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Highlights

7T MRI has greatly improved sensitivity and specificity.

Gray-matter optimized (GMO) fMRI balances sensitivity and specificity at UHF.
GMO fMRI confronts traditional data-analysis assumptions.

GMO fMRI reorients experiments toward individuals and local neural computations.
UHEF forces a paradigm shift toward high-SNR measurements in single individuals.

Introduction

The human brain holds the key to who we are, our memories, thoughts, and perception of the world
around us. The goal of cognitive neuroscience is to explain how these mental processes arise from neu-
ral computations. Since the discovery of functional MRI more than 30 years ago, the promise has been
its ability to measure the response properties of populations of neurons inside the living human brain.
As such, it has powered a revolution in cognitive neuroscience. Even in popular culture, the concept of
localized brain function has placed our minds firmly inside our heads. Ultra-high field (UHF) MRI
imaging at magnetic field strengths of 7 Tesla or more stands to push the envelope in terms of our
measurement capabilities. But these more powerful measurements at UHF also reveal limitations of
engrained paradigms of experimentation and analyses. So, how should we as cognitive neuroscientists
wield this new, powerful tool? In this chapter, we outline how ongoing developments in the field of
UHF imaging may prompt a paradigm change in cognitive neuroscience.

The most basic advantage of increased field strengths is increased signal-to-noise ratios (SNRs).
The MRI signal and fMRI response scale superlinearly with field strength (Yacoub et al., 2001;
Uludag et al., 2009). This means that when cognitive neuroscientists move to UHF from standard field
strengths such as 3 Tesla, they can expect a rough fourfold improvement in the efficacy of their
measurements (Cai et al., 2021). Moreover, the spatial point-spread function is more narrow at
UHF, meaning that our measurements are not only more sensitive, but also inherently more spatially
specific than at lower field strengths. One popular avenue of research is to let the improvements in
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sensitivity go toward higher spatial resolutions and to bring the mesoscopic scale of cortical columns
and layers into view (as discussed in Chapter 24). Here in this chapter, however, we assert a much more
readily available and more powerful gain for cognitive neuroscience: whole-brain fMRI experiments of
the type that are now customarily conducted at a field strength of 3 Tesla. This assertion is supported by
the fact that an impressive wave of impactful recent findings has resulted from this specific use of UHF
fMRI, an observation we draw from in this chapter.

We focus on whole-brain functional MRI in this chapter because (1) it is the most readily available
tool for cognitive neuroscientists and (2) it has proven to be the most productive tool in the last few
years. In separate boxes, we highlight the unique potential of UHF for in-vivo histology (Box 25.1),
laminar and columnar fMRI (Box 25.2), and functional spectroscopy (Box 25.3). However, all of these
applications have several significant still-unresolved challenges that limit, for now, their usefulness for
the cognitive neuroscience community at large.

What is the optimal spatial resolution from a cognitive neuroscience
perspective?
If the goal of the fMRI experiment is not to image cortical columns or layers, but to examine whole-
brain responses to certain stimuli and tasks, what is the optimal resolution? From an MR physics
perspective, it is common to describe signal quality in terms of a trade-off between thermal noise
and physiological noise. The chosen resolution determines which of the two noise sources is dominant,
with smaller voxels being dominated by thermal noise whereas larger voxels are physiological-noise-
dominated. The optimal resolution is then where the two are balanced. However, when reasoning about
the optimal fMRI resolution from a cognitive neuroscientist’s perspective, a similar trade-off along the
dimension of voxel size exists—but it is defined by different factors. As shown in Fig. 25.1, these fac-
tors are spatial specificity and effective SNR. By sampling smaller tissue volumes, higher resolutions

BOX 25.1 PUSHING ANATOMICAL MRI TOWARD INDIVIDUAL-LEVEL IN-VIVO HISTOLOGY

The cortex consists of different layers or laminae that differ in cyto- and myeloarchitecture. These laminar differences were
the basis of the well-known cortical area parcellations of Brodmann based on post-mortem histology (Brodmann, 1909).
Whereas the Brodmann areas were based on differences in cytoarchitecture, contemporaries Vogt and Vogt based their area
definitions on histological differences in myeloarchitecture (Vogt and Vogt, 1919). Beyond the cortex, also subcortical
nuclei and cerebellum contain subdivisions differencing in cyto- and myeloarchitecture. These structural differences support
different functions of the brain. The Brodmann areas are still used today, though the laminar organizations that define the
Brodmann areas are not visible on conventional MRL

The resolution of anatomical images at UHF is high enough to start resolving these laminar differences. Furthermore,
together with recent developments toward the efficient and often simultaneous collection of multiple MRI contrasts (see also
Chapter 14) provides different clues about the underlying laminar architecture (Caan et al., 2018; Fracasso et al., 2016;
Weiskopf et al., 2013). The higher resolution thus affords researchers the possibility to sample tissue properties at different
cortical depths, providing diverse clues regarding local histological organization, i.e., in-vivo histology.

In-vivo histology has the potential to define cortical areas in individuals providing a new anatomical reference frame for
function, inter-participant alignment, or disease biomarkers. For instance, localization of the stria of Gennari allows the
anatomical delineation of the primary visual cortex even in the blind (Trampel et al., 2011). Though there is a lot of potential
in in-vivo histology, there are several strides to be made in data-acquisition and data-analysis strategies. This makes in-vivo
histology not an off-the-shelf technique for cognitive neuroscientists, but certainly a promising avenue.
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BOX 25.2 IMAGING A NEW ORGANIZATION SCALE: LAMINAR AND COLUMNAR FMRI

Laminae: The laminae of the cortex differ in their connectivity and function. For example, thalamocortical connections
arrive primarily in central (granular) layers (Felleman and Essen, 1991). Hence, the granular layers are most prominent
in primary sensory cortices and nearly absent in motor cortices. Likewise, supra- and infragranular layers are thought to
contain predominantly corticocortical and subcortical/corticospinal connections, respectively. Cortical laminae therefore
contain unique information on the information flow in the brain.

Columns: In a cortical column, neurons with similar functions are grouped together across cortical depth. Columns are
well established in early visual cortex and somatosensory cortices. In the primary visual cortex, different columnar structures
(such as ocular dominance and orientation) are organized in such a way that all combinations repeat themselves. This has led
to the notion of a hypercolumn or cortical processing unit (Hubel and Wiesel, 1977; Mountcastle et al., 1957). Moreover,
between-area connections are often columnar (Jones et al., 1975). Columns are often hypothesized to exist across the brain,
although the generality of this principle is uncertain (Horton and Adams, 2005). For example, the columnar structure of the
primary visual cortex is not always present across species.

The resolution of functional images at UHF is high enough to start to resolve these laminar columnar functional struc-
tures (see also Chapter 24). Ultimately, this could provide a window into the information flow within the cortex and the
hypothesized cortical processing unit. Although there is a lot of effort and interest in laminar and columnar imaging, there
are passionate debates in the field on the different data-acquisition techniques (see Chapter 23), different data-analysis
strategies, fine-scale link of the fMRI signal to the underlying physiology, and the correct interpretation of the results. This
makes laminar and columnar fMRI not an off-the-shelf technique for cognitive neuroscientists, but certainly a promising
avenue.

B0X25.3 TOWARD DIRECT MEASURES OF BRAIN ACTIVITY: FUNCTIONAL MR SPECTROSCOPY

Magnetic resonance spectroscopy (MRS) quantifies the regional biochemistry composition in the living human brain
(see also Chapter 26). In most studies, MRS is a steady-state measurement that reflects the concentrations of various
compounds, for example, the neurotransmitter glutamate or GABA. The increased SNR of UHF enables not only
steady-state measures, but also tracking, for example, glutamate modulations over time as a function of cognitive tasks, i.e.,
functional MRS (Stanley and Raz, 2018). Unlike functional MRI, functional spectroscopy may yield a more direct measure
of neural activity and likely less sensitivity to vascular changes. Although there is a lot of potential in functional MRS, there
are still several strides to be made in the development of robust data acquisition techniques and data-quantification methods.
Furthermore, a lot is currently unknown about the nature of the glutamate changes over time and how these changes should
be interpreted, necessitating work into the exact underlying mechanisms that are verified by direct neurophysiological
measurements in animal models.

increase the specificity of the neural populations sampled by our voxels, i.e., sampling only gray matter
as opposed to a mix of gray matter, white matter, and CSF. The latter of these two factors, effective
SNR, more akin to contrast-to-noise than signal-to-noise in classical MR terms, can be seen as related
to the amount of explainable variance in the fMRI signal time course, or its noise ceiling. These two
factors compete, since any increase in spatial resolution increases spatial specificity but decreases ef-
fective SNR roughly as a function of voxel volume. We argue that for cognitive neuroscience exper-
iments, the goal is to balance these two countervailing factors to optimize the detection of localized
responses of neuronal populations in gray matter.



410 Chapter 25 Gray-matter optimized fMRI

Targeted Level of Organization

<«——Laminae Subcortical Nuclei ———>
<«—— Columns ortical Maps —>

0.9 1.2

Specificit ‘ - =
P ——

Optimal

ange

FIG. 25.1

Optimal resolution depends on the required spatial specificity and effective SNR. Pushing for higher resolution
sacrifices effective SNR. We argue that for cognitive neuroscience, the optimal range for this trade-off is
intermediate and advocates the use of voxel sizes that optimize sampling of BOLD responses from gray
matter, i.e., gray-matter optimized fMRI. This approach capitalizes increases in both specificity and effective
SNR at UHF relative to lower-field imaging. This measurement strategy has already proven highly effective
in answering fundamental questions about brain organization by allowing the sampling of local neuronal
population responses at UHF.

The inherent increase in fMRI signal sensitivity and specificity at UHF presents the possibility of
increasing spatial resolution and moving leftward on the continuum depicted in Fig. 25.1. For typical
cognitive neuroscience experiments, one should refrain from moving to submillimeter “laminar”
resolution fMRI (see Box 25.2). These resolutions often yield lower effective sensitivity than tradi-
tional whole-brain 3T measurements. Instead, by moving to what we coin gray-matter optimized
(GMO) fMRI, intermediate voxel sizes between 1 and 2 mm isotropic, one can already benefit
greatly in a variety of mutually enhancing ways. Crucially, GMO resolutions are more likely to retain
a marked improvement in BOLD sensitivity relative to 3T, not only in the cerebral cortex (van der
Zwaag et al., 2009), but also in the cerebellar cortex and the subcortex (Colizoli et al., 2021). As its
name implies, GMO sampling is more likely to draw BOLD signals specifically from gray matter
than larger, traditional voxels. This resolution reduces partial voluming effects with white matter,
veins, or cerebrospinal fluid (Viessmann and Polimeni, 2021). This resolution also decreases the
probability that single voxels sample from the two opposite banks of a sulcus, improving the spec-
ificity of functional localization. Moreover, the co-registration of functional images with anatomy
improves, due to the increased anatomical detail at GMO resolutions. GMO fMRI decreases distor-
tions induced by B, inhomogeneity, while simultaneously improving their post-hoc correction. When
GMO voxels are subsequently averaged across cortical depth, this further improves the BOLD sen-
sitivity of the resulting surface-based functional data. Last, this approach still allows whole-brain
coverage, including the cerebellum, at a reasonable sample rate of at least every two seconds
(0.5 Hz). This temporal resolution improves the ability to perform nuisance regression, further
enhancing effective sensitivity relative to the low temporal resolutions (<0.5 Hz) often used in
higher resolutions.

In addition to these technical reasons for GMO sampling, there is a fundamental neuroscientific
reason for the focus of GMO fMRI on the organization of the brain along the cortical surface. Because
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the cerebral cortex consists of intertwined hierarchies of maps on the surface of the cerebral cortex, this
surface, sampled at the millimeter scale, constitutes a naturally appropriate level of detail for the study
of cognitive brain function. The fact that GMO fMRI at UHF can sample the entire brain without
sacrificing coverage accords well with this focus. The high-fidelity sampling of local neuronal popu-
lation activations can thus be achieved while researchers need to adopt only minor changes to their
traditional preprocessing and analysis approaches. We argue that for cognitive neuroscience, gray-
matter optimized sampling represents a perfect combination of the desired precision and the precision
that is practically attainable.

Moving toward individualized cognitive neuroscience

To highlight the promise of UHF for cognitive neuroscience experiments, we will first sketch the
approach taken by the majority of current cognitive neuroimaging studies. Standard practice for
functional MRI as it has evolved over the last two decades is to perform multiparticipant experiments.
The typical 3T fMRI sequence scans the entire brain using about 2—4 mm isotropic voxels every 1-2 s
or so (TR) for roughly 5-10 several minutes. This fMRI sequence is repeated multiple times for about
an hour, in which participants perform cognitive tasks. These functional acquisitions are supplemented
by a T;-weighted anatomy at ~1-mm resolution, and possibly several types of scans intended to aid in
preprocessing of the data. During preprocessing, the functional data are registered to the anatomy, often
smoothed spatially, and the anatomy is coregistered to a volumetric standard-brain atlas (Collins et al.,
1994). A more sophisticated way of alignment across participants is to reconstruct the cortical surfaces
from the anatomy. Sampling the functional data to these surfaces honors the sheet-like anatomical
structure of the cerebral cortex. The surfaces can be aligned to a surface-defined atlas. Both volumetric
and surface-based atlases provide a common spatial reference frame for all participants in a given
study, and also allow cross-experiment comparison of results. These results are often displayed as
clusters of across-participants, mixed-effects statistical values, for example, of a GLM analysis contrast
comparing experimental conditions.

There are a number of assumptions in this general approach. First, that neural tissue responds
homogeneously enough throughout a brain region so that fMRI results from clusters of voxels with
identical responses. That is, larger clusters or regions—and not the local neural populations sampled
by single voxels—are the assumed unit of function or measurement. This assumption may misguide
researchers to think in quasi-phrenological structure—function relationships with limited focus on
explicit computational mechanisms: “brain region X does Y.” Moreover, this assumption is known
to be false for virtually all well-described brain regions, such as primary visual and motor cortices.
Second, this approach assumes that the alignment of individual participants’ brains into a standard
geometric space based on anatomical features aligns the participants’ functional organization, such that
fMRI responses can be averaged in this common space. This second assumption might be sensible for
brain regions with low inter-individual variability such as primary sensory and motor regions in the
cerebral cortex, or subcortical regions that are precisely localizable based on anatomical details. How-
ever, inter-individual variability increases when moving from primary regions toward those regions
responsible for higher-order cognitive processes, invalidating the practice of across-participant aver-
aging. For example, one of the historically most studied nonprimary cortical areas, visual area V5 or
MT, is about 1 by 2 cm in size, and its position is on average 1 cm in any direction along the cortex from
an anatomical landmark based on sulcal folding patterns (Dumoulin et al., 2000). The variation in po-
sition after perfect anatomical alignment is thus as large as the area itself. Last, the likelihood of these
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assumptions to be valid may be even worse if we move toward psychiatric and neurological disorders,
and it is likely that the problems with these assumptions stand in the way of productive applications of
fMRI in the clinical domain.

Recently, several investigators have called for the averaging of more participants in order to
increase statistical power and, ultimately, replicability. However, statistical power depends not only
on the number of participants but also on both the number of participants and the number of measure-
ments (and their quality) per participant (Baker et al., 2020). The latter is often ignored but equally
important. UHF fMRI increases the measurement power at the participant level, thereby shifting
the balance toward within-participant experimentation. As within-participant results improve, the
across-participant variance is likely not dominated by variations in function, but by limitations of
volumetric and surface-based alignment. That is, individuals differ and likewise brains differ.
A clear example for this is the visual system. The primary visual cortex varies in size by a factor
2-3 with relatively minor perceptual consequences.

We argue that in order to harness the power of UHF, either more sophisticated alignment
methods are needed that respect the functional anatomy, or alignment is circumvented altogether.
The latter can be achieved by the use of ROI-based averaging, or not averaging at all if signals are
strong enough to reach statistical significance per participant. UHF provides the power to achieve
statistical significance per participant, using multiple participants as replication units rather than mea-
surement units.

An example of more sophisticated alignment is the open resource of the human connectome project
(HCP) 7T fMRI dataset of 181 individual participants (Essen et al., 2013). The surface-based alignment
is based upon cortical folding, cortical myelin distribution, functional resting state connectivity, and
mapping data. This experiment resulted in high-quality maps of visual space in early visual cortex,
visual thalamus and superior colliculus (Benson et al., 2018), and tonotopic maps in early auditory
cortex (Hedger and Knapen, 2021), but has also lead to discoveries of maps of visual space outside
the traditional visual cortex: in the hippocampus (Knapen, 2021; Silson et al., 2021), default mode
network (Szinte and Knapen, 2020), and cerebellum (van Es et al., 2019) (see Fig. 25.2, cf. (Groen
et al., 2021)). At brain locations that are less consistent across individuals, such as is the case in
higher-level visual regions in occipital, parietal, and frontal cortex, this across-participant averaging
is problematic. Specifically, for maps of visual space, it is likely to lead to (a) an under-estimation
of the strength of visually tuned responses because we will average out relevant signals instead of noise
and (b) an unpredictable effects on the precise tuning that is found, making these results hard to
interpret. We note that this is not a problem specific to visual processing. Rather, it is a specific instance
of the above-mentioned problem that alignment across individuals based on anatomical landmarks
does not guarantee alignment of functional organization. In regions with appreciable across-individual
variability (the better part of the cerebral cortex), we are therefore forced to go to the level of the single
individual.

UHF fMRI compels us to confront the above-mentioned assumptions and allows us to challenge
them. Its increased sensitivity and specificity allow UHF fMRI to fulfill its promise as a tool for
the measurement of local neural population activity, and as a tool for a cognitive neuroscience that
rightfully values the uniqueness of individuals’ brain structure and function, thereby encouraging
researchers to focus on individual participants and local neural computations.
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FIG. 25.2

GMO fMRI has revealed tuning for visual location for beyond the occipital lobe, i.e., visual population receptive fields
and connective fields. (A) Distribution of cross-validated variance explained by connective fields on the flattened
cerebral cortex. (B) Distribution of variance explained in the subcortex, same quantification as in (A). (C) Map-
like structure of population receptive fields in the default mode network. Color denotes preferred polar angle:
the direction in the visual field independent of visual eccentricity. These regions represent contralateral visual
space. (D) Population receptive field polar angle position throughout the subcortex, in thalamus, superior
colliculus, caudate nucleus, and cerebellum. As in the traditional visual system and default mode network,
subcortical visual responses in these regions reflect contralateral visual space except cerebellum. Cerebellum
features ipsilateral visual field representations, in line with its ipsilateral somatotopic maps. (E) Polar angle
distribution in hippocampus, showing a detailed pattern of contralateral visual field preference. Based on Groen
etal (2021).
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25.4 Respecting local neural populations: Human systems neuroscience
at UHF

One of the previously considered assumptions is that neural tissue responds homogeneously enough
throughout a brain region, so that fMRI results from clusters of voxels with identical responses.
However, none of the most well-described cortical regions have homogeneous responses throughout
what is considered a homogeneous area. For example, within the primary visual cortex (V1), different
parts respond to different locations in the visual field, and V1 function differs drastically between
central and peripheral visions. Despite these differences, V1 is indeed homogenous in its implemen-
tation of fixed computational principles. The same holds for early visual cortex in general, and other
sensory and motor cortices: Although exact tuning varies drastically within regions, computational
principles do not. We contend that this is likely the case for the brain in general; therefore, we suggest
that the underlying assumption should not be that an area responds homogeneously, but that responses
in an area reflect coherent computational principles.

There are several types of analysis that respect local neural populations as reflected in single
time courses of individual voxels, for example, multivoxel pattern analysis and single-time-course
modeling. For example, single-time-course modeling has been used to great effect even at 3T,
with encoding-model analysis capturing receptive field properties of the sampled neuronal pop-
ulation (Dumoulin and Wandell, 2008; Kay et al., 2008) and, for example, revealing the brain’s
semantic organization (Huth et al., 2016). These types of experiments can readily benefit from
UHF as they already focus on high SNR measurements on individual participants (Gratton

FIG. 25.3

Example of across-participant variability of cortical organization in the cerebral cortex. Topographic maps of
numerosity preference are shown for eight participants, zoomed into the portion of the brain highlighted on
the left. There is a topographic map in each of the participants at the same approximate location and
approximate orientation, but the exact tuning at each location varies widely. Averaging this tuning across
participants in a common anatomical space would drastically dilute this information tuning. Based on Harvey
et al. (2013).
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et al., 2022). A recent initiative, the natural scenes dataset (Allen et al., 2021), provides a beau-
tiful example of how GMO UHF fMRI can be leveraged at the unique individual level. In this
project, 8 participants were scanned for 30—40 sessions each while viewing up to 10,000 natural
images on which they performed an image-recognition task. With GMO single-voxel responses to
this amount of stimuli, this is an invaluable resource with a unique focus on high-SNR measure-
ments in individual participants.

One of the earliest discoveries using UHF in the field of cognitive neuroscience was the topographic
maps that represent dimensions of numerical cognition. First, the discovery of maps that systematically
represents numerosity akin to a mental number line (Harvey et al., 2013), followed by cognitive
topographic maps that represent object size (Harvey et al., 2015), time duration (Protopapa et al.,
2018), and haptic numerosity (Hofstetter et al., 2021). These discoveries suggest that topographic
principles common in primary sensory and motor cortices may also be an organizing principle of
cognitive functions in association cortex. Fig. 25.3 demonstrates that these human numerosity maps
vary strongly between individuals in terms of their precise location and orientation—again highlighting
the necessity of performing these analyses at the single-participant level.

These numerosity maps have been used to showcase the strength of UHF relative to standard field
strength acquisitions. We compared the relative efficacy of 3T and 7T acquisitions in charting these
numerosity maps in single individuals (Cai et al., 2021), and showed that for every run acquired at 7T,
one would need to acquire approximately four runs at 3T to attain the same variance explained or
effective SNR (see Fig. 25.4).
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FIG. 25.4

The amount of data needed for a given variance explained (R2) at 3T is roughly four times the amount of data
needed at 7T. (A). Test-retest reliability as a function of number of runs averaged, expressed as cross-validated
R2. These data were acquired in a numerosity-mapping experiment (Fig. 25.3). Curves show the amount of runs
needed to approach the noise ceiling for a single participant. 8 runs of 7T data have higher cross-validated
R2 than 24 runs of 3T data. (B). The amount of 3T runs that equal the amount of 7T runs for 3 participants:
Only about a quarter of the data is needed at 7T to reach the same variance explained as at 3T. Based on
Cai et al. (2021).
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Outlook

UHF fMRI optimized to sample gray-matter responses can be performed with whole-brain coverage,
and analyzed using well-established analytical tools. This high degree of accessibility combined with
the very high level of attainable data quality makes GMO fMRI a very compelling strategy for
cognitive neuroscience. GMO fMRI’s specific sampling of local neuronal population activations al-
lows it to probe computational principles at work in the living human brain. This allows UHF fMRI
to bridge cognitive neuroscience, neurophysiology in animal models, and computational neuroscience,
with a unique focus on high-SNR measurements in individual participants. Since specific deficits in
computational processes characterize many psychiatric disorders, GMO fMRI also holds promise
for the eventual use of fMRI for clinical purposes.
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