that is matched in both its local and global
statistics. This inverse relationship with shape coherence is in
accordance with shape-based perceptual hypotheses as well as
with the orientation variance in the image because shape and
orientation variance are covary in these images.
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TABLE 1.
brain regions for a correlation with the coherence of the

t-values and corresponding P values for the identified

presented images

Area t-Value

Vi1 —2.4(0.07)
V2 —=2.2(0.11)
V3 —-0.6 (>0.7)
VP —1.1 (>0.7)
V3A 2.7 (0.01)
V4 0.3 (>0.7)
VO 2.1(0.14)

The P values in parentheses were Bonferroni corrected for the number of
identified areas (7).

In the second experiment, we address the question of why
V1 is inversely correlated with image structure by constructing
images (unlike those in Fig. 1) for which perceived shape is not
highly correlated with the change in the image statistics. For
example, take the two pairs of images illustrated in Fig. 2, A
and D, and B and E, they have the same orientation variance
(see curves in Fig. 2F) and yet they differ in their perceived
shape content (i.e., Fig. 2, A and B, depict circular shapes,
whereas D and E only depict amorphic flow fields). Using
stimuli such as these it is possible to distinguish between these
two competing hypotheses by assessing how well neuroimag-
ing signals correlate to specific predictions (Fig. 2. G-I) based
on the to five image categories shown in Fig. 2. Three predic-
tions are given; one based on perceived shape (Fig. 2G), one
based on the inverse of perceived shape (Fig. 2H), and one
based on orientational variance in the image (Fig. 21).

The result of a VOI analysis in the identified visual areas is
shown in Fig. 7. The percent signal change pattern elicited by

[0 circle (1)
[ circles (10)
[ | Random
[ Frowfield (1)
[ ]

Flowfield (10)

V3 \Z

FIG. 7. Average BOLD 31gnal amplltudes and SDs elicited by the different
stimuli (see Fig. 2, G-I) are plotted for the identified visual areas. In area V1,
the bar graph reveals a profile that correlated significantly with the low-level
orientation-contrast prediction but that did not correspond inversely with the
high-level shape prediction. These 2 correlations were significantly different.
Response profiles in higher visual areas (V3A, V4, and VO) corresponded
more to the shape-predictions than the orientation-contrast prediction (see Fig.
2G), although this was only significant in area V3A.

05}

% BOLD signal change
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TABLE 2.
brain regions for a correlation with the orientation-contrast

t-values and corresponding P values for the identified

prediction, the circular shape prediction, and their difference

t-Value
Area Orientation Shape Difference
\4! 3.4 (<0.01) 1.5 (0.53) 2.7 (0.03)
V2 6.3 (<0.01) 4.4 (<0.01) 2.4 (0.07)
V3 6.7 (<0.01) 8.1 (<0.01) 0.5 (>0.7)
VP 5.6 (<0.01) 4.7 (<0.01) 0.5 (>0.7)
V3A 3.2 (<0.01) 6.1 (<0.01) —2.7 (0.03)
V4 5.1 (<0.01) 5.1(<0.01) —1.1(>0.7)
VO 1.6 (0.44) 2.7(0.3) —1.1 (>0.7)

The P values in parentheses were Bonferroni corrected for the number of
identified areas (7).

the different conditions in V1 is consistent with the low-level
orientation variance hypothesis but not with the high-level
shape prediction. These two correlations were significantly
different (see Table 2). These results show that primary visual
cortex is not inversely correlated with the shape prediction.
This differs from the previous experiment where we varied the
coherence. The lack of inverse correlation suggests that the
reason the primary visual cortex responds more to incoherent
stimuli is not because they have less shape but because of the
way local orientation is varying across space.

Responses in later visual areas (V3A, V4 and VO — the latter
defined in the 1st experiment) corresponded more to the high-
level shape predictions although the difference between the
orientation variance prediction and shape hypothesis was only
significant in area V3A (Table 2). These results show that V1
and higher visual areas do not have an inverse response profile
as suggested by the predictive coding hypothesis.

In the preceding analysis, the data were fit with predeter-
mined models, and the results will depend on these models. It
may be informative to look at the correlation between V1 and
other visual areas. This analysis is shown in Fig. 8. The data
were normalized to remove any overall differences in percent-
age signal change between the areas. This was done by divid-
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ing the signal changes within each area by the sum of all
conditions of that area. Thus the sum of all conditions in each
area will be 100%. In the first experiment (A), the responses to
the different coherence levels are shown. It reveals the inverse
relationship between V1 and higher visual areas as shown by
other studies (Achtman et al. 2001; Grill-Spector et al. 1998;
Lerner et al. 2001; Murray et al. 2002; Paradis et al. 2000;
Rainer et al. 2001, 2002). This inverse correlation is predicted
by both the shape-based perceptual and image-statistic models.
In the second experiment (B), this inverse correlation between
V1 and higher visual areas is not present. The result in the
second experiment is inconsistent with shape-based perceptual
models.

DISCUSSION

We describe modulation of primary visual cortex by varying
degrees of structure in images (shape) consistent with previous
studies (Achtman et al. 2001; Grill-Spector et al. 1998; Lerner
et al. 2001; Murray et al. 2002; Paradis et al. 2000; Rainer et
al. 2001, 2002). Because our stimuli have identical global and
local properties, these V1 modulations cannot be explained by
changes in powerspectra (Rainer et al. 2002) or sparseness
(Olman et al. 2004). The pattern of percent BOLD signal
change in V1 to the different image categories is distinct from
that of higher cortical areas. V1 responses are more consistent
with the amount of orientation variance, whereas response
profiles in later visual areas correspond more to the amount of
circular shape. In the perceptual models, early and late visual
areas are inversely correlated. Therefore the response profiles
in V1 elicited by our stimuli are inconsistent with the higher-
order perceptual models suggested by Murray et al. (2002).
These signal changes in V1, however, do correlate more with
the orientation contrast between the image elements, indicating
that interactions beyond the classical receptive field known to
occur in V1 (Allman et al. 1985; Fitzpatrick 2000) may
mediate these fMRI signals.

Our proposal is supported by reports that the relationship
between V1 and higher cortical areas is not always inversely
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FIG. 8.

V1 normalized % BOLD signal change

Normalized percent BOLD signal change in the identified visual areas is plotted as a function of the BOLD signal change in V1 for the 2 experiments

(A and B), respectively. The image categories are identified. Standard deviations are only shown for areas V1 and VO, they are not shown for the other areas
to avoid clutter in the figure. In the 1st experiment (A), the inverse relationship is confirmed between V1 and higher visual areas. However, in the 2nd experiment
(B), the inverse correlation does not exist between V1 and higher visual areas as would have been predicted by a shape-based perceptual model.
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correlated with the degree of image structure (Rainer et al.
2001, 2002). Although the intermediate phase-blended results
of Rainer et al. (2001) may be due to an artifact (Dakin et al.
2002) this would not affect the extremes, i.e., intact or phase-
scrambled images. The finding that the fMRI responses to
changes in image structure can elicit stronger or weaker re-
sponses than higher visual areas is not easily explained by a
hypothesis based on the perceptual shape-based information.
On the other hand, an image-statistic based explanation could
account for these changes. For example, scrambling the images
by randomizing the phases of Fourier components (Rainer et
al. 2001) or blocking of stimulus parameters (Rainer et al.
2002) will affect several statistical attributes of the images in
various ways. Consequently the net responses of the early
visual areas sensitive to these attributes may either increase or
decrease depending on the attributes involved and the neuronal
sensitivity to these attributes.

Although we used synthetically generated images, higher
visual areas were correlated with the degree of circular shape
in the images. This finding is in agreement with the suggestion
that processing circular shape is an intermediate stage in object
recognition (Gallant et al. 1993, 1996; Wilkinson et al. 2000;
Wilson and Wilkinson 1998; Wilson et al. 1997). It is also
consistent with a texture segregation study where the textures
were defined by oriented lines (Kastner et al. 2000).

Some deviations from our predictions were observed (see
Figs. 2, 7, and 8). First in V1, the main deviation from the
orientation-variance hypothesis is that the fMRI signal ampli-
tudes were similar for the “random” image array as for the
10-circles array and its corresponding flowfield. If the re-
sponses were based on orientation contrast in the images, the
responses to the “random” image array should have been
stronger (see Fig. 2, F and ). However, this discrepancy may
be explained by a maximal (saturation) response elicited by the
orientation difference. More specifically, the orientation differ-
ence varies as a function of element distance (see Fig. 2F),
therefore the net response based on orientation difference will
depend on the distance over which this computation is done.
For instance, orientation differences between elements in ran-
dom images, 10-circle images and its corresponding flowfield
are similar (maximal) for distances larger than 2.5°. Thus the
larger the maximum distance over which the orientation dif-
ference is computed will result in more similar (and maximal)
responses to the random images, the ten circle image array and
its corresponding flowfield. On the other hand—or simulta-
neously—other processes besides orientation contrast may
alter the fMRI signals. For instance, contour-integration (Field
et al. 1993; Hess et al. 2003) would boost the responses to all
image categories except the “random” image arrays.

The second deviation from our predictions was a decreased
response to the image containing only one circle as compared
with its corresponding flowfield. This deviation may be attrib-
uted to temporal aspects in our stimulus paradigm, which were
not considered in our prediction. More specifically, for a
particular location in visual space the orientations presented
over time were random except when the stimuli consisted of
one circle. For example, within blocks with stimuli constructed
of one circle, similar orientations will be presented to a given
spatial location and the overall shape will be identical, even
though the center of the circle was jittered slightly. This may
result in lower fMRI signals due to low-level orientation

3661

specific (known to occur in V1) (e.g., Miiller et al. 1999) or
high-level shape specific adaptation or repetition-suppression
(known to occur in higher visual areas) (e.g., Grill-Spector et
al. 2006). The latter is supported by our model (see Fig. Al),
where only one hypothetical detector unit is able to capture all
the information in all images of the one-circle image category.

The last deviation from our models is that the 10-circles image
category elicits the strongest response in virtually all visual areas.
Why do all visual areas respond the strongest to the 10-circles
images? A possible explained may be provided by a combination
of the above-mentioned arguments. The 10-circles images contain
a large degree of orientation contrast and numerous contours;
taken together (or separately) they may provide an explanation
why these images elicit the strongest response in lower areas such
as V1. Our putative circular shape detector indicates that one (1)
unit would be sufficient to code all the information in all the
one-circle images, whereas all other images would require re-
sponses from a large range of units. This may provide an expla-
nation why higher visual areas sensitive to circular shape respond
the strongest to the ten-circles images, where circular shape
processing is proposed to be important.

Attentional modulation can substantially affect neuroimaging
responses in visual cortex, including V1 (Brefczynski and DeYoe
1999; Gandhi et al. 1999; Martinez et al. 1999; Somers et al.
1999) and higher-order object processing areas (Murray and
Wojciulik 2004), and could potentially confound the interpreta-
tion of the results. Therefore in functional imaging it is crucial to
control for attention. This was achieved by our contrast discrim-
ination task, which was identical for each condition. Importantly,
this task focused the subjects’ attention on the images, which may
increase both the gain and specificity of the neural population
representing the image attributes (Murray and Wojciulik 2004). In
addition, our distinct activation pattern in striate and extra-striate
cortex (see Fig. 7) cannot be explained by an overall attentional
boost of a particular image category. Therefore we believe that
sensory, rather than attentional, processes are underlying our
results.

The V1 modulations due to orientation contrast may be attrib-
uted to processes such as surround suppression and facilitation
and may be considered a low-level phenomenon of perceptual
grouping (Murray et al. 2004). In particular, antagonistic sur-
rounds are a characteristic part of most neuronal tuning properties.
This surround is relevant to the tuning properties of neurons for
direction, velocity of motion, orientation, spatial frequency, and
phase (Allman et al. 1985; Fitzpatrick 2000). Surround suppres-
sion, i.e., a response reduction due to a surrounding stimulus, has
been found to decrease fMRI signals when using narrowband
stimuli (Williams et al. 2003; Zenger-Landolt and Heeger 2003)
and broadband stimulus patches (Kastner et al. 2001). Consistent
with our study, Williams et al. (2003) described stronger de-
creases of the fMRI signal when the surround consisted of a
similar orientation.

Our interpretation differs from Murray et al. (2002), who
proposed a perceptual shape-based feedback mechanism for ex-
plaining V1 modulations to image structure. Indeed V1 activity
can be modulated by high-order mechanisms such as attention
(Brefczynski and DeYoe 1999; Gandhi et al. 1999; Martinez et al.
1999; Somers et al. 1999), rivalry (Blake and Logothetis 2002;
Tong 2003), and V1 activity has been shown to correlate with
perception (Ress and Heeger 2003). Alternatively, the stimuli of
Murray et al. (2002) were broadband, and even though, they
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controlled for number of line terminations and parallel lines, it is
not clear that these stimuli were equated in terms of low-level
statistics known to affect the fMRI response, such as local orien-
tation contrast (Williams et al. 2003; Zenger-Landolt and Heeger
2003), local phase contrast (Williams et al. 2003), powerspectra
(Rainer et al. 2002), or sparseness (Olman et al. 2004). Any
combination of these attributes may have confounded their inter-
pretation.

On the other hand, Murray et al. (2002) described a bistable
rivalrous stimulus whose percept alternates between a com-
plete and disrupted shape. V1 activations correlated with the
subject’s perception rather than the stimulus statistics. This
bistable stimulus provides support for perception-based mod-
ulation of V1 activity. Another possible explanation for the
perceptual V1 modulation proposes that V1 gates what infor-
mation reaches higher-level areas (Blake and Logothetis 2002;
Tong 2003) and the rivalry percept could primarily result from
noise sources in bottom up processes (Ress and Heeger 2003).
Nevertheless, we are not arguing against perception-based
activity in V1.
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convolution of the original image (A) with the filter in the inser of B. The 2nd stage shows the resulting image computed by convolution of the local maxima
of B with the filter in the inset of C. This stage mimics the behavior of a facilitative and suppressive surround. The final image (D) is computed by repeating
these 2 steps in B and C for different orientations of the filters (insets in B and C). Results of other image categories (E—H) are shown in /-L. In the resultant
images, the local maxima correspond to the center locations of circles. Images in D and I-L are scaled identically.
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In this paper, we contrasted perceptual shape-based hypotheses
with a stimulus-based orientation variance prediction. Although,
orientation contrast could be computed in V1 using a strictly
feed-forward model (Series et al. 2003), this may also be imple-
mented by feedback from other areas (Hupé et al. 1998). This
feedback differs from the perception-based models because it
depends solely on stimulus layout and no internal representation
or shape-based hypothesis of the scene is required.

In conclusion, we propose that decreased activity in V1 with
increasing image structure does not necessarily reflect high-
order perceptions of the scene but may be explained by signal
changes in low-level image statistics generally correlated with
shape. These modulations of V1, whether they be due to purely
feedforward or feedforward/feedback influences, may reflect
the first steps in reconstructing shape information from the
local V1 neuronal receptive fields.

APPENDIX A

The circular shape detector model schematics are illustrated in Fig.
3A. The model has three stages. These stages are illustrated in Fig. A1,
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B-D. The original image is shown in A. B illustrates the first stage
where the energy of an oriented filter is extracted. These filters were
Gabors identical to the Gabor elements that make up the pattern. The
particular filter used in B is shown in the inset. The local maxima in
this image are convolved with a radial sinusoid enclosed in a Gaussian
envelope (sigma = 2°, C). This radial sinusoid is the inverse of the
“association field” described in contour integration (Field et al. 1993;
Hess et al. 2003). The radial sinusoid is shown in scale in the inset of
C. The radial sinusoid was oriented with the maxima orthogonal to the
orientation of the initial filter (inset in B). In essence, the second stage
mimics a surround that enhances elements orthogonal to the initial
filters” orientation and suppresses in the parallel orientation. These
two steps were repeated for different orientations of the two stages (16
orientations in total) and summed. The resultant image is shown in D.
Examples of the other image categories (E—H) are shown in panels
I-L, respectively.

The pixel intensities of the output images (D, I-L, which are
identically scaled) correspond to the response of a putative circle
detector centered on that pixel or, in other words, the probability of a
circle centered on each pixel location. The center of circles can be
identified by local maxima in the final images, see for example D and
K. In random patterns, the excitatory and inhibitory influences cancel
each other out, see for example J. In flowfields local intermediate
enhancing effects can be seen (/ and L) that are not as localized as in
images containing circles. To summarize the amount of circular shape
in each image, all values larger than zero were summed in the
resultant images (D and /-L), giving one value per image. The mean
amount of circular shape and SD is shown in Fig. 3B. A total of 25
images for each category was used.
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