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Vision and receptive fields 

Humans are visual beings. Vision is an important sense that is essential for us to interact with 

and navigate the world around us. Thus, any disorder of the visual system will have a profound 

impact on our daily life. Importance of vision is also observed in our brain. About 25 % of the 

human cerebral cortex is devoted to processing visual information (Van Essen, 2003). 

Consequently, the visual system is one of the most widely studied part of the human brain. A 

complete understanding of the visual system has numerous advantages such as efficient 

diagnosis and treatment of various visual disorders, building advanced computer vision and 

deep learning technologies and creating art that has not been seen before (for example, 

Movement in squares, 1961 by Bridget Riley, Room for one color, 1997 by Olafur Eliason).  

 

Visual processing involves a series of steps starting from the photoreceptors in the retina 

converting the light into electrical signals. These electrical signals are then transferred to the 

brain. Via lateral geniculate nucleus in the thalamus they reach visual cortex where they are 

processed by billions of neurons. Any source of visual information has various spatial properties 

such as position, size, luminance, contrast, color, shape, orientation, and temporal properties 

such as rate and direction of movement. Understanding visual processing thus requires a 

knowledge of how these individual features are processed by the neurons in the visual cortex.  

 

Any image is represented by a group of neurons in the visual cortex with every neuron 

processing the information from a small region within the image, known as the receptive field 

(RF) of that neuron. The term receptive field was originally used to define an area on the dog’s 

skin from a which a spinal scratch reflex could be elicited (Sherrington, 1906). It was later 

adapted in vision by Hartline (1940) when he extended the term to the region in the retina from 

which a response could be elicited in the optic nerve fiber of the frog. He found that the 

strongest response was observed from the center of the RF which faded with the distance from 

the center. Kuffler (1953) then determined that the RF of a retinal ganglion cell is a concentric 

structure with a central excitatory region where a light source produced excitatory response and 

a large inhibitory region where a light source produced inhibitory response (Kuffler, 1953). 

However, this notation was found to be confusing. Later it was found that many RF has a center 

surround organization with a central ON region and an OFF region surrounding it which can act 

in both excitatory and inhibitory ways depending on the stimulus. For example, An ON region 
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produces a positive response to bright light and negative response to dark light and the OFF 

region does the opposite. Hubel and Wiesel through a series of works determined RFs for 

neurons in the visual cortex of cats and monkeys that are selective for shapes, orientation along 

with the position of the stimuli (Hubel & Wiesel, 1962, 1968, 1974). Neurons whose RFs were 

closer to each other in the visual field were also found to lie closer in the visual cortex forming 

visual field maps on the cortex. 

 

However, every neuron is not acting in isolation to process the information in the images, 

instead they interact with one another through intercellular connections. This was discovered 

through the findings that sometimes image structures falling outside the RF of these neurons 

can also influence their responses (for review see (Allman, Miezin, & McGuinness, 1985)). This 

led to the discovery of region in the visual field where the presence of a stimuli can modulate the 

responses to the stimuli in the RF but by itself cannot produce a response from the neuron. This 

region was then called as the extra-classical RF for a neuron, since they are activated by 

stimuli falling outside the “classical” RF. The first evidence of such extra-classical interactions 

was shown by Mcllwain in cats, where a moving stimulus in the far periphery enhanced the 

response to the stimulus presented inside the RF of the neuron (McIlwain, 1964). Studies have 

attributed the classical RFs to the feed forward projections from LGN and extra-classical RFs to  

feedback responses from higher visual areas in visual hierarchy (Angelucci, Levitt, & Lund, 

2002; Hupé et al., 1998). Presence of such extra-classical interactions have thus challenged the 

idea of a hierarchical feedforward way of visual processing and provided evidence for the 

presence of ascending, descending and lateral flow of information by which neurons modulate 

the responses of each other.  

 

Initial studies probing the extra-classical RFs used stimuli with simple properties. Later however, 

researchers started using contextual stimuli that helped to explain the involvement of extra-

classical interactions in several steps of visual processing (Allman et al., 1985; Fitzpatrick, 2000; 

Gilbert & Wiesel, 1990; Knierim & Van Essen, 1992). For example, Field and colleagues in a 

psychophysical experiment on contour integration found that a set of Gabor patches arranged in 

a collinear fashion is important to detect the contours and any deviation from collinearity 

affected the detectability (Field, Hayes, & Hess, 1993). They proposed the idea of long-range 

interactions between neurons within an association field. Evidence that information from the 

extra-classical RFs is used by the neurons for figure ground segregation was also shown in a 

series of experiments by various researchers (Gilbert & Wiesel, 1990; Knierim & Van Essen, 
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1992; Kovacs & Julesz, 1993; V. A. Lamme, 1995). In one such compelling study, Lamme and 

colleagues found that a neuron whose RF was completely enclosed within a test patch received 

information about the orientation of the background and used it for identifying the orientation of 

the test patch (V. A. Lamme, 1995). Various studies have shown that modulation of the 

response by the extra-classical interactions can either be facilitation, suppression or a 

combination of the two (Cavanaugh, Bair, & Movshon, 2002; Ichida, Schwabe, Bressloff, & 

Angelucci, 2007; Kapadia, Ito, Gilbert, & Westheimer, 1995; Levitt & Lund, 1997, 2002) (Figure 

1). These extra-classical interactions thus help in the transition from a local processing to a 

more global representation through figure ground segregation, perception of uniform surfaces 

and grouping which are the crucial first steps in object recognition and scene segmentation.  
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Figure 1: Receptive fields (RF) and contextual interactions. (A) An illustration of a typical neuronal RF showing 

classical RF (bright orange) and extra-classical RF (light orange). Extra-classical interactions can influence the 

neuronal activity in different ways depending on the nature of contextual interaction. Inhibitory interactions are 

depicted by the white “-” sign inside red circle and facilitatory interactions are depicted by the white “+” sign inside 

green circle. RFs from both of the interactions can lead to the activation of extra-classical RF, suggesting input from 

outside the classical RF (Jones, Wang, & Sillito, 2002). (B) Illustration of how neurons represent an image through 

their RFs and their interactions. Extra-classical RFs of neurons are not activated in the absence of a contextual 

interaction (bright orange circles without light orange surrounding it) and neurons process their own preferred image 

property. For example, a neuron that has a large receptive field size processes the low spatial frequency content in 

an image and vice versa. However, in the presence of a contextual stimuli, neurons communicate with each other 

which can activate their extra-classical RFs. Such an interaction can be facilitatory (shown by ‘+’ sign in green circle) 

for example when RFs are collinear or suppressive (shown by ‘-’ sign in a red circle) when processing iso-oriented 

lines (Kastner, Nothdurft, & Pigarev, 1999). Also, RFs of the neurons processing the locally oriented lines lying along 

the contour structure cause the grouping of local features into a more global structure as shown by the dark blue 

outline on the RFs processing the rails on the bridge. 
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Functional Magnetic Resonance Imaging (fMRI) and population receptive fields (pRFs) 

Most of the single neuron RF studies are from non-human primates and cannot be directly 

translated to humans due to several differences between the species. For example, human 

visual cortex contains a greater number of neurons compared to other species which are 

thought to be performing uniquely human skills such as language processing. Since the single 

neuron activity is measured using invasive electrophysiology techniques which is not feasible to 

be performed in humans, a non-invasive technique for measuring human brain activity is 

important for a full understanding of human visual system.  

 

fMRI 

fMRI is a technique widely used to measure brain activity to study human visual system. fMRI 

provides a non-invasive measurement of brain activity at a high spatial resolution. Single 

recording units in any fMRI measurement are called fMRI voxels with a typical dimension of 

2x2x2 mm3. Given the typical neural densities (50,000 neurons per cubic mm of cortex), every 

fMRI voxel measures the activity of about 400,000 neurons. (Leuba & Garey, 1989; Rockel, 

Hiorns, & Powell, 1980). Thus, fMRI measures the activity of a population of neurons and not a 

single neuron. Briefly, neural activity in the brain needs oxygen which are supplied by the blood. 

A neural activity thus will cause a local change in the relative amounts of oxygenated and 

deoxygenated blood in the region of the activity. These have different magnetic properties and 

can cause inhomogeneities in the magnetic field in the region of activity. fMRI measurements 

are based on the size of these inhomogeneities. fMRI thus provides an indirect measure of the 

neural activity through the local changes in the blood flow. The fMRI measurements are hence 

called Blood Oxygenation Level Dependent (BOLD) signals. fMRI can also be used to study the 

brain activity in other animals which helps in the comparison of findings between different 

species. 

 

pRFs 

Since fMRI measures the activity of a population of neurons, fMRI measurements can be used 

to record the brain activity in response to a stimulus presented at the aggregate RF of a 

population of neurons. RFs estimated from every fMRI voxel are thus called the population 
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receptive fields (pRFs) (Figure 2). PRFs measured from every fMRI voxel reflects the RF 

properties of individual neurons inside the voxel and also their interactions with each other.  

 

 

 

Figure 2. Population receptive fields from a single fMRI voxel (adapted from (Brewer & Barton, 2012)). (A) A 

typical fMRI voxel has a resolution of about 2 cubic mm and can contain about 1 million neurons, and (B) each with 

an associated RF which are approximately in the same region in the visual field. Classical RFs of the individual 

neurons are depicted by the bright orange circles. (C) A pRF (blue circle) for the cortical location is estimated as the 

mean RFs of all the neurons within the fMRI voxel.   

 

Computational neuroimaging and pRF models 

PRF properties are estimated using fMRI with help of advanced data analysis approach called 

computational neuroimaging (Wandell, 1999). In computational neuroimaging approach, 

predictions are made about the fMRI responses to a range of stimuli and tasks by building 

models of how the brain performs the computation. Since these models are built referring to the 

response to a stimulus, these are generally called stimulus referred neural models. One such 

commonly used model is called the population receptive field (pRF) model (Dumoulin & 

Wandell, 2008; K. N. Kay, Winawer, Mezer, & Wandell, 2013; Zuiderbaan, Harvey, & Dumoulin, 

2012). Using fMRI measurements and pRF models, we can quantify the properties of pRFs. A 

typical pRF mapping experiment involves a high contrast bar aperture sweeping the visual field 

in different directions viewed by the participants in the fMRI scanner when the fMRI responses 
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are measured. A pRF model analysis then starts with defining a neural pRF model that 

summarizes a region in the visual field that the stimulus process. The most basic pRF model is 

a 2-dimensional circular symmetric gaussian defined by a position (x, y) and size (σ) (Dumoulin 

& Wandell, 2008). FMRI response is then predicted by multiplying the pRF model with the 

stimulus sequence that varies over space and time and convolving the resulting time course 

with the hemodynamic response function. The parameters that define pRF model are varied and 

optimal pRF parameters are determined by minimizing the residual sum of squares of the 

difference between the predicted response and measured fMRI response (Figure 3).  

 

 

Figure 3. pRF modeling procedure. Flow chart describing the pRF model fitting procedure. For each fMRI voxel, a 

pRF model is defined as a 2D Gaussian with a position (x, y) and size (σ). PRF model is then multiplied with the 

stimulus aperture giving the pRF activation. PRF activation is then convolved with the hemodynamic response 

function (HRF) to estimate the model prediction. Model prediction is compared with the measured fMRI data from the 

voxel. This procedure is then repeated for pRF models with different position and size parameters. The pRF model 

which explains the maximum variance in the data is assigned as the pRF for the particular voxel  (Figure 4 from 

Brewer & Barton, 2012; which was adapted from Dumoulin & Wandell, 2008) 
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Are pRF models representative of underlying neural activity? 

Since fMRI measures neural activity indirectly as the local changes in the blood oxygenation, 

the measurement could be reflecting a mix of neural activity and the neurovascular coupling 

(Heeger & Ress, 2002; Logothetis & Wandell, 2004). However, every fMRI study is based on 

the implicit assumption of linearity between the measured BOLD responses and underlying 

neural activity (Boynton, Engel, Glover, & Heeger, 1996). There are other non-invasive 

techniques also used in neuroscience to measure the human brain activity, such as 

magnetoencephalography (MEG), electroencephalography (EEG), and electrocorticography 

(eCOG) which gives a more direct measurement of the underlying neural activity. Each of these 

have its own advantages and disadvantages like fMRI. Hence, it is important to combine the 

information from these different modalities to get a complete picture of brain activity. In this 

effort, recently pRF models have also been extended to another measure of brain activity in 

humans, namely invasive intracranial electrode recordings (Harvey, Vansteensel, et al., 2013; 

Winawer et al., 2013). In Chapter 2 of this thesis we extent pRF models to a non-invasive 

recording technique.  We do this by using the pRF models built from fMRI to predict MEG 

responses to a similar visual stimulation. Thereby, we aim to validate that the two 

measurements are recording a common underlying neural activity.  

 

Magneto encephalography 

MEG is a common technique used in neuroscience to measure brain activity based on the 

fundamental principle that electrical activity is associated with magnetic fields. In every neuron, 

neural activity (for example, resulting from a stimulus activity in the RF of the neuron) causes 

the movement of ions between intra and extracellular space.  Such an ionic movement creates 

a local field potential (LFP) between the dendrites and soma. This potential difference results in 

a primary intracellular current along the soma-dendritic axis of the neuron and an extracellular 

volume current in the opposite direction (da Silva, 2013). When these currents flow across a 

large number of neurons with a similar dendritic orientation, a magnetic field strong enough to 

be measured will be created on the scalp surface (Hämäläinen, Hari, Ilmoniemi, Knuutila, & 

Lounasmaa, 1993). This magnetic field can then be measured on the scalp surface with the 

help of MEG sensors (~ 200) (Figure 4). MEG signals can be used to study neural activity at 

high temporal resolution (in milliseconds). Also, compared to fMRI signals, MEG provides direct 

measurement of the neural activity. Since each MEG sensor measures the activity of neurons 
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over a large area of the cortex (in centimeters), pRF models are not commonly used in MEG 

studies. In chapter 2 of this thesis, we present a forward modeling approach that can be used 

to predict MEG responses using the pRF models built using fMRI, thereby opening new 

opportunities for exploring changes in pRF properties over time. 

  

 

 

 

 

 

 

 

 

Figure 4. Neural mechanism underlying MEG signals. A schematic representation showing the origin of MEG 

signals. Similar to fMRI, MEG also measures the neural activity of a population of neurons. Single neurons in the 

population will process the information from its RF resulting in an electrical activity. Synchronous electrical activity 

from a large number of such neurons are required to create a magnetic field that are strong enough to be measured 

by the MEG sensors (figure adapted from https://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel).  

 

Applying pRF models for understanding visual processing 

PRF models have been a cornerstone in visual neuroscience for studying spatial properties of 

visual system in both healthy and diseased population (Dumoulin & Knapen, 2018). PRF 

models provide detailed information about the pRF properties such as position, RF center size, 

(Dumoulin & Wandell, 2008), RF suppressive surround size properties (Zuiderbaan et al., 2012), 

spatial summation (K. N. Kay et al., 2013), connectivity (Haak et al., 2013). PRF sizes estimated 

from the pRF models can also be compared to the electrophysiology studies (Dumoulin & 

Wandell, 2008; K. N. Kay, Naselaris, Prenger, & Gallant, 2008). PRF modeling approach can 

also be used to define the visual field maps with the polar angle and eccentricity maps derived 

from the pRF position estimates (Figure 5). Visual field maps are used as regions of interest 

https://neuroimage.usc.edu/brainstorm/Tutorials/HeadModel
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(ROI) in ROI analysis, wherein all the measurements within a ROI are assumed to have 

homogeneous processing and can be averaged in individual’s brain. Finally, pRF models are 

also used to characterize the changes in the functional architecture in various ophthalmological 

and neurological disorders (E. J. Anderson et al., 2017; Dumoulin & Knapen, 2018; Hoffmann et 

al., 2012; Schwarzkopf, Anderson, de Haas, White, & Rees, 2014).  

Thus, with the help of carefully designed experimental stimuli and tasks, we can use pRF 

models to study different properties of visual processing in both healthy and diseased 

population. In Chapter 3, we investigate the extent to which the pRF properties reflect the RFs 

of the individual neurons using stimuli with different spatial frequencies that can excite sub 

population of neurons selective to a specific spatial frequency. In Chapter 4, we investigate the 

effect of the extra classical RF interactions on the pRF properties. Finally, in the chapter 5, we 

use pRF models to investigate the abnormal visual processing in patients with schizophrenia 

that leads to visual hallucinations. 

 

 

Figure 5. Visual field maps defined using population receptive field mapping technique in humans. Inset 

shows the smoothed surface rendering of the right hemisphere and the dotted box indicating the region that is 

magnified. Magnified region of the cortex shows the visual field maps (V1, V2, V3, V3-A/B, IPS, hV4, VO-1, VO-2, 

LO-1, LO-2, TO-1) delineated using the polar angle (left) and eccentricity (right) maps extracted from the pRF model 

parameters (Figure 1 from (Wandell, Winawer, & Kay, 2015)).  
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Schizophrenia  

Schizophrenia is a severe neuropsychiatric disorder which affects the way in which the patient 

thinks, feels and behaves. Symptoms of schizophrenia are often classified into positive, 

negative and cognitive. Positive symptoms include psychotic behaviors such as hallucinations 

and delusions. Negative symptoms are those which are associated with a disturbance in the 

normal emotions and behaviors and can include reduced ability to perform facial expression and 

reduced feelings of pleasure in everyday life. Cognitive symptoms are generally negative such 

as poor information processing, decision making, and attention.  

Hallucinations in the patients with schizophrenia can seriously affect their quality of life. Visual 

hallucinations in patients with schizophrenia is often linked with an impaired visual processing 

they exhibit. There are some theories that specifically link the disturbed contextual interactions 

and gain control mechanisms which are resulting from the properties of underlying extra-

classical interactions (Dakin, Carlin, & Hemsley, 2005; Silverstein & Keane, 2011). In the 

chapter 5, we investigate the neural mechanism underlying the visual hallucinations in patients 

with schizophrenia using pRF models.  

 

Summary and thesis outline 

Receptive fields (RF) are thus a fundamental organizational principle of the visual cortex and an 

important aspect of visual processing. Thus, studying the RF properties are important for 

understanding visual processing. In humans, pRF models are being used to study the spatial 

properties of the RFs of a population of neurons. In this thesis, we investigate the properties of 

extra-classical RFs in both healthy individuals and a patient population using pRF models. In 

chapter 2, we examine the relationship between the fMRI BOLD response and MEG magnetic 

field measurement to validate that pRF models reflect the underlying neural computations. We 

then proceed to investigate the extent to which the properties of single neurons are maintained 

at the population level in chapter 3. We dive deeper into the interactions between the neurons 

in chapter 4 by studying the extra-classical RFs of neurons in healthy subjects. Finally, we 

apply the pRF model analysis in a patient population known to shown abnormal visual 

perception due to an inability to use context in a stimulus in chapter 5.  
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Chapter 2 

 

 

 

Extending pRF models from fMRI to MEG: A stimulus-referred forward 
model to predict MEG measurements 
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Abstract 
 

Population receptive field (pRF) models predict neurophysiological responses at high spatial 

resolution (millimeters) on visual cortex to visual stimuli varying in spatial position using 

functional MRI (fMRI), in both healthy and clinical human populations. Due to lower spatial 

resolution, pRF models are not widely used in magnetoencephalography (MEG). Here, we 

introduce a forward-modeling approach to extend pRF models determined from fMRI to predict 

MEG sensor responses. Subjects viewed contrast-reversing bar stimuli sweeping across the 

visual field in separate fMRI and MEG sessions. We used the pRF model to first make the 

prediction on the cortex, before predicting MEG time series for every sensor using the MEG 

forward model. We compared the predicted MEG responses to the observed MEG data (visually 

evoked steady-state responses at the contrast-reversal rate of the stimulus) and found that 

using the original pRF parameters estimated by fMRI could explain up to 60 percent of the 

variance in steady-state MEG sensor responses. When perturbing the pRF parameters by either 

scaling pRF sizes or rotating the pRF centers around the fovea, the ability of our model to 

explain variance in the MEG responses decreases by ~15%. This suggests that the MEG is 

sensitive to pRF properties derived at the fMRI spatial scale. We conclude that our method 

provides a quantitative approach to link fMRI and MEG measurements to study the 

spatiotemporal dynamics of human visual field maps.  
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Introduction 
 

A fundamental goal in human neuroscience is to link cognition to brain function. One approach 

to reach this goal is to build encoding models. By defining the operations that relate an input to 

its output (e.g. a visual stimulus to the BOLD response of a particular cortical location), one can 

study the mechanisms underlying the measured neural responses. Starting from the visual 

stimulus as input, these stimulus-referred encoding models have been successful in predicting 

neural responses in visual cortex, for example fMRI responses (e.g. pRF model by (Dumoulin & 

Wandell, 2008); CSS model by (K. N. Kay et al., 2013)), single unit responses (Mante, Bonin, & 

Carandini, 2008), and LFP responses from EcoG (Electrocorticography) electrodes (Harvey, 

Vansteensel, et al., 2013; Hermes, Petridou, Kay, & Winawer, 2019). Such encoding models 

can help to clarify the relation between different measurements of brain activity along with 

providing an ability to study the visual system at a high spatiotemporal resolution. 

However, these encoding models are relatively uncommon in predicting non-invasive 

electromagnetic field measurements like magnetoencephalography (MEG) or 

electroencephalography (EEG). Both MEG and EEG imaging techniques are widely-used and 

provide excellent time-resolved measurements of brain activity across the whole brain. 

Nevertheless, these techniques lack encoding models because the pooling area of a single 

sensor covers large parts of the cortex (in the order of several centimeters); the covered area is 

much larger than the scale at which fMRI can measure stimulus-selectivity in visual cortex. At 

the spatial resolution of fMRI, the visual field preference of a given neural population in visual 

cortex, i.e. its population receptive field (pRF), can be estimated on the cortex at a millimeter 

scale. To estimate pRFs at the same spatial resolution as fMRI for every MEG sensor, one 

would require a computational model that transforms the signal from a few hundred sensors to 

thousands of sources on the cortex. Solving such an inverse problem is ill-defined and can have 

infinite number of solutions.  

Here, we propose a novel stimulus-referred forward modeling approach predicting MEG 

sensors responses from stimulus to cortex and from cortex to sensors. We use the pRF model 

developed by Dumoulin and Wandell (2008), which has been a well-established approach to 

study the spatial properties of the human visual system in both healthy and diseased (Dumoulin 

& Knapen, 2018; Wandell & Winawer, 2015). By first estimating the pRFs using fMRI, the model 

predicts how the neural response of a particular visual stimulus is represented on the cortical 

surface. We then use the MEG forward model to project these predicted responses to MEG 

sensors, instead of creating an inverse solution. These predicted MEG sensor responses can 
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then be compared to observed MEG responses from subjects viewing the same visual stimulus. 

Our results show that we can predict the MEG responses to a visual stimulus using the pRF 

models estimated from fMRI. 

 

 

Methods 
 

Subjects 

Ten subjects (5 female), ages 20-45 years (M = 29.7 years, SD = 7.3 years) participated in the 

study with normal or correct-to-normal vision. All scanning sessions were acquired at New York 

University. Subjects provided written informed consent. The experimental protocol was in 

compliance with the safety guidelines for MRI and MEG research and was approved by the 

University Committee on Activities involving Human Subjects at New York University, USA. 

 

Stimuli 

Stimuli were generated using MATLAB (MathWorks, MA, USA) and PsychToolbox (Brainard, 

1997; Pelli, 1997) on a Macintosh computer. In both MRI and MEG sessions, subjects were 

presented with contrast-reversing checkerboard stimuli (10 Hz), windowed within a bar aperture 

that swept across the visual field in discrete steps. The area outside the stimulus was set to a 

constant mean luminance. Both MRI and MEG stimuli matched in size (field of view (h x w): 

20°x 20°), contrast-reversal rate (10 Hz), bar width (2.5°, i.e. 1/4th of the full-field stimulus radius, 

10°), but differed in presentation length and sequence (see Experimental design).  

 

Stimulus display 

MRI 

MRI data for subjects S1 and S2 were acquired with a different scanner (Allegra versus Prisma) 

and visual display compared to subjects S3-S10. 

 

Allegra: For subjects S1 and S2, stimuli were presented with an LCD projector (Eiki LC_XG250, 

CA, US) with a screen resolution of 1024 x 768 pixels and refresh rate of 60 Hz. Stimuli were 

displayed onto a translucent back-projection screen in the bore of the magnet. Subjects viewed 

the screen through an angled mirror mounted onto the coil of the scanner at a distance of ~58 

cm and a field of view of ~32° x ~24° (w x h). To prevent stimuli to be obscured by the MRI 

compatible eye tracker mounted on a rig inside the bore (~1° of the lower visual field), we 
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decided to confine the stimulus diameter to a circular aperture with a field-of-view of 20°x20° (w 

x h). The display was calibrated and gamma-corrected using a linearized lookup table. 

 

Prisma: For subjects S3-S10, stimuli were presented with a DPL LED PROPixx projector 

(VPixx, QC, Canada) with a screen resolution of 1920 x 1080 pixels and refresh rate of 60 Hz. 

Images were displayed onto a translucent back-projection screen in the bore of the magnet. 

Subjects viewed the screen through an angled mirror mounted onto the coil of the scanner at a 

distance of ~83.5 cm and a field of view of ~35° x ~24.4° (w x h). The visible part of the display 

extends to a circular aperture radius of 12.2° of eccentricity. However, to match our stimuli with 

previous subjects’ scan sessions, we confined the stimuli to a diameter of 20°. The display was 

calibrated and gamma-corrected using a linearized lookup table. 

 

MEG 

Images were presented using an InFocus LP850 projector (Texas Instruments, Warren, NJ) with 

a resolution of 1024 x 768 pixels and refresh rate of 60 Hz. Images were projected via a mirror 

onto a front-projection translucent screen at a distance of approximately 42 cm from the 

subject’s eyes (field of view: 22° × 22°). The display was calibrated with the use of a LS-100 

luminance meter (Konica Minolta, Singapore) and gamma-corrected using a linearized lookup 

table. 

 

 

Experimental design  

Subjects participated in one 1.5-hr MRI and one 2-hr MEG session. Sessions were scheduled 

on different days.  

MRI 

An MRI session contained 6 runs, where each run was 6.1 minutes. For a given run, the bar 

apertures swept across the visual field in discrete steps (1.5s per bar position, 31.5s per bar 

sweep, see Figure 1A) in 8 different bar configurations (4 different orientations: 0°, 45°, 90°, 

135°, with two step directions for each orientation). Two step directions are required for fMRI to 

avoid biased pRF parameter estimates due to the lag of hemodynamic response function. After 

the first, third, fifth and seventh bar sweep, there was a 22.5s mean luminance or ‘blank’ period. 

In addition, each run started and ended with a 12s blank period. A fixation dot was presented in 

the center of the screen throughout the run, switching between red and green colors (32 
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switches per run, average of 7.2s). Subjects were instructed to fixate on the dot throughout the 

run and report a switch in color with a button press.  

 

 
Figure 1. Retinotopic mapping stimuli for fMRI and MEG experiments. (A) FMRI stimuli were used to map pRFs 

on the cortical surface. Contrast-reversing (100 % contrast) checkerboard bars swept in non-overlapping discrete 

steps across the visual field (diameter = 20 deg, 1 step per TR, TR=1.5 s), interleaved with blank periods (mean 

luminance). One run consisted of 8 bar sweeps along cardinal and off-cardinal axes in both directions. Subjects were 

instructed to fixate in the center of the screen and press a button every time the fixation dot changed color. Fixation 

dot is enlarged for visibility purposes. (B) MEG stimuli were used in MEG experiment and in stimulus-referred forward 

model to create predictions. Stimuli were very similar to fMRI (identical contrast, size, and contrast-reversal rate), 

except for its sequence and duration. One run contained 5 bar sweeps (3 cardinal, 2 off-cardinal) with shorter step 

durations (TR=1.3 s). Stimulus periods were interleaved with blank and blink periods. During blink periods, subjects 

were encouraged to make eye blinks to limit blinks during blank and stimulus periods. Blink periods were excluded in 

both data analysis and model predictions.  

 

MEG 

All subjects participated in MEG sessions containing 19 runs, where each run was 3 minutes 

with short breaks between runs. For a given run, the bar apertures swept across the visual field 

in discrete steps (1.3s per bar position, 28.6 s per bar sweep) in 5 different bar configurations 

for a given run (4 different orientations: 0°, 45°, 90°, 135° with two step directions for 0° and one 
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step direction for 45°, 90° and 135°) (see Figure 1B). MEG runs contained mostly a single step 

direction, because the measured magnetic flux does not contain a time-lag compared to the 

hemodynamic response function measured with fMRI. This means that we do not need two step 

directions of the bar to balance out the bias in a particular direction when estimating the pRF 

parameters.  

Before every bar sweep and after the last bar sweep, there was a 2.6s mean luminance 

or ‘blank’ period followed by a 3.8s ‘blink’ period indicated by a mean luminance display with a 

small black square in the center of screen. A fixation dot was presented in the center of the 

screen throughout the run, switching between red and green colors (32 switches per run, 

average of 5.6s).  

All subjects were instructed to fixate on the dot throughout the run and report a switch in 

color with a button press. In addition, subjects were encouraged to blink during the blink period 

and minimize their blinking during the rest of the run.  

 

Data acquisition 

MRI 

All subjects’ structural and functional data were acquired at the Center for Brain Imaging at New 

York University. We used a Siemens Allegra 3T head-only scanner for subjects S1 and S2, and 

a Siemens Prisma 3T full-body scanner for subjects S3-S10 after the irreparable self-quench 

episode of the Allegra scanner. 

Siemens Allegra 3T 

Functional data were collected with a Nova Medical phased array, 8-channel receive surface 

coil (NMSC072). BOLD fMRI data were acquired using a T2*-sensitive echo planar imaging 

(EPI) pulse sequence (1500 ms TR, 30 ms TE, and 72° flip angle; 2.5 mm3 isotropic voxels, with 

24 slices). The slice prescription was placed approximately perpendicular to the calcarine sulcus 

and covered most of the occipital lobe, and the posterior part of both the temporal and parietal 

lobes. An additional field map was collected in the middle of the MRI session to correct 

functional data for B0 field inhomogeneity during offline image reconstruction using the in-house 

Center for Brain Imaging algorithm. 

 Structural data were collected in the same (S2) or separate MRI session (S1) with a 

Nova Medical head transmit/receive coil (NM011). Data consisted of T1 weighted whole brain 

anatomical images using a 3D rapid gradient echo sequence (MPRAGE, 1 mm3 isotropic 

voxels). Additionally, a T1 weighted “inplane” image was collected with the same coil and slice 

prescription as the functional scans to aid alignment of the functional images to the high-
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resolution T1 weighted anatomical images. This scan had a resolution of 1.25 × 1.25 mm and a 

slice thickness of 2.5 mm. 

Siemens Prisma 3T 

Both structural and functional data were collected with a 64-channel phased array receive coil. 

BOLD fMRI data were acquired using a T2*-sensitive echo planar imaging pulse sequence (1-s 

TR; 30 ms echo time; 75° flip angle; 2 mm3 isotropic voxels, multiband acceleration 6). Two 

additional scans were collected with reversed phase-encoded blips, resulting in spatial 

distortions in opposite directions. These scans were used to estimate the spatial distortions in 

the EPI runs and used to correct the EPI runs during preprocessing.  

Structural data were collected in the same session consisting of T1-weighted whole 

brain anatomical images (1 mm3 isotropic voxels) using a 3D rapid gradient echo sequence 

(MPRAGE). No additional inplane image was needed for alignment for session with the Prisma 

scanner, because the spatial resolution of the EPIs was higher and whole-brain compared to the 

Allegra scanner.  

 

MEG 

MEG data were acquired continuously with a whole head Yokogawa MEG system (Kanazawa 

Institute of Technology, Japan) containing 157 axial gradiometer sensors to measure brain 

activity and 3 orthogonally-oriented reference magnetometers located in the dewar but away 

from the brain area, used to measure environmental noise. The magnetic fields were sampled at 

1000 Hz and were actively filtered during acquisition between 1 Hz (high pass) and 500 Hz (low 

pass).  

 Before recording, each subject’s head shape was digitized with a handheld FastSCAN 

laser scanner (Polhemus, VT, USA). Digital markers were placed on the forehead, nasion, left 

and right tragus and peri-auricular points. To calibrate the digital head shape with the MEG 

sensors space, five electrodes were placed on the identical location of five digital markers (3 

forehead and left/right peri-auricular points). Before and after the main MEG experiment, 

separate recordings were made of the marker locations within the MEG dewar. 

 

Data Analysis 

MRI Preprocessing 

Allegra & Prisma structural data: Structural T1-weighted scans were auto-segmented with 

FreeSurfer’s recon-all algorithm ((Dale, Fischl, & Sereno, 1999; Fischl & Dale, 2000; Fischl, Liu, 

& Dale, 2001; Fischl, Sereno, & Dale, 1999); available at http://surfer.nmr.mgh.harvard.edu/). If 

needed, errors in white/gray matter voxel segmentation were manually corrected. Visually 

http://surfer.nmr.mgh.harvard.edu/
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responsive regions of interest (ROIs) were defined on the inflated cortical surface of individual 

subjects using the probabilistic atlas of visual areas by (Wang, Mruczek, Arcaro, & Kastner, 

2014) resulting in boundaries for areas V1-V4, V3A/B, VO1/2, LO1/2, TO1/2, PHC1/2, IPS0-5, 

SPL1, and FEF.  

Allegra functional data: Using the VistaSoft toolbox (https://github.com/vistalab/vistasoft), 

functional scans were re-oriented to a standardized NifTi orientation (RIA to LAS), slice-time 

corrected by resampling the time series in each slice within the 1.5s-volume to the center slice, 

and motion corrected by aligning all volumes of all scans to the first volume of the first scan. The 

first 8 volumes of each functional scan were removed to avoid unstable magnetization of the 

scanner. Functional scans were aligned to the T1-weighted anatomical scan using the additional 

“inplane” scan. 

Prisma functional data: Functional scans were converted from dicom into BIDS format 

(Gorgolewski et al., 2016) using NYU Center for Brain Imaging in-house version of NIPY’s 

heudiconv (http://as.nyu.edu/cbi/resources/Software.html). The following preprocessing 

workflow was implemented with the nipype toolbox (Gorgolewski et al., 2016). Using the FSL 

toolbox (S. M. Smith et al., 2004), all volumes from all EPIs were then realigned to the single-

band reference image of the first EPI scan. This single band reference image was then 

registered to the additional spatial distortion scan with the same phase encoding direction. The 

two additional spatial distortion scans with opposite phase-encoding direction were then used to 

estimate the susceptibility-induced warp field using a method similar to (Andersson, Skare, & 

Ashburner, 2003). Motion correction, registration to the spatial distortion scan and unwarping 

were then applied in a single step to each volume of each EPI. The unwarped EPIs were 

aligned to the high-resolution whole-brain T1 using FreeSurfer. 

Allegra & Prisma functional data: Time series from EPIs were resampled to 1 mm3 isotropic 

voxels within the gray matter voxels using trilinear interpolation. Time series within the gray 

matter voxels were converted into percent signal change by dividing the signal by its mean. 

Baseline drifts were removed from each run with high-pass temporal filtering using 3 discrete 

cosine terms (0 cycles or “DC”; 0.5 cycle and 1 cycle). At last, all 6 runs were averaged given 

that subjects saw the same stimuli within a dataset. 

 

MEG Preprocessing 

The FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011) was used to read the raw 

data files. For all subsequent MEG analyses, custom code was written in MATLAB. With use of 

the triggers from the stimulus presentation computer, MEG data were first divided into 1300 ms 

https://github.com/vistalab/vistasoft
http://as.nyu.edu/cbi/resources/Software.html
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epochs (i.e. one MEG TR) for every MEG sensor. For all subjects, epoching resulted in an initial 

2660 epochs per sensor: 22 TRs per bar sweep, with 2 TRs for blank and 3 TRs for blink 

periods before each sweep, and after the last bar sweep of every run, 5 bar sweep directions, 

for 19 runs. To avoid the transient response associated with a change in the stimulus (either a 

change in bar position or from a blank period to a stimulus period), we then shortened each 

epoch to 1100 ms, skipping the first 150 ms and last 50 ms of each 1300-ms epoch. 

Epoched data were high-pass filtered with a 1 Hz Butterworth filter (with a high-pass amplitude 

of 3 dB and a passband frequency of 0.1 Hz and amplitude of 60 dB). We used a simple 

algorithm to detect outliers. First, we computed the variance for every 1100-ms epochs, for each 

MEG sensor. We labeled an epoch as ‘bad’ if its variance was 20 times smaller or 20 times 

larger than the median variance across all epochs and sensors. If more than 20% of the epochs 

were labeled bad for a given sensor, then we removed the entire sensor from analysis. If more 

than 20% of sensors contained the same ‘bad’ epoch, we removed the entire epoch from 

analysis. Time series within ‘bad’ epochs that were not removed yet, were replaced by the time 

series spatially interpolated across nearby sensor (weighting sensors inversely with the 

distance). We removed on average ~ 21% of dataset, including all epochs of the 5 long-term 

broken sensors in our MEG system. 

 

We used the Noisepool-PCA algorithm to increase the signal-to-noise ratio (SNR) of our MEG 

time-series (Kupers et al., 2018). In short, for each subject the algorithm defines a noise pool: a 

subset of sensors that contained little to no 10 Hz (or stimulus-locked) response. Time series 

within each epoch and sensor of the noisepool were then filtered to remove all 10 Hz (and 

harmonics) components. Using principal components analysis (PCA), we defined global noise 

regressors from the filtered noise pool time series. For each subject, the first 10 PCs were used 

to create 10 new denoised datasets: the first denoised dataset had the PC 1 projected out of the 

data in each sensor, epoch by epoch. The second denoised dataset had PC1 and PC2 

projected out, etc. For each denoised dataset, we calculated the median R2 across 

bootstrapped epochs. The optimal number of PCs to project out was the smallest number of 

PCs that resulted in a denoised data with a median R2 within 5% of the maximum possible 

median R2  of 10 datasets. This resulted in removing 6 PCs on average across subjects, ranging 

between 2-8 PCs. At last, we reshaped the denoised MEG Data into a 4D array: t time points x 

k epochs x n sensors x m runs. 
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MEG data quality check 

We calculated two parameters to check the quality of the measured MEG data, coherence and 

split half reliability. First, we computed the coherence for every MEG sensor. This metric 

provided a signal-to-noise ratio of the steady-state response within stimulus periods and was 

defined by dividing the average 10 Hz amplitude by the average amplitudes of 10 Hz and 

neighboring frequencies (i.e. 9 to 11 Hz). The second metric is the split half reliability of the 10 

Hz steady state amplitudes. In this case, we split the 19 repeated runs into halves and average 

across runs within both halves. We then calculate how much variance the average run of the 

first half can explain the second half, and vice versa. We then average the two variance 

explained values per MEG sensor, resulting in a split half reliability sensor map. 

 

MRI-MEG head model and alignment 

The head model, also referred to as the ‘lead field’ or ‘gain matrix’, describes the contribution of 

cortical locations (or ‘sources’) to the activity at each individual MEG sensor. To generate this 

head model, we align the individual’s anatomy and the MEG helmet in a common coordinate 

space using the Brainstorm toolbox (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011).  

Specifically, we defined the nasion and left/right peri-auricular points in the T1-weighted 

image of each individual subject. We used Brainstorm’s automated alignment algorithm to align 

the fiducials marked in the T1-weighted image, the recorded locations of electrodes attached to 

the subject's face while lying in the MEG scanner, and points in the 3D head shape. Small 

manual translational adjustments were applied to the rotation matrix if necessary. After 

alignment, we computed the individual subject’s head model using Brainstorm’s implementation 

of the overlapping spheres algorithm (Huang, Mosher, & Leahy, 1999) using an individual 

subject’s FreeSurfer’s pial surface (~290,000 vertices per hemisphere). The initial head model is 

unconstrained, using 3 vectors to define the dipole orientation of a single vertex, allowing its 

local current density in any arbitrary direction. We constrained our head model to one 

perpendicular dipole per vertex, resulting in a final matrix of all Freesurfer vertices by 157 

sensors. 

 

A stimulus referred forward model for MEG responses 

We build our stimulus referred forward model using the preprocessed fMRI data and MEG data 

and their corresponding stimuli. First, we estimate the pRF model parameters for every fMRI 

voxel. We then use these pRF models to make predictions to the MEG stimuli. These 

predictions are then translated into the MEG sensor space using the head model. Predicted 
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MEG data is compared with the measured stimulus-locked steady state MEG response to 

estimate the variance explained (Figure 2). We explain each of these steps in detail below.  

 

 
 

Figure 2. Overview of stimulus-referred forward model. The model takes as inputs both preprocessed fMRI and 

MEG data and their corresponding stimuli. The fMRI stimuli are binarized into apertures and used to solve pRFs 

within each cortical location and projected to the cortical surface. These pRFs estimated by fMRI are then multiplied 
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with MEG stimulus apertures to predict time series on the cortical surface. The predicted cortical responses are then 

multiplied with the gain matrix from the MEG forward model. This forward model is computed by the overlapping 

spheres algorithm (Huang et al., 1999) and describes the contribution of individual MEG sources to the magnetic 

fields measured at the MEG sensors. Multiplying both matrices results in predicted MEG responses and are 

compared against measured MEG responses. The measured MEG responses are computed with leave one out 

cross-validation. Both left-in and left-out data are averaged across runs and transformed to the Fourier domain. Left-

out runs are phase referenced with the reference phase estimated from the left-in runs. For the left-in runs, per MEG 

sensor, 10 Hz phases will be aligned to one of the possible reference phases, before computing the 10 Hz phase-

referenced SSVEF response. To pick the optimal reference phase, we fit the predicted MEG response to the 

measured MEG response for every possible reference phase and choose the reference phase that results in the 

largest model fit R2. This phase-referencing procedure is repeated for the left-out data. At last, phase-referenced 

MEG responses from all data folds are averaged and fit again by the predicted MEG response, resulting in a final set 

of betas and R2 for every sensor. 

 
 
 

Solve pRFs with fMRI 

Using the Vistasoft toolbox (https://github.com/vistalab/vistasoft), we solved linear circular 

symmetric 2D Gaussian pRF models on the functional MRI data, as previously described in 

Dumoulin and Wandell (2008). PRF models were solved by a two-stage coarse-to-fine 

optimization procedure on the gray matter voxels, using the binarized MRI stimulus apertures 

and Vistasoft built-in ‘difference between two gammas’ hemodynamic response function. The 

first stage of the optimization procedure started with a coarse grid-fit. Parameters from the 

coarse grid-fit were used as the seed for the fine grid-fit. This fitting procedure resulted in an 

estimated preferred size (σ, 1 SD of 2D Gaussian), center location (x, y), scaling factor (beta) 

and variance explained for every voxel. The pRF parameters computed at gray matter voxels 

are interpolated to surface vertices and a MEG response time series is predicted for every 

surface vertex.  

 

Smooth pRF parameters across gray matter voxels 

Since the pRF parameters are interpolated from the gray matter voxels to the surface vertices 

using a nearest neighbor interpolation algorithm, there is a chance that a voxel with an 

unrealistic parameter value could be chosen. To avoid this, we smooth pRF parameters across 

the cortical surface by calculating a weighted average over a normalized truncated gaussian 

kernel (Andrade et al., 2001). The gaussian kernel (approximately, a FWHM of 3 mm at 1 cubic 

mm of voxel resolution) is created at every gray matter voxel, only covering the neighboring 

https://github.com/vistalab/vistasoft
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voxels. However, neighboring voxels in which estimated pRF model fit did not explain any 

variance of the data (i.e. a variance explained of 0%) were excluded. We smoothed the position 

(x, y) and size (sigma) parameters except for beta which we recompute on the cortical surface. 

Rationale for this as follows. 

 

Beta values estimated using our pRF model implementation covaries inversely with pRF size. A 

pRF model with a small size will have unrealistically large value. This is because the integral of 

a pRF kernel is not normalized to be 1, rather depends on the size of the pRF. So, a small pRF 

will have a small integral, and hence small value during the multiplication of pRFs with the 

stimulus. When fitting the model to the BOLD signal, some of these small pRFs will have large 

beta values to accommodate the difference between the predicted and measured BOLD 

responses. To avoid the large beta values from influencing the smoothing procedure we 

recompute the beta values on the cortical surface using the following steps. First, we 

reconstruct the predicted fMRI response for every voxel by multiplying stimulus with the pRF 

and scaling with the corresponding beta. We then smooth the maximum of predicted response 

on the cortical surface by multiplying it with a normalized truncated gaussian kernel. Last, we 

recompute betas by dividing this smoothed maximum response by the maximum of predicted 

response from smoothed pRF parameters.  

 

Predict MEG responses from pRF parameters estimated with fMRI 

To predict the steady-state responses in MEG sensors, we first created a predicted response 

from estimated pRF parameters on the cortical vertices. Vertices were constrained by those 

whose pRF parameters explained more than 10% of the variance in the MRI data, and fell within 

visual ROIs from Wang et al.’s probabilistic atlas (2015). For each vertex, a 2D Gaussian 

receptive field was constructed using its preferred center and size. The height of this receptive 

field was scaled by the vertex’ beta value. A dot product of these receptive fields and the 

binarized MEG stimulus resulted in the predicted surface response.  

The matrix containing the predicted pRF responses on the cortical surface S, were then 

multiplied with the MEG head model G, resulting in predicted MEG sensor responses Ŷ 

(Equation 1).  

 

Equation 1: Ŷ =  𝐺 ⋅ 𝑆 
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Where Ŷ (k epochs x m sensors) are the predicted pRF responses for MEG sensors, G 

(n vertices x m sensors) is the head model, and S (k epochs x n vertices) stands for the 

predicted pRF response on the cortical surface.  

 

We compared this predicted MEG sensor responses to the measured MEG responses. 

Measured MEG response was extracted as phase-referenced steady-state response in steps 

described below. 

 

 

Compute phase-referenced steady-state MEG response 

Epoched MEG data were transformed into the Fourier domain by applying the FFT to the time 

series data. We extracted both amplitude and phase information from the spectral MEG data at 

10 Hz (i.e. the contrast-reversal rate of the stimulus) to compute a phase-referenced steady-

state response. This response was calculated as the amplitude at 10 Hz scaled by the 

difference in angle between the measured phase and a reference phase. This calculation is 

described in more detail below.  

Why compute a phase-referenced steady-state response? Oftentimes, steady-state 

visually evoked fields are computed by taking the absolute amplitude or power at the contrast-

reversal rate of the stimulus while ignoring the phase information. However, this phase 

information can differ across sensors. For example, because the time for visual information to 

reach a particular cortical location is different, or because MEG sensors sum over cortical 

locations that vary in dipole orientations. Taking this phase information into account allows for a 

richer representation of the measured steady-state response. 

To compare differences in phase information, one needs a reference phase. For every 

run and sensor, we choose a reference phase from 100 potential phases (ranging from 0-2π 

with equal intervals of π/50) using the following leave-one-run-out approach: 

First, we separated MEG data into 2 run groups. We computed the average phase at 10 

Hz per epoch across the first split half, separately for every sensor, resulting in a vector with one 

phase per epoch. Second, we subtracted a potential reference phase from the average phases 

and calculated the angle of the phase difference per epoch. This difference angle was used to 

scale steady-state amplitudes of the left-out-run, resulting in the phase-referenced steady-state 

response Y for sensor m and epoch k as described by Equation 2: 

 

Equation 2: 𝑌𝑚(𝑘) = 𝐴𝑚(𝑘) ×  𝑐𝑜𝑠 (Ɵ𝑚(𝑘) −  Ɵ𝑚,𝑟𝑒𝑓 )   
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Where 𝐴𝑚(𝑘) is the amplitude of the left-out run at 10 Hz for every epoch k and sensor m 

              Ɵ𝑚(𝑘) is the average phase across all left-out runs at 10 Hz for a given sensor m.  

              Ɵ𝑚,𝑟𝑒𝑓 is the reference phase for the given sensor m from the left-in runs 

Third, we used our predicted MEG response derived from the pRF parameters on the 

cortical surface. Using a linear regression, we calculated how much variance in the current 

phase-referenced steady-state responses of the left-out run could be explained by the predicted 

MEG sensor responses. Fourth, after computing phase-referenced steady-state response and 

variance explained for each of the 100 reference phases, we picked the reference phase that 

resulted in the maximum explained variance for a given sensor in the left-out-run. This 

procedure was repeated for every sensor. 

Once the reference phases were selected, we recomputed the phase-referenced steady-

state responses for the entire MEG dataset as described earlier: i.e. subtracting the reference 

phase from the phase for every epoch, calculating the angle of the phase difference, and 

multiplying the cosine of difference angle with the amplitude at 10 Hz for every epoch. This 

resulted in an array with k epochs x l runs x m sensors. MEG data were summarized by taking 

the average across 19 runs, resulting in a 2-D array (k epochs x m sensors). 

 

Sensitivity of pRF forward model in predicting MEG sensor responses: systematic 

variation of pRF parameters 

To check how sensitive our model predictions are to changes in the original pRF model 

estimated by fMRI, we systematically varied the pRF parameters estimated from MRI in two 

ways: rotate the original pRF centers around the fovea or scale the original pRF sizes.  

 

Rotate pRF centers.  

We estimated the sensitivity to pRF center position by systematically rotating the originally 

estimated pRF centers. We do so by first calculating the polar angle for a given vertex using the 

x and y pRF parameters, and then adding an angle rotation from -180 to 180 degrees in equal 

steps of 45 degrees. For every rotation step, we then re-estimate the predicted MEG responses 

using the forward model. We also re-compute phase referenced amplitude using the reference 

phase estimated from the new pRF predicted responses. Finally, we calculate the variance 

explained for every MEG sensor for every rotation step.   

We summarize the variance explained for every rotation step by taking the average 

across a group of sensors selected as the top 10 sensors with highest variance explained in 

each of the rotation steps. If there are overlapping sensors, we use them only once for 
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averaging. This resulted in a matrix with 9 variance explained values, one for each rotation of 

pRF center position and the original pRF position (0 degrees rotation). 

 

Scale pRF sizes.  

Similarly, we estimate the sensitivity of our model to pRF size by systematically scaling the 

originally estimated pRF size. We scaled original pRF sizes from 0.2 times smaller to 10 times 

larger, in 19 log-spaced steps, where a scale factor of 1 is the original pRF size estimated with 

fMRI. Again, similar to the rotation manipulation, we reperformed our analysis after applying a 

particular scale factor. For summarizing the effect of scaling, we averaged across a group of 

sensors selected as the top 10 sensors with highest variance explained in each of the scaling 

steps. This resulted in a matrix with 19 variance explained values, one for each scale factor 

applied to the original pRF sizes. 

 

Results 

In separate MRI and MEG sessions, subjects viewed high contrast retinotopic bar stimuli 

traversing across the visual field, where the checkerboards inside the aperture reversed 

contrast 10 times per second. Data from the MRI session were used to reconstruct population 

receptive fields (pRFs) on the cortical surface for each individual subject, using the modeling 

approach described by Dumoulin and Wandell (2008). These pRFs on the cortical surface were 

the building blocks for our forward modeling approach and were used to predict the observed 

MEG response. Before describing this model and the quality of the predicted responses, we will 

first describe the observed components within the MEG data.  

 

Retinotopic stimuli produce reliable steady state responses in posterior MEG sensors 

MEG data from individual subjects were divided into 1.1-s non-overlapping time bins (epochs), 

for every sensor and repeated run. These epochs contained either a contrast-reversing bar at a 

particular location in the visual field (‘stimulus periods’), a zero-luminance screen (‘blank 

periods’), or a screen with a black square in the central visual field indicating that subjects could 

rest their eyes or make excessive eye blinks (‘blink periods’). The latter were removed from all 

following analyses. Both stimulus and blank periods were averaged across epochs, before 

transforming the MEG time series to the Fourier domain. 

We found a large steady state response at 10 Hz (the contrast-reversal rate of the 

stimuli) and multiples of 10 Hz (i.e. harmonics) during stimulus compared to blank periods 

(Figure 3A). These 10 Hz steady state visually evoked fields (SSVEFs) were largest in posterior 
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MEG sensors. To estimate how robust these 10-Hz steady state responses are across runs, we 

computed two data metrics: the coherence and reliability of the steady state response.  

 
 

Figure 3. Steady-state visually evoked amplitudes from MEG experiment. (A) Example spectra from two MEG 

sensors (#1 and #13, location indicated by dot on schematic head) and two subjects (S1 and S9). Stimulus periods 

show a large peak at the contrast reversal rate known as the 10 Hz steady-state visually evoked field (SSVEF) (black 

line) and harmonics compared to blank periods (grey line). Note that these amplitudes contain only positive values 

and are not yet scaled by its referenced-phase. (B) MEG sensor topography of 10 Hz SSVEF coherence (10 Hz 

amplitude divided by mean of 9-11 Hz amplitude) for subjects S1 and S9 and the sensor-wise average across all 

subjects (N=10). (C) Split-half reliability of the 10 Hz SSVEF amplitudes for subjects S1 and S9 and the sensor-wise 

average across all subjects (N=10).  

 

First, we computed the coherence for every MEG sensor. This metric provided a signal-

to-noise ratio of the steady-state response within stimulus periods and was defined by dividing 
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the average 10 Hz amplitude by the average amplitudes of 10 Hz and neighboring frequencies 

(i.e. 9 to 11 Hz). We found that the coherence of the steady state response is largest in 

posterior sensors (Figure 3B). The large coherence in posterior sensors was in line with the 

expectation that posterior sensors are located over visual cortex, which were maximally driven 

by 10 Hz steady state responses. 

The specific sensor topography of the steady state coherence varied across subjects. 

For example, subject S1 showed additional 10 Hz steady state responses with high coherence 

in lateral and anterior MEG sensors, whereas subject S9 did not. When averaging the 

coherence metric across subjects, the coherence is largely reduced in anterior sensors and 

remains high in posterior sensors. This indicates that the 10 Hz steady state amplitudes are 

most robust in posterior MEG sensors. 

The second metric is the split half reliability of the 10 Hz steady state amplitudes. In this 

case, we split the 19 repeated runs into halves and average across runs within both halves. We 

then calculate how much variance in the average runs of first half is explained by the second 

half, and vice versa. We then average the two variance explained values per MEG sensor, 

resulting in a split half reliability sensor map. 

We found that the split half reliability is largest in posterior sensors (up to R2 = 80 %) in 

individual subjects and across subjects (see Figure 3C). Interestingly, the sensors with the 

highest reliability do not always overlap those sensors with the largest coherence within 

individual subjects. One reason for this discrepancy could be that the coherence metric 

averages all stimulus epochs, whereas the reliability metric preserves the order of the epochs 

within a run. 

Thus far, we focused only on the 10 Hz steady state Fourier amplitudes and ignored the 

corresponding 10 Hz phases. Taking the phase information into account will give us additional 

information about the variability of the 10 Hz steady state response across MEG sensors 

because the stimulus was moving in different orientations across the visual field. For example, 

we expect a bar that sweeps from the left to the right side of the visual field, to first drive 

responses in the right visual cortex before doing so in the left visual cortex. In addition, there 

might be differences in timing of the 10 Hz amplitudes in MEG sensors because visual 

information will take longer to reach later visual areas compared to early visual areas. 

Therefore, to use all available information in the MEG data, we combined both 10 Hz amplitudes 

and phases into 10 Hz phase-referenced steady state responses. We did so by scaling the 10 

Hz amplitudes by the cosine of the difference of the observed phase and a reference phase.  
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A stimulus-referred forward model to predict MEG responses 

To predict the MEG responses to retinotopic stimuli, we developed a forward model. In short, 

our stimulus-referred forward model predicted the MEG responses at every sensor by 

multiplying the pRF model estimated from fMRI for every cortical location with the MEG stimulus 

at every time point and then multiplying the resulting responses at every cortical location with 

the head model based on the anatomy of each individual subject (Figure 2). For the measured 

MEG responses, we combined amplitude and phase information to obtain the phase referenced 

amplitude for every sensor. To compute the phase referenced MEG data we determined optimal 

reference phase for every MEG sensor. For this we phase referenced the MEG amplitudes 

using a range of reference angles and chose the one that gave the highest variance explained 

by the model. We used a leave one out cross-validation procedure by splitting the MEG runs 

into two groups and phase referencing one half with the reference phase estimated with the 

second half. Finally, to determine the goodness of fit, we compared the predicted time series 

with the observed 10 Hz phase-referenced steady-state responses averaged across all runs for 

every MEG sensor.  

 

Forward model can predict visually driven MEG responses in posterior sensors 

The MEG time series predicted by our forward model captures the peak responses in the 

phase-referenced steady-state MEG data with a variance explained of up to ~ 60% within a 

single sensor located over the back of the head (Figure 4). Amplitude peaks correspond to the 

responses when bar apertures sweep the visual field in 5 different orientations. One reason for 

a reduced variance explained for some sensors compared to others is because our forward 

model underpredicted the data in some of the time points. For example, in subject S9 our model 

failed to capture the full amplitude of the peak response in the second bar sweep (Figure 4A, 

second row). There could be different reasons for this which will be discussed in detail in the 

Discussion. 
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Figure 4. Variance explained of 10 Hz phase-referenced steady-state MEG responses by the stimulus-

referred forward model using pRF estimates from fMRI. (A) Left panels show two examples of average 10 Hz 

phase-referenced MEG responses across runs (black dashed line) and predicted MEG response by the stimulus-

referred forward model (red line). The predicted MEG response by the model could explain 57% and 37% of the 

variance in the measured MEG responses from two posterior sensors in two different subjects (top: S1, bottom: S9). 

Every dot in the observed MEG time series is the response to a bar position. Light and dark gray boxes indicate blink 

and blank periods respectively. Blink periods were excluded from the analysis. The sensor location is indicated by the 

black diamond in the schematic head at the inset on the top left. Right panels show topographic maps of variance 

explained by model fit across MEG sensors for two subjects shown in the left panel. (B) Topographic MEG sensor 

map of group average of variance explained by model fit (N=10). Group data were sensor-wise averaged and could 

explain up to 30% of the variance in the observed MEG signal across posterior sensors.  

 

The sensors with highest variance explained by the forward model were located over the back 

of the head in both individual subjects and the group average (Figure 4). This agrees with our 

observation that the coherence and reliability values are largest for the posterior sensors (Figure 

3). We find a decrease in the variance explained by the individual sensors for the group 

average. This is because there is a large inter-subject variation in the variance explained which 
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causes a blurring in the group average (Figure 4B, and see Supplementary Figure S1 for all 

individual subjects). 

 

Forward model predictions are sensitive to changes in pRF parameters 

To determine the extent to which our forward model depends on the accurate estimate of the 

pRFs (from fMRI data) to predict the variations in the MEG data, we systematically changed the 

original pRF model parameters estimated from fMRI. We quantified this by a systematic rotation 

of the pRF positions on the visual field around the fixation point and scaling of the pRF size. In 

both cases, the ability of the forward model to predict the MEG responses were sensitive to 

changes in the underlying pRFs on the cortex. We observed a decrease in variance explained in 

both position and size variations when moving away from the original values as described 

below.  

 

Changing pRF positions affect the ability to predict MEG responses 

In individual subjects, our forward model explained maximum variance when using the pRF 

positions estimated using fMRI. Variance explained by the model decreased by a maximum of 

~15 % when rotated from -180 degrees to 180 degrees around the fixation point in subject S1 

(Figure 5A). The specific effect of pRF position variation was not observed in all individual 

subjects (Supplementary Figure S2). However, on average we observed a maximum variance 

explained at 0-degree rotation and a maximum drop of ~5% when pRF positions were rotated 

around the center (Figure 5B).  
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Figure 5. Systematic variation of pRF position decreases ability to explain data by model predictions. (A) 

Variance explained by the stimulus-referred forward model as a function of pRF center position for two subjects (top: 

S1, bottom: S9). The position parameter of the pRF estimated with fMRI was systematically rotated around the fovea, 

from -180 degrees to 180 degrees, and re-fitted to the MEG data. Per subject, sensors with the highest variance 

explained across all 9 position variations were selected (red dots in schematic head) and averaged (red line). Error 

bars show 95%-confidence intervals of the average across the selected sensors. Highest variance explained is 

observed for the original pRF position (0 degrees rotation indicated by the black vertical line). Topographic sensor 

maps show variance explained for 5 different rotations at the bottom of the graphs (-180, 270, 0, 45, 90, and 180 

degrees). (B) Group average of variance explained by model fit (red line) and a 95%-confidence interval obtained by 

bootstrapping the data from the 10 subjects (gray). A schematic of different pRF positions are shown below. On 

average, variance explained by the model fit decreases approximately 5% when using pRF positions rotated away 

from the original pRF position. 
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MEG data is predicted accurately by pRFs smaller than those estimated using fMRI 

When changing the pRF sizes, we observed that our forward model explained highest variance 

when using pRF sizes that was close to but smaller than that estimated using fMRI (Figure 6). 

This indicates that the ability of the forward model to predict the MEG responses is more 

sensitive to changes in pRF position than size. Variance explained by the model decreased by a 

maximum of ~ 16% when scaling the original pRF size in subject S1 (Figure 6A). Similar to 

position variation, the specific effect of pRF size variation was not observed in all individual 

subjects (Supplementary Figure S3). On average we observed a maximum drop of ~5% 

variance explained when the original pRF sizes are scaled (Figure 6B). 

 

 
 

Figure 6. Systematic variation of pRF size decreases ability to explain data by model predictions. (A) Variance 

explained by the forward model as a function of scaled pRF sizes, i.e. larger or smaller than original pRF size 

estimated with fMRI, for two subjects (top: S1, bottom: S9). PRF sizes are systematically scaled from 0.2x to 10x the 
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original size. Similar to variations in pRF position, variance explained is averaged for a group of MEG posterior 

sensors (red dots in the schematic head). Error bars show 95%-confidence intervals of the average across the 

selected sensors. Both subjects show peak variance explained by the model fit at a pRF size slightly smaller than the 

original size (scaling factor of 1 indicated by the black vertical line). (B) Group average of variance explained by 

model fit (red line) and a 95%-confidence interval obtained by bootstrapping the data from the 10 subjects (gray). A 

schematic of different pRF sizes are shown below. On average, variance explained by the model fit decreases 

approximately 5% when the pRF sizes become larger or smaller than the original pRF size, similar to the decrement 

seen when varying the originally estimated pRF position parameter. 

 

Discussion 

 
Overview of results  

In this study, we developed a stimulus-referred forward model that can predict MEG responses 

to a visual stimulation using the pRF model estimated from fMRI. Our model is sensitive to 

changes in the original pRF model parameters. Our results help to clarify the relation between 

two different measurements of brain activity along with providing new possibilities for studying 

the spatiotemporal dynamics of the human visual system at high resolution.  

 

Over-estimation of pRF size by fMRI 

One of the important observations from our results is that for the pRF size variation, every 

subject has highest variance explained when the pRF size is smaller (0.8 times) than the 

original pRF size estimated from fMRI. For the pRF position variations on the other hand, 

highest variance explained is observed for the original pRF position estimates from fMRI. Since 

MEG measures neural activity more directly than fMRI, we believe that pRF size derived from 

the MEG response is a more accurate reflection of neuronal pRF size than pRF size derived 

from the BOLD response. Furthermore, PRF estimates from fMRI depend on a number of 

factors that create a bias towards a larger pRF size but a constant pRF position (Dumoulin & 

Wandell, 2008).  

Some of the neural factors that cause an increase in pRF size estimates include the position 

scatter and attention. Non-neural factors may also contribute. For example, there is a trade-off 

between the modelled pRF size and the properties of the hemodynamic response function 

(HRF) used in the model (Dumoulin & Wandell, 2008; Lerma-Usabiaga, Benson, Winawer, & 

Wandell, 2020). In addition, pRF sizes were found to increase with eye movements in a 

previous study (Klein, Harvey, & Dumoulin, 2014; Levin, Dumoulin, Winawer, Dougherty, & 

Wandell, 2010), although in the present study eye and head movements were controlled during 
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the fMRI as well as the MEG experiment. Since MEG only contains the neural response and not 

the hemodynamic coupling component present in fMRI, we believe that our method can be a 

useful tool for updating our existing knowledge about the spatial properties of pRFs estimated 

from fMRI on top of studying its temporal properties. 

 

A way around inverse models for source localization in MEG 

We believe that our model provides an accurate way of estimating sources on the cortex of the 

MEG responses to visual stimulation. Previous MEG studies that aimed at reconstructing 

retinotopic maps on the cortical surface from MEG sensor measurements employed MEG 

source analysis approaches (Brookes et al., 2010; Nasiotis, Clavagnier, Baillet, & Pack, 2017). 

Briefly, source analysis is a common approach in MEG studies to determine the neural 

generators of MEG measurements on the cortical surface and can be divided into two important 

steps. First step is building a forward model of the magnetic fields at a known sensor location 

that are generated by a current source with known location and orientation. Second step is 

using the forward model and solving an inverse problem which is: Can we identify the location 

and orientation of the current source, given the measured magnetic fields outside the skull? The 

solution to this inverse problem is ill-defined i.e., a measured field from a single source could be 

resulting from infinite number of current sources (Hadamard, 1952). Multiple approaches have 

been proposed to solve the problem that each apply different constraints and each give different 

results (Baillet, Mosher, & Leahy, 2001; Wipf & Nagarajan, 2009). Also, in such source analysis, 

localization accuracy of MEG sources is computed as the distance between the true activation 

location and the estimated location. One commonly selected true location is the cortical location 

that gives highest response in an fMRI experiment (Moradi et al., 2003; Poghosyan & Ioannides, 

2007; Sharon, Hämäläinen, Tootell, Halgren, & Belliveau, 2007). Our model tackles these two 

problems. First, our model defines the sources on the cortex using a stimulus referred pRF 

model and only use a forward model to predict the magnetic field measurements for every MEG 

sensor. This provides a way around the ill-defined solution to the inverse problem for predicting 

the MEG responses to stimuli. Second, since our sources are defined using fMRI directly, it can 

be argued that we are using the true MEG source locations.  

 

Potential model improvements 

Our model, like any other model is not perfect. Below we consider two instances where our 

model falls short and some potential improvements for it. First, we observed that our model 

underestimated the peaks in the measured data in the subjects with high variance explained. 
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This could be related to not selecting the correct MEG measurement that underly the neural 

activity in response to the stimulus. For example, in our study, we used the steady-state 

stimulus-locked response. However, a previous study found that the broadband signals in 

ECOG are more related to the BOLD responses (Winawer et al., 2013). Comparing the 

differences in model performance to broadband and stimulus locked responses could help 

clarify if a similar relation exists for MEG as well. We also applied a temporal down sampling to 

the MEG data, which may have been too severe. The underprediction could also be related to 

the forward model itself. For example, we use the beta values of the pRF fit from fMRI to make 

predictions on the cortical surface using a smoothing procedure There could be better ways of 

dealing with the beta value than the one we used here since this free param in pRF fit capture 

fluctuations in both neural and BOLD response, which could be different for LFP response. Also, 

in this study we used the basic 2D gaussian pRF model. Our model can be extended by using 

more extensive pRF models such as the difference of gaussian (DoG) model (Zuiderbaan et al., 

2012) or the compressive spatial summation (CSS) model (K. N. Kay et al., 2013), which could 

possibly capture more complex dynamics. 

Second, we observed that our model showed low variance explained in some subjects 

compared to others. Also, there was considerable differences between the subjects for size and 

position variations. We believe that this could be the result of both a methodological issue and a 

true difference between subjects. Methodological issues include improper alignment of the MEG 

sensor positions with the subject’s anatomy and the type and resolution of the head model 

used. There are multiple head models used in the MEG studies which range from the simple 

overlapping sphere model we used to complex BEM (Boundary element method) models 

(Vorwerk et al., 2014). For some subjects, a more accurate modeling of the head could result in 

the better predictions. Also, we used the head model which maps from all the vertices from a 

subject’s Freesurfer cortical surface to MEG sensors. However, in typical implementations of 

such head models in Brainstorm, they are down sampled due to computational issues. Subject-

related factors such as subject movement, attention, head size, and presence or absence of the 

hair could also affect the quality of the MEG measurements.    

 

Future extensions and applications 

Possibly, the method proposed by Benson and Winawer (2018) can be used to determine pRF 

model parameters directly from the subject’s anatomy using a Bayesian mapping approach, 

avoiding the participants to go for a fMRI scan session for pRF mapping (Benson & Winawer, 

2018). Also, the MEG stimuli were designed such that they were similar to the retinotopic stimuli 
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used for fMRI studies. However, faster stimuli can be used that are not in a temporally 

predictable sequence, since the MEG responses have a much higher temporal resolution than 

the fMRI BOLD response.  

There are several applications where our model can be used. One important application is to 

use the model to characterize the changes in pRF properties over time. For example, a previous 

study, Klein and colleagues have shown a shift in pRF position with attention (Klein et al., 2014). 

Our forward model can be used to study this change over time by using faster stimuli. Also, our 

forward model is not limited to the pRF models, but can be possibly be extended to other 

models that can make predictions on the cortical surface (Harvey, Klein, Petridou, & Dumoulin, 

2013; Stigliani, Jeska, & Grill-Spector, 2017; Zhou, Benson, Kay, & Winawer, 2018). Since the 

brain contains multiple topographic maps, this approach could be used for making predictions of 

these other maps as well (Harvey, Klein, et al., 2013; Mattay & Weinberger, 1999; Saenz & 

Langers, 2014).   

  

Conclusion 

Neuroscientists use a number of techniques to measure neural activity, each providing different 

information about brain activity. MEG measures the magnetic field induced by electric currents 

present in neural activity, whereas fMRI measures the metabolic demands associated with 

neural activity. In this paper, we have shown that it is possible to use stimulus referred models 

defined from fMRI responses to predict the MEG responses to retinotopic mapping stimuli. Our 

results thus support a common underlying mechanism of neural processing measured with the 

two modalities along with providing new possibilities to study visual processing at a high 

spatiotemporal resolution. 
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Supplementary figures 

 

 

 
 

 

Figure S1. Variance explained by the stimulus referred forward model for all 10 individual subjects. Topographic 

MEG sensor maps of variance explained by the model predicting the measured 10 Hz phase-referenced steady-state 

MEG responses. Predicted MEG response by the model explains up to ~60% of the variance in the measured MEG 

responses in posterior sensors. 
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Figure S2. Variance explained by the stimulus-referred forward model as a function of pRF center angle rotation for 

all 10 individual subjects. The pRFs estimated with fMRI were systematically rotated around the fovea, by -180 

degrees to 180 degrees from their original position in steps of 45 degrees. Predicted MEG responses were then 

recomputed for each of the rotation conditions. Per subject, variance explained values from a group of posterior 

sensors selected as the top 10 sensors with highest variance explained in each of the 9 rotation conditions were 

selected (red dots in schematic head) and averaged (red line). Error bars show 95%-confidence interval of the 

average across the selected sensors. While there are large individual variations, 6 out of 10 subjects have most 

variance explained in the MEG data when the original pRF positions were used in the stimulus-referred forward 

model. 
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Figure S3. Variance explained by the stimulus-referred forward model as a function of pRF size scale factor for all 10 

individual subjects. PRF sizes were systematically scaled from 5x smaller to 10x larger the original size. Similar to 

variations in pRF position, variance explained is averaged for a group of sensors including the top 10 sensors with 

the highest variance explained from each of the 19 size scaling conditions (red dots in the schematic head). Error 

bars show 95%-confidence interval of the average across the selected sensors. Although there are large variations 

between individual subjects, 6 out of 10 subjects showing a clear peak in variance explained for pRF sizes that are 

slightly smaller than the original pRF size (a scaling factor of 1). All subjects show a decrease in variance explained 

when the pRF size is scaled larger than the original pRF size. In some, but not all subject this decrease is followed by 

an increase in variance explained for very large-scale factors. 
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Chapter 3 

 

 

 

One in a million: How much do variations in single-neuron receptive 
fields contribute to population receptive fields? 
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Abstract 

Neurons in the visual cortex respond to stimuli in a specific region in the visual field known as 

their receptive field (RF). Neurons also have a preferred range of values in other stimulus 

properties such as spatial frequency. Electrophysiological investigations have shown that spatial 

frequency preference of single neurons is inversely related to RF size. Here we ask whether this 

inverse relation is also visible at the neural population level. Using population receptive field 

(pRF) models and fMRI we studied RF properties of populations of neurons in humans. In this 

study, we explored the differences in the pRF size across eccentricity (0.5 - 4.5 degrees) in 

visual field maps V1, V2 and V3 in response to stimuli containing different spatial frequencies 

(3, 6 and 12 cycles per degree). Contrary to known properties of neuronal RFs, pRF size did not 

vary with spatial frequency in any of the investigated visual field maps. Interestingly, we did find 

a decrease in variance explained by the model for higher spatial frequency (12 c/o) at higher 

eccentricities showing a differential preference for spatial frequencies across eccentricities at a 

population level. We speculate that differences in neuronal RF size are counteracted by 

interactions at the population level. Our results indicate that regularities in the properties of 

individual neurons may play a small role in the behavior of these neurons at the population 

level.  
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Introduction 

Every neuron in visual cortex prefers a region in the visual space where the presence of a 

stimulus elicits a response from the neuron, known as neuronal receptive field (RF). In addition 

to locations in the visual field, such a neuron is also selective for other visual features such as 

shape, orientation, and spatial frequency (Hubel & Wiesel, 1961, 1962, 1968, 1974). In animals, 

invasive single unit recordings and optical imaging techniques are used to study the properties 

of features preferred by single neurons or a small group of neurons. In humans, non-invasive 

techniques like fMRI along with computational models are predominantly used to determine the 

RF properties of a population of neurons. These models are referred to as population receptive 

field (pRF) models (Dumoulin & Wandell, 2008; K. N. Kay et al., 2013; Zuiderbaan et al., 2012). 

The most basic pRF model characterizes the population RFs with a preferred position (x, y) and 

size (σ), which reflects the RF properties of the individual neurons that constitute the 

populations. Given the typical neural densities (50,000 neurons per cubic mm of cortex) and 

conventional fMRI resolutions (2x2x2 mm), about 400,000 neurons can contribute to the pRF 

(Leuba & Garey, 1989; Rockel et al., 1980). Standard pRF mapping uses a full contrast 

checkerboard stimulus to elicit neuronal responses from a wide range of neurons in the 

population to get a good signal to noise ratio. However, some recent studies have also used 

stimuli that can elicit responses from a more focused population of neurons to study their 

properties in detail (Alvarez, De Haas, Clark, Rees, & Schwarzkopf, 2015; Dumoulin et al., 

2014; Dumoulin & Knapen, 2018; Harvey & Dumoulin, 2016; Yildirim, Carvalho, & Cornelissen, 

2018). In this study, we are investigating the properties of a specific population of neurons which 

are selective to spatial frequency content in a stimulus to determine if the neuronal RF 

properties are reflected in the population receptive field properties.  

Spatial frequency selectivity is one of the fundamental features of vision that is studied 

thoroughly. In animals, electrophysiology and optical studies have identified neurons selective 

for different spatial frequencies (Campbell & Robson, 1968; Enroth-Cugell & Robson, 1966; 

Maffei & Fiorentini, 1973). Further studies in monkey V1 have shown that the preferred average 

spatial frequency of neurons decreases as a function of eccentricity (De Valois, Albrecht, & 

Thorell, 1982; Tootell, Silverman, Hamilton, Switkes, & De Valois, 1988; Xu, Anderson, & 

Casagrande, 2007). fMRI studies have also investigated the spatial frequency selectivity of 

population of neurons in humans and identified a similar decrease in spatial frequency 

preference across eccentricity (Henriksson, Nurminen, Hyvärinen, & Vanni, 2008; Sasaki et al., 

2001). Some studies have also investigated the link between spatial frequency preferences of 
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neurons and their spatial RF size. In macaque V1, neurons selective to higher spatial 

frequencies were found to have smaller RF size and neurons selective to lower frequencies to 

have larger RF (De Valois et al., 1982; Schiller, Finlay, & Volman, 1976). This also agrees with 

the findings that low spatial frequency information is conveyed through magnocellular pathway 

known to contain cells with large RF size, whereas high spatial frequency is conveyed through 

parvocellular pathway known to have cells with small RF size (Hicks, Lee, & Vidyasagar, 1983; 

Kaplan & Shapley, 1982; Van Essen & DeYoe, 1995). However, no study has specifically 

reported a systematic change in pRF size with spatial frequency or eccentricity.  

Here, we investigate the spatial frequency selectivity of population of neurons by systematically 

exciting them with stimuli containing different spatial frequencies and measuring the change in 

their pRF properties. To this aim, we used stimuli that contained three different spatial 

frequencies, 3 c/o (cycles per degree), 6 c/o, and 12 c/o to probe the changes in the pRF size (σ) 

across spatial frequencies and eccentricities. If single-neuron RFs are reflected in the neural 

population RFs, we anticipate to find that different frequency content in the stimuli will excite the 

population of neurons sensitive to the corresponding frequency and in turn will cause the 

estimated pRF size to decrease with increasing spatial frequency. However, other factors 

contribute to the pRF as well, such as extra-classical RF interactions, and both random and 

systematic variations in RF positions. If the neuronal RF is only a small contributor to the entire 

neural population RF, we may not find a relationship between spatial frequency and pRF sizes. 

 

Methods  

Subjects 

Ten (10) subjects (7 males, age range 26 – 46 (M = 30.7 years, SD = 6.25 years)) participated 

in the study. One subject was excluded because of poor data quality due to technical issues 

associated with the scanner. Results shown here are from the remaining 9 subjects. All studies 

were performed with the informed written consent from the subjects. Study was approved by the 

Human Ethics Committee of University Medical Center Utrecht in accordance with the World 

Medical Association’s Declaration of Helsinki. 
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Stimuli 

Stimuli consisted of a stimulus carrier containing band-passed filtered noise (as shown in figure 

1, containing 3,6 and 12 c/o, chosen based on the frequency values used in the CSV-1000e 

contrast sensitivity tests in clinics) revealed through a bar aperture with the edges smoothed 

using a raised cosine (frequency =  1.7 c/o), that swept across the visual field in discrete steps in 

8 different bar configurations for a given scan (4 different orientations (0, 45, 90, 135 degrees) 

with two step directions for each orientation). The width of the bar aperture subtended 1/4th of 

the stimulus radius (1.5 and 5 degrees of visual angle, respectively). Each bar position lasted for 

a duration of 30s and the mean luminance block for 15 s. There was an extra 15 s of mean 

luminance block at the end of every scan, making the last blank last for 30s. Thus, total duration 

of one scan run was 315 seconds. We ran 3 scans with spatial frequency 3 c/o, 6 c/o and 4 

scans with spatial frequency 12 c/o per subject during one scan session. We adjusted the root 

mean square (RMS) contrast, calculated as the standard deviation of the pixel intensities, for all 

the individual spatial frequency stimuli be the same (RMS contrast = 10 %).   

The spatial frequency content of the stimuli was meant to activate the neurons selective 

for the corresponding spatial frequency and in turn affect the estimated pRF size parameters. 

The chosen stimulus will influence the pRF properties in the following manner: the size (𝜎𝑝𝑅𝐹) 

estimate from the pRF model depends on both neuronal and non-neuronal factors (Dumoulin & 

Wandell, 2008; A. T. Smith, Singh, Williams, & Greenlee, 2001) and their contribution to total 

size 𝜎𝑝𝑅𝐹  can be given by: 

 

𝜎𝑝𝑅𝐹
2 =  𝜎𝑛𝑅𝐹 

2 + 𝜎𝑝𝑣
2 + 𝑘,                                                                                                                       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

Where,  𝜎𝑛𝑅𝐹 represent the RF size of individual neurons, 𝜎𝑝𝑣 reflect the position scatter of 

neuronal RF and 𝑘 stands for the non-neuronal factors. Different spatial frequency content in 

the stimulus can activate different neuronal populations and hence change the  𝜎𝑛𝑅𝐹. Since we 

are comparing the pRF properties from the same fMRI voxel, 𝜎𝑝𝑣 can be considered to be same 

in every measurement. Thus, the RF size of the population of neurons should be equal to the 

RF sizes of the individual neurons constituting the population.  

Subjects performed a fixation dot task, in which the central fixation dot changed color and 

subjects were asked to report the change using a button press. Accuracy of the fixation dot was 

recorded as percentage of correct responses out of the total number of changes. All subjects 

had an accuracy of over 90% correct in the fixation dot task. 
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All stimuli were shown on a MR compatible and gamma corrected 32-inch BOLD screen from 

Cambridge systems (32 inches, 1920 x 1080 pixels, refresh rate of 120 Hz) using PsychToolbox 

(Brainard, 1997; Pelli, 1997) at 210 cm from the subjects’ eyes. Subjects viewed the stimuli 

reflected through a mirror attached to the coil of the scanner.  

 

 

 

Figure 1: Stimuli. (A) Example images showing one bar position of 3 c/o. The square indicates the section enlarged 

with examples for the three different stimulus conditions, (i) 3 c/o (ii) 6 c/o (iii) 12 c/o. The square was not present in 

the actual stimulus presentation. RMS contrast for the individual spatial frequency conditions were set to 10 % (B) 

Power spectrum showing the frequency content of individual images used in the scan, with red showing 3, green 

showing 6 and blue showing 12 c/o. Power spectrum was computed for images shown in every frequency condition 

only for the region within the bar aperture. The power spectra reveal the dominant spatial frequency in the stimulus, 

but also reveal that other spatial frequencies are present as well. (C) Schematic representation of the bar positions 

over time (in seconds) for individual spatial frequencies. The bar aperture swept through the visual field in 30 s (20 

TRs) in 8 directions with a mean luminance blank period (0% contrast) of 15 s after every oblique direction for the 

fMRI signal to return to the baseline. 
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MRI acquisition 

Anatomical scans were acquired using a 3D T1-weighted MP2RAGE sequence (TR - 6.2 ms, 

TE - 3 ms, flip angle - 5 degrees, FOV - 220 x 220 x 164 mm, voxel size - 0.6x0.6x0.6 mm) 

(Marques et al., 2010). Functional T2* weighted 2- dimensional EPI scans (2D-EPI, TR – 1.5s, 

TE – 22.5 ms, Flip angle – 65 degrees, FOV –216 x 216 x 97 mm, voxel size - 1.8 mm isotropic, 

57 slices) were acquired using a Philips 7T scanner. Each subject completed 10 functional runs 

in each session with 3 runs for 3 c/o and 6 c/o and 4 runs for the 12 c/o conditions.  

 

Processing of anatomical and functional data 

Anatomical scans were segmented into gray and white matter using an automatic segmentation 

pipeline using TOADS/CRUISE algorithm in MIPAV (Bazin & Pham, 2007) and hand corrected 

to minimize segmentation errors (https://www.slicer.org/). Functional data was preprocessed 

using AFNI (Cox, 1996) and the Matlab based Vistasoft toolbox 

(http://white.stanford.edu/software). Raw data were motion corrected using the AFNI command 

3dvolreg. Between scans motion correction was performed by aligning the first functional 

volume of each scan with every other scan. Within scans motion correction was done by 

aligning all the frames to the first frame. We corrected the scans for geometric distortions due to 

the magnetic field inhomogeneities. This was done by acquiring an EPI scan with a phase 

encoding direction opposite to the original EPI and applying a non-linear warping (Andersson et 

al., 2003).  

We then coregistered the motion corrected and distortion corrected scans on the T1 

weighted anatomy. The center of mass of the functional image was aligned with the center of 

mass of the anatomy, providing a good starting point to perform an affine transformation using 

the AFNI function, 3dAllineate. Results of the coregistration was assessed manually by visual 

inspection using various anatomical markers such as the boundaries for gray matter/ white 

matter and gray matter/ cerebrospinal fluid. Functional scans from all runs and runs from each 

of the conditions (spatial frequencies 3, 6 and 12 c/o) separately were averaged and interpolated 

to the anatomical segmentation. The pRF-model was then run on the resulting functional scans 

using the vistasoft toolbox (Dumoulin & Wandell, 2008). 

 

 

 

https://www.slicer.org/
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pRF analysis 

We estimated the pRF properties (position and size) for every cortical location using the pRF 

model (Dumoulin & Wandell, 2008). Briefly, a population receptive field for every cortical 

location is modeled as a 2-dimensional gaussian with parameters for its position (x, y) and size 

(σ). A predicted time course for every stimulus position is made combining the stimulus, model 

and the hemodynamic response function (HRF). The predicted time series is then compared to 

the measured fMRI time series and the model parameters that give the least residual sum of 

squares is used as the pRF properties for that cortical location. 

Specifically, for this study we computed the pRF parameters for each cortical location 

using the averaged functional data from all the runs (individual spatial frequency conditions, 3, 

6, and 12 c/o). After estimating the pRF parameters using a standard canonical HRF (Boynton et 

al., 1996; Friston et al., 1998), we ran an HRF fit over the cortical locations where the pRF 

model explained more than 10% of variance in the previous step, keeping all the pRF 

parameters constant (Harvey & Dumoulin, 2011). pRF parameters were then adjusted using the 

estimated HRF. We converted the resulting pRF parameters (x, y, sigma) to the traditional 

eccentricity and polar angle maps. We then delineated three visual areas (V1, V2, and V3) 

using these maps (Wandell, Dumoulin, & Brewer, 2007).  

pRF size parameters (sigma) for the individual conditions were refined using an 

optimization algorithm (Fletcher & Powell, 1963) while keeping the position (x, y) and the HRF 

constant. We then determined a linear function that describes the relation between pRF size 

and eccentricity for each visual area. We compared the slope and intercept from the linear 

function across different conditions. We performed a one-way ANOVA to determine whether the 

differences were significant for individual visual field maps across different conditions. 

 

Results 

Example pRF fits 

We recorded the fMRI BOLD time series from all cortical locations in visual field maps, V1, V2 

and V3. An example time series from a single cortical location from V2 shows peaks 

corresponding to the instances when the stimulus bar passed the RF of the population of 

neurons in the cortical location (figure 2A). Model fits for the high spatial frequency condition (12 

c/o) generally had lower variance explained in the measured time series compared to other 

spatial frequency conditions, even though we collected more data for this condition.  
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Figure 2: Example time series from a cortical location of an example subject. Black dashed lines in each panel 

indicate the measured time series from a cortical location in V2. Colored solid lines represent the predicted time 

series, with red, green, and blue showing 3, 6, and12 c/o respectively. Overall, model explained more than 70 % of 

variance in the estimated time series. A schematic diagram in the bottom shows the directions of bar pass. 

 

Differences in variance explained between different spatial frequencies 

Next, we compared variance explained by the pRF model for the different spatial frequencies. 

For spatial frequency condition 3 and 6 c/o, we found little variation in variance explained as a 

function of eccentricity and overall the model captured more that 40% of the variance in the 

data. In contrast, for the spatial frequency condition of 12 c/o, we find a decrease in variance 

explained by the model with eccentricity for individual subjects and average across subjects 

(Figure 3). We further compared the slopes of individual spatial frequencies against each other 

and found a significant decrease in the slope for the variance explained versus eccentricity 

relation for spatial frequency 12 c/o compared to 3 c/o (t(16) = 3.79, p = 0.0016 for V1, t(16) = 3.72, 

p = 0.0018 for V2 and t(16) = 2.18, p = 0.04 for V3) and 6 c/o (t(16) = 3.27, p = 0.004 for V1, t(16) = 

3.29, p = 0.004 for V2). For V3, the difference was not significant between spatial frequency 12 

c/o and 6 c/o (t(16) = 2.07, p = 0.054). Thus, we find that the variance explained as a function of 

eccentricity differs between the different spatial frequencies, presumably due to the decrease of 

neurons tuned to higher spatial frequencies at higher eccentricities (De Valois et al., 1982; 

Henriksson et al., 2008; Xu et al., 2007). 
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Figure 3: Relationship between variance explained with eccentricity. Variance explained plotted against 

eccentricity for one example subject (shown in first row) and average across 9 subjects with 95 % confidence interval 

of the distribution obtained by bootstrapping the slope and intercept values from individual subjects (shown in second 

row) for the three visual field maps, V1 (panels A and D), V2 (panels B and E) and V3 (panels C and F). Red, green 

and blue represent the data for 3, 6 and 12 c/o respectively. Variance explained by the model is decreasing with 

eccentricity for 12 c/o for all visual field maps compared to 3 and 6 c/o.  

 

No differences in pRF size between different spatial frequencies. 

We found an increase in the estimated pRF size with eccentricity for all fMRI voxels in the V1, 

V2 and V3 when averaged across subjects (figure 3B). For some subjects, the increase in pRF 

size was not observed in V1 (Supplementary figure 1). Despite the variance explained 

differences, we did not observe a decrease in pRF size for spatial frequencies 12 c/o compared 

to 3 and 6 c/o (figure 3B). Also, we did not observe a significant difference in the pRF size 

between different spatial frequencies for visual field maps V1, V2 and V3 across the 9 subjects 

(All F(24,2) < 0.88, all p > 0.42).  
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Figure 4: Relationship of pRF size with eccentricity. pRF size plotted against eccentricity for one example subject 

(shown in first row) and average across 9 subjects with 95 % confidence interval of the distribution obtained by 

bootstrapping the slope and intercept values from individual subjects (shown in second row) for the three visual field 

maps, V1 (panels A and D), V2 (panels B and E) and V3 (panels C and F). Red, green and blue represent the data 

for 3, 6 and 12 c/o respectively. pRF size is increasing with eccentricity for all spatial frequency conditions and visual 

field maps with no significant difference between the conditions. 

 

Discussion 

We compared pRF sizes of neurons selective to different spatial frequencies. We observed a 

decrease in variance explained by the model with increasing eccentricity for higher spatial 

frequency (12 c/o) and not for lower spatial frequencies (3 c/o and 6 c/o) suggesting a preference 

for higher spatial frequencies in the lower eccentricities compared to higher eccentricities. 

Although we find differences in variance explained by the pRF model, we did not find a 

significant difference in pRF size between different spatial frequencies.  

Apart from the individual RF sizes, pRF sizes estimated using pRF models are also 

influenced by other factors. Below we discuss whether our measured pRF sizes are affected by 

such factors. PRF sizes measured using pRF models capture both classical RFs and extra-
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classical RFs (Dumoulin et al., 2014). Extra-classical RFs are known to be present due to the 

intrinsic long-range cortical connections and are generally observed during the intercellular 

interactions necessary for processing complex stimuli such as natural images. Although we 

have limited such contextual interactions by using band-pass noise stimuli, which do not have 

any statistical regularities, it is still possible and likely that extra-classical interactions occur. We 

speculate that these may compensate for differences in classical RF sizes, particularly when RF 

sizes are small causing RFs to stay the same at the population level. This hypothetical 

counterbalance between classical and extra-classical RFs could explain the difference between 

known regularities in the RF sizes at the level of single neurons and our results at the level of 

neural populations. 

Spatial frequency preferences of neurons are known to be influenced by the luminance 

contrast at which the stimuli are presented (Henriksson et al., 2008; Lu & Roe, 2007). A higher 

preferred spatial frequency optimum was observed for lower contrasts by Henriksson and 

colleagues. Specifically, they observed that the highest % BOLD signal change for V1 was at a 

spatial frequency of 1.2 c/o at 1.7o and 0.18 c/o at 19o at high contrast (82 % Michelson contrast) 

(Henriksson et al., 2008). The spatial frequencies (3, 6 and 12 c/o) that we chose could thus fall 

in the high frequency optimum of these neurons. This would suggest that spatial frequencies 

lower than 2 c/o or contrasts lower than 10 % RMS contrast would have optimally excited the 

neurons that respond to low spatial frequencies. However, due to technical limitations we could 

not use either of these stimulus settings. Lower spatial frequencies will increase the wavelength 

such that it covers the entire bar (1.5o) width. Reducing the contrast below 10 % on the other 

hand would reduce the signal to noise ratio considerably. Also, we used a constant 10 % RMS 

contrast for all the spatial frequency conditions which in turn caused a lower perceived contrast 

for higher spatial frequencies compared to lower spatial frequencies. This could have 

counteracted the decrease in pRF size with spatial frequencies since low contrasts are typically 

known to cause larger pRF size in the single neuron level (Sceniak, Hawken, & Shapley, 2002). 

Using stimuli with a fixed perceived contrast could help to understand the effect of perceived 

contrast on pRF size.    

Another factor that can influence the estimated pRF size is the position scatter of the 

individual neurons in the population. pRF measurements at a given location in the visual field is 

determined by the mean RF of individual neurons and also the scatter around the mean 

location. Previous neurophysiological data have shown that RF scatter increases with RF size 

and eccentricity (Dow, Snyder, Vautin, & Bauer, 1981; Hetherington & Swindale, 1999; Hubel & 
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Wiesel, 1974). Given that RF scatter increases with RF size, it is unlikely that RF scatter 

influenced our results. However, the RF scatter could also change depending on the number of 

neurons within the recording site. Even though we compared neuronal populations from the 

same cortical locations, different sub population of neurons excited in each of the spatial 

frequency conditions could result in different scatter. However, previous studies have shown 

that such a sparse sampling of neurons from a population can affect the amplitude of the 

neuronal response (Yildirim et al., 2018) but not position scatter (Clavagnier, Dumoulin, & Hess, 

2015). So, we do not believe that our results are due to the position scatter of individual 

neurons. 

Hard edges in the bar aperture will introduce a broad range of frequency components in 

the stimulus. To avoid these broadband frequency components from driving neuronal 

responses, we windowed the bar edges with soft raised cosine edges. For the raised cosine, we 

used a frequency smaller than our smallest frequency (1.7c/o). Arguably, the responses are 

driven by the low frequency edges in all conditions and hence the same in all conditions. But a 

previous study have provided evidence that a contrast-reversing checkerboard stimulus 

generate response at the spatial frequency content of a moving ring stimulus and not to the 

edges (Engel, Glover, & Wandell, 1997). Thus, we consider it unlikely that our results are driven 

solely by the responses to the raised cosine edges.  

Previous studies have found that attention can modulate the responses in the attended 

location (Kastner, De Weerd, Desimone, & Ungerleider, 1998; Murray & Wojciulik, 2004; 

O’Craven, Downing, & Kanwisher, 1999; Wojciulik, Kanwisher, & Driver, 1998). Attention can 

also have an influence in both the pRF size and position estimates (Klein et al., 2014; van Es, 

Theeuwes, & Knapen, 2018). However, we don’t think that the pRF sizes observed in our 

results are influenced by an attention towards the stimuli. Firstly, attention related changes are 

typically observed in all the visual field maps and increase higher up the visual hierarchy 

(Buffalo, Fries, Landman, Liang, & Desimone, 2010; Cook & Maunsell, 2002; Klein et al., 2014; 

Montijn, Klink, & Van Wezel, 2012; O’Connor, Fukui, Pinsk, & Kastner, 2002; Posner & Gilbert, 

1999). But in our results, we do not find any increase in the difference with visual hierarchy. 

Second, the subjects performed an attention task in the center of the screen and all subjects 

performed equally well in all conditions. Therefore, we do not believe that differences in 

attention are influencing our results. 

Non-neural factors such as eye movements and head movements will also affect pRF 

sizes. However, we don’t think that these effects influence our results. Previous studies 
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simulating the effects of eye movements in the pRF size estimation have found that it causes an 

increase in the pRF sizes for all the visual field maps, which was not observed here (Klein et al., 

2014; Levin et al., 2010). Moreover, almost all the subjects showed an accuracy of over 90% in 

the fixation dot task, indicating proper fixation. Head movement during the scan can also cause 

changes in the fMRI responses and hence affect the pRF model parameters. So, head motion 

was minimized during the scan using foam padding, and a motion correction algorithm was 

used to correct for any motion artifact in the data (Cox, 1996). Head motion was found to be 

less than one voxel size for most subjects for most runs, for which a previous study did not 

observe any large effects in the estimation of the pRF parameters (van Dijk, de Haas, 

Moutsiana, & Schwarzkopf, 2016). The presence of motion artifacts causes noisy measured 

responses and a reduced model prediction accuracy. However, our results showed above 70% 

variance explained between the model predictions and the fMRI responses. Therefore, we do 

not believe that eye movements or head movements can explain our results. 

 

Conclusion 

In summary, we have provided evidence for a difference in the preference for high and low 

spatial frequencies at different eccentricities through a decrease in the ability of the model to 

predict responses to higher spatial frequency at larger eccentricities. Also, we have shown that 

there is no difference in the pRF size values between different spatial frequencies across 

eccentricities, even though there are evidences that RF size decreases with spatial frequencies 

at a neuronal level. Thus, our findings show that the properties at the neuronal level can differ 

from those estimated in the population level.  
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Supplementary figure 

 

 

Figure S1: pRF size versus eccentricity fit and variance explained versus eccentricity fit for individual subjects for 

spatial frequencies 3 c/o (red), 6 c/o (green) and 12 (blue) c/o and visual field maps V1, V2 and V3 (shown in columns 
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1,2 and 3 respectively). Lines show the fits to the distribution of values and the dots with error bars depict the mean 

of the values in 8 bins and the standard error of the mean. pRF size shows an increase with eccentricity for all 

subjects in V2 and V3. For V1, some subjects do not show a positive slope. Variance explained values are 

decreasing with eccentricity for spatial frequency 12 c/o for all subjects.   
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Chapter 4 

 

 

 

Early extra-striate cortex supports receptive field interactions to 
process natural images 
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Abstract  

 

Every neuron in the visual cortex processes a limited region in the visual field known as its 

classical receptive field (RF). Intercellular interaction beyond this classical RF, i.e. extra-

classical interaction, is required to process the information rich natural scenes we experience 

every day. Here, we investigate where in the visual cortex, these intercellular interactions 

responsible for the extra-classical RF interactions in natural images occur. For this, we use 2 

different stimuli: natural images and phase scrambled versions of the images. Phase scrambling 

removes the statistical regularities in natural images but maintains the low-level characteristics. 

Removing the statistical regularities reduces the contextual interactions and thereby result in a 

smaller RF compared to natural images. We use functional magnetic resonance Imaging (fMRI) 

and population RF (pRF) modelling techniques to characterize and compare the pRF properties 

of neurons in response to both the natural stimuli and the phase scrambled stimuli. We 

observed that pRF sizes determined using natural images are larger compared to the phase 

scrambled condition in V1, V2 and V3. We conclude that the increased intercellular interactions 

responsible for processing higher order statistical regularities in natural images are encoded in 

early extra striate visual field maps (V1, V2 and V3). 
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Introduction  
 

Much of visual cortex is organized in retinotopic maps with every neuron responding to a certain 

region in the visual field, known as its receptive field (RF). The RF is often divided into the 

classical and extra-classical RF. Stimulation in the classical RF directly modulates neuronal 

responses. Classical RFs are typically characterized using simple stimuli such as dots and lines 

and are selective to properties such as orientation, position, spatial frequency, and direction of 

motion (Andrews & Pollen, 1979; Hartline, 1940; Hubel & Wiesel, 1961, 1962, 1968; Kulikowski, 

Marčelja, & Bishop, 1982; Spillmann, 2014; Von Baumgarten & Jung, 1952). Stimulation in the 

extra-classical RF indirectly modulates neural responses depending on the stimulus 

characteristics in both the classical and extra-classical RF and may be described as contextual 

interactions. Natural images, for example, are complex stimuli containing simple features such 

as local luminance edges or oriented curve tangents which interact with each other resulting in 

different statistical properties. Our visual system is shaped and refined during the process of 

evolution to adapt to the visual scenes that are commonly found in nature, and hence 

processing these contextual interactions plays a crucial role in the working of visual system.   

A large group of studies have investigated the neural mechanism underlying contextual 

interactions (Allman et al., 1985; Fitzpatrick, 2000; Gilbert & Wiesel, 1990; Jones et al., 2002; 

Knierim & Van Essen, 1992; Sillito, 1995). These studies have found that contextual interactions  

require integration of information beyond the classical receptive fields, known as the extra-

classical receptive field which enables a transition from local to global processing (Kapadia et 

al., 1995; C.-Y. Li, 1996; Maffei & Fiorentini, 1976; Sengpiel, Sen, & Blakemore, 1997; Vinje & 

Gallant, 2000; Walker, Ohzawa, & Freeman, 1999). Stimulation of these extra-classical regions 

by themselves do not activate the neurons but can modulate its activity leading to a variety of 

perceptual phenomena, such as contour integration (W. Li, Piëch, & Gilbert, 2006), figure-

ground segregation (V. A. Lamme, 1995), perception of uniform surfaces, filling-in and grouping 

(Grossberg & Mingolla, 1985; V. A. F. Lamme, Super, & Spekreijse, 1998; Spillmann & Werner, 

1996). Yet, most of these studies have used synthetic rather than natural images to investigate 

the process of contextual interactions. 

However, it is important to validate the effects seen with the synthetic stimuli using 

naturalistic stimuli to see if these results can be extended to the processing of natural scenes. 

Though some studies appear to validate the effects seen with synthetic stimuli in naturalistic 

stimuli (Ringach, Hawken, & Shapley, 2002; Smyth, Willmore, Baker, Thompson, & Tolhurst, 

2003; Touryan, Felsen, & Dan, 2005), others point out that naturalistic stimuli are required to 
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adequately understand brain responses to natural visual scenes (Braun, 2003; David, Vinje, & 

Gallant, 2004; Felsen & Dan, 2005; Hansen, Essock, Zheng, & DeFord, 2003; Kayser, Körding, 

& König, 2004; Simoncelli, 2003). For example, natural images have higher order statistics that 

elicit complex non-linear neural responses that are not typically found in synthetic stimuli (David 

et al., 2004; Gilbert & Wiesel, 1990). Specifically, the higher order structure that is particular to 

natural images is determined by the phases of the different frequency components, and it is 

suggested that the relative phases influence the neural responses seen with natural images 

(Adelson & Bergen, 1985; Felsen, Touryan, Han, & Dan, 2005; Kayser, Salazar, & Konig, 2003; 

Mechler, Victor, Purpura, & Shapley, 1998; Weliky, Fiser, Hunt, & Wagner, 2003). One of the 

studies showed that the enhanced feature sensitivity of neurons was due to the phase spectra 

of natural images (Felsen et al., 2005). Hence, we assert it is critical to evaluate neural 

properties using naturalistic images.  

Here we investigate whether these extra-classical interactions occur in response to 

natural images in visual field maps V1 to V3. We hypothesize that the contextual interactions 

that will take place while viewing the natural images will not be found for the phase scrambled 

images. To remove the higher order statistical regularities responsible for eliciting a contextual 

interaction from the natural images, we scrambled the phases of the different frequency 

components of the images. Using functional magnetic resonance imaging (fMRI), we can 

measure the responses from millions of neurons to a visual stimulus in humans. Computational 

models can link these responses to stimuli and characterize the aggregate receptive field 

properties of a population of neurons. The aggregate receptive field for such a neuronal 

population is called its population receptive field (pRF) and the computational model that 

estimates the pRFs, is referred to as the pRF model (Dumoulin & Wandell, 2008; K. N. Kay et 

al., 2013; Zuiderbaan et al., 2012). The most basic pRF model summarizes the pRF properties 

by their position (x, y) and size (𝜎𝑝𝑅𝐹). Here we investigate whether pRF sizes change by 

viewing natural images compared to the phase scrambled natural images. We see these 

changes in pRF size as a measure of the presence of extra classical interactions. In a previous 

study, contextual interactions of contour integration were observed as pRF size changes in V2 

and V3 but not in V1 and later visual field maps (Dumoulin et al., 2014). Consequently, we 

hypothesize that the presence of contextual integration mechanisms will cause the pRF size 

estimates to increase for natural images in early visual field maps V2 and V3.  
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Methods   
 

Subjects 

10 subjects (6 females, age range 26 – 46, (M = 30.4 years, SD = 6.13 years)) participated in 

this study. All subjects had normal or corrected-to-normal visual acuity. All studies were 

performed with the informed written consent of the subjects. Studies were approved by the 

Human Ethics Committee of the University Medical Center Utrecht in accordance with the World 

Medical Association’s Declaration of Helsinki.  

 

Stimuli 

Stimuli consisted of a stimulus carrier (as shown in figure 1) revealed through a bar aperture 

that swept across the visual field in discrete steps in 8 different bar configurations for a given 

scan (4 different orientations (0, 45, 90, 135) with two step directions for each orientation).  

The width of the bar aperture subtended 1/4th of the stimulus radius (1.5 and 5 degrees 

of visual angle, respectively). Each bar position lasted for a duration of 30s and the mean 

luminance block for 30 s. Total duration of one scan run was 6 minutes. 3 to 4 runs each of 

natural and phase scrambled natural condition was run per subject during one scan session. 

Subjects performed a fixation dot task, in which the central fixation dot changed color and 

subjects were asked to report the change using a button press. Accuracy of the fixation dot was 

recorded as percentage of correct responses out of the total number of changes. Due to the 

malfunctioning of the response box in the scanner, performance accuracy could not be 

measured for all the runs for one of the subjects and for 2 out of 5 runs for another subject. All 

other subjects had an accuracy of over 90% correct in the fixation dot task. 

All stimuli were shown on a MR compatible 32-inch BOLD screen from Cambridge 

systems (32 inches, 1920 x 1080 pixels, refresh rate of 120 Hz) using PsychToolbox (Brainard, 

1997; Pelli, 1997) at 210 cm from the subjects’ eyes. Subjects viewed the stimuli reflected 

through a mirror attached to the coil of the scanner.  

 

Stimulus carriers 

We used two types of carrier stimulus images. The first type was a set of natural images 

including images of landscapes, buildings, animals, faces  taken from the ‘Berkeley 

Segmentation Dataset and Benchmark’ (Martin, Fowlkes, Tal, & Malik, 2001). The second type 

was made from the same natural images, but with their phase values assigned in a random 

order, resulting in a noise pattern as shown in figure 1A. Different stimulus carriers can excite 
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different population of neurons and influence the pRF size estimate from the pRF model as 

described below.  

The size (𝜎𝑝𝑅𝐹) estimate from the pRF model depends on both neuronal and non-

neuronal factors (Dumoulin & Wandell, 2008; A. T. Smith et al., 2001) and their contribution to 

total size 𝜎𝑝𝑅𝐹  can be given by: 

 

𝜎𝑝𝑅𝐹
2 =  𝜎𝑛𝑅𝐹 

2 + 𝜎𝑝𝑣
2 + 𝑘,                                                                                                                       (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

Where, neuronal factors are represented by both 𝜎𝑛𝑅𝐹 (mean neuronal RF size) and 

𝜎𝑝𝑣  (position variance of neuronal RF) and the non-neuronal factors by 𝑘. At the spatial 

resolution of fMRI, pRF models can capture both the classical and extra classical RF for a 

population of neurons (Dumoulin et al., 2014). Thus, 𝜎𝑛𝑅𝐹 can be divided into a classical (𝜎𝑐𝑅𝐹) 

and an extra-classical RF (𝜎𝑒𝑐𝑅𝐹): 

 

𝜎𝑛𝑅𝐹
2 =  𝜎𝑐𝑅𝐹 

2 + 𝜎𝑒𝑐𝑅𝐹
2                                                                                                                              (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

 

The difference in the population receptive field (𝜎𝑝𝑅𝐹) between natural (n) and phase scrambled 

natural (s) images for an individual population of neurons is given by: 

 

  

𝜎𝑝𝑅𝐹(𝑛−𝑠)
2 =  𝜎𝑝𝑅𝐹(𝑛) 

2 − 𝜎𝑝𝑅𝐹 (𝑠)
2                                                                                                           (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 

 

 

Given that the experimental conditions and stimulus aperture are constant between the 

conditions and the same recording sites are compared, we assume that the position variance 

and non-neuronal factors (𝜎𝑝𝑣  and 𝑘, in formula 1) are the same for both conditions and cancel 

out. Thus, combining equations 1, 2 and 3,  

 

𝜎𝑝𝑅𝐹(𝑛−𝑠)
2 =  𝜎𝑛𝑅𝐹(𝑛−𝑠)

2                                                                                                                                 

 

                                =  𝜎𝑐𝑅𝐹(𝑛−𝑠) 
2      +  𝜎𝑒𝑐𝑅𝐹 (𝑛−𝑠) 

2                                                                                (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 
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We expect that any difference in the pRF size is due to the difference of intercellular long-range 

interactions occurring when viewing natural images, but not when viewing the phase scrambled 

images, since phase scrambling removes the contextual information from the images. Thus, the 

expected increase in pRF size for natural images will be driven by extra classical RF 

interactions: 

 

 𝜎𝑝𝑅𝐹(𝑛−𝑠)
2 =  𝜎𝑒𝑐𝑅𝐹 (𝑛−𝑠) 

2                                                                                                                 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

 

 

 
 

 

Figure 1. Example stimuli. (A) pRF mapping stimuli consisted of bar apertures revealing the carriers, which 

consisted of either a natural image (left) or a phase scrambled natural image (right). A fixation dot was presented in 

the center which changed color between red and green. The stimulus was presented within a circular window, with a 

radius of 5 degrees of visual angle. (B) Two pairs of stimulus carrier examples for both conditions. The carrier image 

changed twice within a volume acquisition (TR) (C) Schematic representation of the bar positions over time (in 

seconds). The bar aperture swept through the visual field in 30 s (20 TRs) in 8 directions with a mean luminance 

blank period (0% contrast) of 30 s after every cardinal direction for the fMRI signal to return to the baseline. 

 

MRI acquisition  

Anatomical scans were acquired using a 3D T1-weighted MP2RAGE sequence (TR - 6.2 ms, 

TE - 3 ms, flip angle - 5 degrees, FOV - 220 x 220 x 164 mm, voxel size - 0.6x0.6x0.6 mm). 

Functional T2* weighted 2- dimensional EPI scans (2D-EPI, TR – 1.5s, TE -25 ms, Flip angle - 
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70 degrees, FOV – 180 x 180 x 50 mm, voxel size 1.8 mm isotropic, 28 slices) were acquired 

using a Philips 7T scanner. Each subject completed 6-8 functional runs in each session with 

equal number of runs for the natural and phase scrambled natural condition.  

 

Processing of anatomical and functional data 

Anatomical scans were segmented into gray and white matter using an automatic segmentation 

pipeline using TOADS/CRUISE algorithm in MIPAV (Bazin & Pham, 2007) and hand corrected 

to minimize segmentation errors (https://www.slicer.org/).  

Functional data was preprocessed using AFNI (Cox, 1996) and the Matlab based 

vistasoft toolbox (http://white.stanford.edu/software). Raw data were motion corrected using the 

AFNI command 3dvolreg. Between scans motion correction was performed by aligning the first 

functional volume of each scan with every other scan. Within scans motion correction was done 

by aligning all the frames to the first frame. We applied the same motion correction for all the 

runs from both the natural and phase scrambled natural conditions and averaged all the runs 

from both conditions together and each condition separately, resulting in 3 averaged functional 

data sets. Averaged functional scans were then coregistered on the T1 weighted anatomy. The 

center of mass of the functional image was aligned with the center of mass of the occipital lobe 

of the anatomy (obtained by clipping in the anterior posterior direction), providing a good starting 

point to perform an affine transformation using the AFNI function, 3dAllineate, using a two-pass 

approach. This step performs a set of coarse alignments, allowing for large rotations and shifts 

and uses the best alignments for a fine transformation stage. Next, another stage of affine 

transformation was performed with a one pass option without blurring, allowing only small 

rotations and shifts. Results of the coregistration was assessed manually by visual inspection 

using various anatomical markers such as the boundaries for gray matter/ white matter and gray 

matter/ cerebrospinal fluid. Functional scans from all runs and runs from each of the conditions 

(natural image and phase scrambled natural image) separately were averaged and interpolated 

to the anatomical segmentation. The pRF-model (Dumoulin & Wandell, 2008) was then run on 

the resulting functional scans using the vistasoft toolbox. 

 

pRF analysis 

We estimated the pRF properties (position and size) for every cortical location using the PRF 

model (Dumoulin & Wandell, 2008). Briefly, a population receptive field for every cortical 

location is modeled as a 2-dimensional gaussian with parameters for its position (x, y) and size 

(sigma). A predicted time course for every stimulus position is made combining the stimulus, 

https://www.slicer.org/


` 

74 
 

model and the hemodynamic response function (HRF). The predicted time series is then 

compared to the measured fMRI time series and the model parameters that give the least 

residual sum of squares is used as the pRF properties for that cortical location. We used the 

pRF-model with a fitted HRF (hemodynamic response function) to determine the pRFs. 

Specifically, for this study we computed the pRF parameters for each cortical location 

using the averaged functional data from all the runs (including both natural and phase 

scrambled natural conditions). After estimating the pRF parameters using a standard canonical 

HRF (Boynton et al., 1996; Friston et al., 1998), we ran an HRF fit over the cortical locations 

where the pRF model explained more than 10% of variance in the previous step, keeping all the 

pRF parameters constant (Harvey & Dumoulin, 2011). pRF parameters were then adjusted 

using the estimated HRF. We converted the resulting pRF parameters (x, y, sigma) to the 

traditional eccentricity and polar angle maps. We then delineated four visual areas (V1, V2, V3, 

LO1+LO2) using these maps (Wandell et al., 2007).   

pRF size parameters (sigma) for the individual conditions were refined using an 

optimization algorithm (Fletcher & Powell, 1963) while keeping the position (x, y) and the HRF 

constant. We then computed the pRF size difference between the two conditions. For this, we 

determined a linear function that described the relation between pRF size and eccentricity for 

each visual area. We then computed the relative difference in pRF size at a central eccentricity 

(2.5 degrees of visual angle) between the two conditions as shown in equation 6.  

 

𝑦 =
𝑥1 − 𝑥2

(𝑥1 + 𝑥2)
2

                                                                                                                                         (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

  

Where, 𝑦 is the relative difference in pRF size, 𝑥1 is the central pRF size for the natural 

condition, 𝑥2 is the central pRF size for the phase scrambled condition. The relative difference is 

calculated to account for the increase in pRF size over the visual hierarchy. Resulting values 

were then averaged across 10 subjects per visual region. We performed a one-way repeated 

measures ANOVA to determine whether the differences were significant for individual visual 

field maps and across visual field maps. 
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Results  

 
Population receptive field size increases with eccentricity in all visual areas:  

Figure 2a shows two example BOLD fMRI responses for a single recording site from V3 elicited 

by viewing a moving bar aperture carrying natural images and phase scrambled natural images 

respectively. Predicted responses to the corresponding stimuli shows that the model explains up 

to 90% of the variance in the measured data in both conditions. We observe a systematic 

increase in the pRF size value with eccentricity for V1, V2 and V3 and an increase in pRF size 

value with visual hierarchy as expected from previous studies (Amano, Wandell, & Dumoulin, 

2009; Burkhalter & Van Essen, 1986; Dumoulin & Wandell, 2008; Felleman & Van Essen, 1987; 

Gattass, Gross, & Sandell, 1981; Harvey & Dumoulin, 2011; Newsome, Maunsell, & van Essen, 

1986; Rosa, Sousa, & Gattass, 1988; Winawer, Horiguchi, Sayres, Amano, & Wandell, 2010).  

 

  
 

Figure 2: Example fMRI data and pRF fits from 1 subject. (A) Black and gray lines with dots indicate % BOLD 

fMRI responses elicited by viewing natural and phase scrambled stimuli respectively. Green and blue lines indicate 

their corresponding predicted responses. The fMRI time series are from one recording site from V3 and show 8 

peaks corresponding to the 8 times that the bar aperture swept through the location of the pRF in the visual field, in 

different directions. Predicted pRF responses capture more than 90 % of variance (r2) in the measured responses. 

(B) Relationship between pRF size and eccentricity in V1, V2 and V3. Left and right panel shows the natural and 

phase scrambled natural conditions respectively. Within each map, pRF size increases with eccentricity. The shaded 

error regions indicate the 95% confidence interval. 
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Larger population receptive field sizes in V1, V2 and V3 when viewing natural images  

We summarized the pRF size values by taking the pRF size value at a central eccentricity from 

the linear fit of pRF size versus eccentricity (figure 2B). pRF sizes were generally larger for 

natural than for phase scrambled images (condition: F(1,9)= 18.12, p=0.002) and this difference 

between conditions increased from V1 to V2 to V3 (condition x ROI: F(2,18)= 17.64, p<0.01, 

condition (natural vs. phase scrambled) x ROI (V1, V2, V3) repeated measures ANOVA for 10 

subjects). When tested per visual field map, the difference was significant in V1, V2 and V3 (V3: 

t(9)= 4.74, p=0.001 ; V2: t(9)= 3.65, p= 0.005; V1: t(9)= 2.38, p= 0.0407). Illustrating that the 

difference increased in magnitude from V1 to V2 to V3, we found that the difference was larger 

in V3 than in V1 (F(1,9)=19.78, p=0.0016) and V2 (F(1,9)=25.92, p<0.01), and larger in V2 than in 

V1 (F(1,9)=8.42, p=0.017) 

 

 

 

 
 

Figure 3: pRF size differences (A) Average pRF sizes for early visual field maps V1, V2 and V3 with the natural 

image condition in green and the phase scrambled natural image condition in blue. pRF sizes increase across the 

visual hierarchy. (B) Normalized pRF size difference between natural and phase scrambled conditions show that the 

pRF size is larger when viewing natural as compared to phase-scrambled images in all 3 visual areas. Error bars 

represent the standard error of the mean in both (A) and (B). 

 

Discussion  
 

We investigated the neural mechanisms underlying the processing of complex contextual 

stimuli, namely natural images. We hypothesized that the aggregate receptive field size of a 

population of neurons will increase when they are processing natural images compared to 

phase scrambled natural images due to the presence of an extra-classical intercellular 
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interactions (Field, Hayes, & Hess, 1993; Kapadia, Ito, Gilbert, & Westheimer, 1995; C.-Y. Li, 

1996; Maffei & Fiorentini, 1976; Sengpiel, Sen, & Blakemore, 1997; Vinje & Gallant, 2000; 

Walker, Ohzawa, & Freeman, 1999). In line with our hypothesis, we found an increase in pRF 

sizes for visual areas V1, V2 and V3 when viewing natural images. We attribute this pRF size 

difference to the interaction of neurons beyond the classical receptive field required to process 

the complex contextual information present in natural images.  

Our results are in line with the previous study by Dumoulin et al, where they found an 

increase in pRF size for V2 and V3 during contour integration using synthetic images (Dumoulin 

et al., 2014). Moreover, the percentage increase in pRF size normalized for visual areas are 

very similar (around 10% increase in pRF size for V3). The increase in pRF size found in our 

results is also in agreement with other observations from human and macaque showing an 

increased activation of V2 neurons in response to the statistical regularities in natural images 

(Freeman, Ziemba, Heeger, Simoncelli, & Movshon, 2013; Walker et al., 1999). Also, our results 

are consistent with previous literature showing that V2 and later areas respond to angles and 

curvatures, which are an integral part of naturalistic images (Anzai, Peng, & Van Essen, 2007; 

Hegdé & Van Essen, 2000; Ito & Komatsu, 2004; Pasupathy & Connor, 1999). Last, we show 

that these previous results derived from viewing synthetic images extend to more naturalistic 

images. 

Higher visual areas such as LO1 and LO2 are typically implicated in the processing of 

objects (Grill-Spector, Kourtzi, & Kanwisher, 2001; Larsson & Heeger, 2006; Mazer & Gallant, 

2000). Since our presented natural images contain objects, we also checked for extra-classical 

interactions occurring in LO1 and LO2. There are no previous reports of pRF size increase in 

response to a contextual stimulus. However, we did not find a significant pRF size change in 

these areas (supplementary figure 3). This could be due to the larger pRF sizes in these regions 

in combination with the limited size of the stimulus window and, consequently, an inability of the 

model to capture these differences. Alternatively, it’s possible that integration of the higher order 

structures in natural images are happening at early visual areas and these are then 

communicated with these later areas. This could result in a signal amplitude change and not 

necessarily a change in pRF size (Dumoulin et al., 2014).  

Apart from the average RF (classical and extra classical) size of the underlying neuronal 

population that was excited by the stimuli, measured pRF size changes could also be the result 

of other nuisance neural components which are unrelated to the response to the stimuli, such as 

position scatter. Position scatter of the individual neurons within the recording site are known to 

contribute to the overall pRF size (Dumoulin & Wandell, 2008; Hubel & Wiesel, 1974). However, 
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since we are comparing the same cortical locations for both natural image and control stimuli, 

we can be sure that the changes because of the position scatter will be cancelled out.  

Alternatively, hemodynamic response properties may influence the measured pRF sizes 

(Dumoulin & Wandell, 2008; Klein et al., 2014). Linking neural activity to fMRI measurements 

should also take into account that the neural activity is indirectly measured as the hemodynamic 

changes. So, there can be differences in the pRF estimation depending on the hemodynamic 

response function (HRF) of the neuronal population. Again, since we compared the pRF sizes 

from the identical neuronal population for both conditions, we assume that the HRF between the 

two conditions do not vary. 

Non-neural factors such as eye movements and head movements will also affect pRF 

sizes. However, we don’t think that these effects influence our results. Previous studies 

simulating the effects of eye movements in the pRF size estimation have found that it causes an 

increase in the pRF sizes for all the visual field maps, which was not observed here (Klein et al., 

2014; Levin et al., 2010). Moreover, almost all the subjects showed an accuracy of over 90% in 

the fixation dot task, indicating proper fixation. Head movement during the scan can also cause 

changes in the fMRI responses and hence affect the pRF model parameters. So, head motion 

was minimized during the scan using foam padding, and a motion correction algorithm was 

used to correct for any motion artifact in the data (Cox, 1996). Head motion was found to be 

less than one voxel size for most subjects for most runs, for which a previous study did not 

observe any large effects in the estimation of the pRF parameters (van Dijk et al., 2016). The 

presence of motion artifacts causes noisy measured responses and a reduced model prediction 

accuracy. However, our results showed above 90% variance explained between the model 

predictions and the fMRI responses. Therefore, we do not believe that eye movements or head 

movements can explain our results. 

Natural images are rich in information content compared to the phase scrambled 

condition, which could cause increased attention towards the natural images. Previous studies 

have found that attention can modulate the responses in the attended location (Kastner et al., 

1998; Murray & Wojciulik, 2004; O’Craven et al., 1999; Wojciulik et al., 1998). Attention can also 

have an influence in both the pRF size and position estimates (Klein et al., 2014; van Es et al., 

2018). However, we don’t think that the pRF size changes observed in our results are caused 

by an increased attention for the natural images. Firstly, attention related changes are typically 

observed in all the visual field maps and increase higher up the visual hierarchy (Buffalo et al., 

2010; Cook & Maunsell, 2002; Klein et al., 2014; Montijn et al., 2012; O’Connor et al., 2002; 

Posner & Gilbert, 1999). However, we see that the pRF changes are high in V2 and V3 but not 
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in higher areas like LO1 and LO2. Second, the subjects performed an attention task in the 

center of the screen and all subjects performed equally good in both the conditions. Therefore, 

we do not believe that differences in attention are underlying our results. 

 

Conclusion 

In summary, we show the presence of an increased intercellular interaction in response to 

natural images in early extra-striate areas, V1, V2 and V3. We have shown that the intercellular 

interactions observed in synthetic stimuli translate to natural stimuli.  
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Supplementary figures  
 

 

 
 

S1: pRF size vs eccentricity for 10 subjects (visual field maps V1, V2, V3, LO1, LO2). For each subject, the left 

panel represents the natural image condition and the right panel represents the phase scrambled natural image 

condition. pRF size increases with eccentricity for all visual field maps, as expected. Shaded error regions indicate 

the 95 % confidence interval. 
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S2: Normalized pRF size difference between natural and phase scrambled conditions: All subjects show an 

increase in pRF size for V2 and V3 and all except subject 6 and 7 for V1. For LO1 and LO2, this difference is not 

consistent. Error bars represent the standard error of the mean. 
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S3: Average central value difference for all visual field maps. Mean pRF size across 10 subjects with error bar 

showing the standard error of the mean for all visual field maps including LO1 and LO2.  
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Chapter 5 

 

 

The functional architecture of the visual cortex in psychotic patients 
with visual hallucinations 
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Abstract 

 

Visual hallucinations are the second most common type of hallucinations in patients with 

schizophrenia after auditory hallucinations. In addition to visual hallucinations, patients with 

schizophrenia demonstrate abnormal visual perception in various tasks. Both abnormal visual 

perception and visual hallucinations are often proposed to be caused by an imbalance between 

the cortical excitation and inhibition. Here, we compared the functional architecture in visual 

cortex between patients with and without visual hallucinations and healthy control participants 

by analyzing population receptive field (pRF) properties. Specifically, we hypothesized that 

suppressive surround mechanisms are associated with visual hallucinations in patients with 

schizophrenia. We estimated the pRF properties using conventional moving bar stimuli, pRF 

modeling and functional MRI and compared pRF properties in visual field maps V1 to hV4. Our 

results show a reduced surround size in hV4 for patients with schizophrenia having visual 

hallucinations compared to patients without visual hallucinations. We speculate that this 

decrease in suppressive surround leading to an imbalance in excitatory and inhibitory 

mechanism could contribute to visual hallucinations in patients with schizophrenia.  
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Introduction 

Schizophrenia is a neuropsychiatric disorder involving chronic or recurrent psychosis (American 

Pyschiatric Association, 2000). One of the core symptoms of schizophrenia is hallucinations. 

Hallucinations in the auditory domain are studied extensively in schizophrenia, but visual 

hallucinations are usually considered rare (Bowman & Raymond, 1931; Goodwin & Jamison, 

2007; Small, Small, & Andersen, 1966; Waters et al., 2014). Thus, visual hallucination have 

been neglected in psychiatric and psychotic disorders though they are studied extensively in 

eye diseases and neurologic disorders (S. W. Anderson & Rizzo, 1994; Carter, 2015; Collerton, 

Perry, & McKeith, 2005; Holroyd & Wooten, 2006; Imamura et al., 1999; Matsui et al., 2006). 

However, recent studies have challenged the idea that visual hallucinations are atypical or 

uncommon in psychosis, with a lifetime prevalence rate of 37 % (van Ommen, van Laar, 

Cornelissen, & Bruggeman, 2019; Waters et al., 2014). Following a phenomenological study 

which looked at the epidemiology and clinical characteristics of visual hallucinations in 

psychosis (van Ommen et al., 2019), this study aims to understand its neural mechanisms. We 

do this by investigating whether an altered neural architecture is associated with visual 

hallucinations in patients with schizophrenia.  

Interestingly, in addition to visual hallucinations, patients with schizophrenia show 

atypical performance in a range of visual perception tasks. Some of these include unusual 

appearance of familiar objects or scenes (Phillipson & Harris, 1985), decreased contrast 

sensitivity (Slaghuis, 1998), poor motion processing (Chen, Levy, Sheremata, & Holzman, 2004; 

Kim, Wylie, Pasternak, Butler, & Javitt, 2006), reduced orientation discriminability (Tibber et al., 

2015), impaired spatial frequency processing (Slaghuis, 1998), inability to detect contours 

embedded in noise (Robol et al., 2013), and altered effects of prior knowledge on interpretation 

of visual input (Silverstein, 2016). Patients with schizophrenia are also known to show 

decreased susceptibility to visual illusions such as the “contrast-contrast” illusion (Dakin et al., 

2005), “hollow face” illusion (Schmeider, Leweke, Sternemann, Emrich, & Weber, 1996), and 

binocular depth inversion illusion (Koethe et al., 2009). In short, patients with schizophrenia 

demonstrate a range of atypical visual perception indicative of atypical mechanisms in visual 

cortex.  

Atypical visual perception in patients with schizophrenia are often attributed to impaired 

gain control mechanism, a process by which neurons control information transfer (Butler, 

Silverstein, & Dakin, 2008). In particular, surround suppression, a form of gain control 
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mechanism in visual processing, has been proposed to be affected in patients with 

schizophrenia along with deficit in a global integration (Silverstein & Keane, 2011). For example, 

surround suppression causes the perceived contrast to be reduced when surrounded by a high 

contrast in healthy individuals, but not in patients with schizophrenia (Dakin et al., 2005; Yoon et 

al., 2010). In line with this proposal, a recent fMRI study found reduced population receptive 

field (pRF) sizes in V1 and hV4 and a reduction in size and depth of the inhibitory surround in 

V1, V2 and hV4 in patients with schizophrenia, providing evidence for a decreased integration 

and surround suppression (E. J. Anderson et al., 2017). Reduced surround suppression is also 

found to be correlated with reduced GABA (gamma-aminobutyric acid) concentration, which is 

an inhibitory neurotransmitter in the brain (Yoon et al., 2010). Some computational models 

explain hallucinations and delusions observed in psychotic disorders to be the result of impaired 

excitatory-inhibitory mechanisms (Adams, Stephan, Brown, Frith, & Friston, 2013; Jardri, 

Thomas, Delmaire, Delion, & Pins, 2012). However, no study has investigated whether such 

altered functional architectures differ in patients with schizophrenia having visual hallucinations 

and those not having visual hallucinations. 

Here we investigate the neural mechanism underlying visual hallucinations in 

schizophrenia by comparing the functional architecture in patients with schizophrenia with and 

without visual hallucinations and healthy controls. For this, we use fMRI and pRF models to 

quantify the properties of population of neurons in the visual cortex (Dumoulin & Knapen, 2018; 

Dumoulin & Wandell, 2008). We hypothesize that if visual hallucinations are associated with a 

disturbed integration and gain control mechanisms, pRF size and suppressive surround size will 

be altered in patients with schizophrenia having visual hallucinations compared to patients with 

schizophrenia not having visual hallucinations.  

 

Methods 

Participants 

The study took place at the Neuroimaging Center at the University Medical Center Groningen 

from 2015 to 2018 as part of a larger study (van Ommen et al., 2019). The study was approved 

by the Ethical Review Board of University Medical Center, Groningen (UMCG) and is registered 

in the Nederland Trial Register (Dutch Trial Register), with NTR number NTR6855 

(http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6855). Participants gave their written 

informed consent prior to the start of the study. 

http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6855
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Fifteen (15) participants with schizophrenia with visual hallucinations (SZ VH group) (8 males), 

16 with schizophrenia without visual hallucinations (SZ nVH) (13 males) and 17 healthy controls 

(HC) (12 males) participated in this study. Patients who had at least 1 visual hallucination in the 

previous month of the study were assigned to the SZ VH group, whereas those who never had 

visual hallucinations to SZ nVH group. Data from 11 participants from SZ VH, 14 from SZ nVH 

and 10 from HC were included in the analysis and the results shown here are from these 

participants (please see below for exclusion criteria). All participants were aged between 20-57 

(The mean (standard deviation) age for SZ VH, SZ nVH and HC were 36.2 (7.1), 36.9 (11.1), 

and 31.4 (11.8) years respectively), and gave written informed consent. In addition, all patients 

met DSM-IV-TR criteria for schizophrenia, schizophreniform disorder, schizoaffective disorder or 

psychotic disorder not otherwise specified (or the DSM 5- equivalent) (American Pyschiatric 

Association, 2000). In case of psychiatric comorbidity, psychotic disorders had to be 

predominating and the visual hallucinations had to be related to the primary psychotic disorder. 

These were evaluated by a psychiatrist.  

Patients were excluded based on the following criteria: 1) presence of psychiatric 

disorders other than schizophrenia spectrum disorders, neurological disorders or cognitive 

impairment as assessed using Mini-Mental State Examination (MMSE) < 26 (Folstein, 1975), 2) 

visual acuity less than 50 percent (assessed by a chart with sentences at a reading distance), 3) 

tested positive for visual field defects using Donders technique, 4) unable to go in the MRI 

scanner for clinical reasons or due to the presence of implantable devices. Furthermore, HC 

were excluded if they ever had a psychotic episode, experienced visual hallucinations or had a 

first-degree family member who have a psychotic disorder or ever had a psychotic episode.  

Out of the participants who were included in the study, we further excluded participants 

with poor or abnormal data. Two (2) participants from SZ VH, 2 from SZ nVH and 4 from HC 

group were excluded due to excessive motion during the scanning session. One (1) participant 

from HC group was excluded due to an abnormality on the anatomical scan. Two (2) 

participants from SZ VH group was excluded because of visual hallucinations during the scan 

sessions. One from HC group was excluded because of amblyopia, known to show altered pRF 

properties (Clavagnier et al., 2015). Two (2) participants from HC group were excluded based 

on noisy pRF model fit, showing a negative slope for pRF size versus eccentricity relation or 

larger pRF size for V1 compared to V3 (which has never been reported in healthy adults or 

animal studies and therefore likely reflects poor data quality (Amano et al., 2009; Burkhalter & 

Van Essen, 1986; Dumoulin & Wandell, 2008; Felleman & Van Essen, 1987; Gattass et al., 
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1981; Harvey & Dumoulin, 2011; Newsome et al., 1986; Rosa et al., 1988; Winawer et al., 

2010). 

Participant demographics are shown in the supplementary table 1. Participants were 

interviewed about their psychotic symptoms using the Dutch version of the Questionnaire for 

Psychotic Experiences (QPE; http://qpeinterview.com/home/) and the Positive and Negative 

Syndrome Scale (PANSS; (S. R. Kay, Fiszbein, & Opler, 1987)) by trained researchers. Scores 

on the PANSS and QPE were compared between groups using MANOVA (Wilks' lambda). We 

found no significant differences between the groups regarding age or gender. Non-parametric 

tests were used to explore differences between the groups when univariate testing was 

significant, using the Bonferroni correction. Most patients were diagnosed with schizophrenia 

(60.0%), 24.0% were diagnosed with schizoaffective disorder and 16.0% with psychotic disorder 

not otherwise specified. The total patient group had a significantly higher score than HC on all 

items on psychotic symptoms (PANSS, QPE). The biggest differences were between SZ VH 

and HC. SZ VH showed more psychotic symptoms on all listed PANSS and QPE items than HC 

(except for QPE delusions). SZ nVH did not significantly differ from HC regarding the severity of 

hallucinations or delusions specifically (QPE), but had more psychotic symptoms (all PANSS 

items) overall. Comparing the two patient groups directly, SZ VH had a significantly higher score 

than SZ nVH on the severity of visual hallucinations in particular and the severity of all 

hallucinations in general. The groups did not differ when comparing the total hallucination score 

minus visual hallucinations (data not shown). There were no significant differences between the 

patient groups regarding the severity of auditory hallucinations, severity of delusions (QPE), or 

total scores on negative, positive and general symptoms. All participants had a MMSE (Mini-

Mental State Examination) score >25, with patients showing a worse score than HC. We 

compared the use of antipsychotics between the patient groups using Pearson Chi-Square test. 

Most patients used antipsychotics (SZ VH 72.7%, SZ nVH 92.9%). Of them, most patients used 

1 atypical antipsychotic (SZ VH 50.0%, SZ nVH 69.2%). Two (2) SZ VH, 6 SZ nVH and 1 HC 

used antidepressants, 2 SZ VH used mood stabilizers, 3 SZ VH and 2 SZ nVH used 

benzodiazepines/anxiolytics. Moreover, 1 SZ nVH used Methylphenidate and 2 SZ VH used 

Biperiden. The quality of vision was checked during a visual evaluation session at the 

Ophthalmology Department at the University Medical Center Groningen (UMCG). Visual acuity 

(Snellen chart) and contrast sensitivity (GECKO chart) were assessed (results in supplementary 

table 1). There were no significant differences in visual acuity and contrast sensitivity between 

the groups.  
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Stimuli  

All participants underwent 8 functional MRI scan runs. In the first 6 runs, they viewed bar 

apertures, revealing a checkerboard pattern, sweeping the visual field in discrete steps in 8 

different configurations (figure 1A, 1B). Bars made a complete sweep across the visual field in 4 

cardinal directions and half the visual field in 4 oblique directions. A mean luminance screen 

was presented at the beginning of every run and after every oblique bar pass for the 

hemodynamic response function (HRF) to go back to baseline. Each scan lasted for a duration 

of 192 seconds with each bar pass in cardinal direction for 24 seconds, oblique direction for 12 

seconds and mean luminance block for 12 seconds. The fMRI data for the 12 seconds in the 

beginning of every run was removed from the analysis. In the last 2 functional runs, participants 

viewed rotating wedges with 45 degrees duty cycle. Data from these runs were not included in 

the analysis.  

Stimuli were presented using Psychtoolbox (Brainard, 1997; Pelli, 1997) in MATLAB 

7.10.0 (R2010a), on a MacBook Pro. Participants viewed the display through an angled mirror. 

Participants were asked to fixate on a dot in the center of the screen, and to press a button 

when the dot changes color. After the scan, participants were interviewed about possible 

hallucinations in all the sensory domains.  

 

 

 

Figure 1: Illustration of the stimuli. (A) pRF mapping stimuli consisted of bar apertures revealing a high contrast 

moving checkerboard carrier. A fixation dot was presented in the center which changed color between red and green. 

Stimulus was presented within a circular window, with a radius of 10 degrees of visual angle. (B) Schematic 
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representation of bar position with the time in seconds of stimulus presentations. The bar aperture swept the visual 

field in 8 directions with a mean luminance blank period of 12 s after every oblique direction. Bars in the oblique 

directions swept only half the visual field as represented by the shorter arrows. 

 

MRI acquisition 

MRI data were collected using a 3T Philips MRI with a SENSE head coil (Intera, Philips Medical 

Systems, Best, The Netherlands). Participants wore noise-reducing earplugs. Foam padding 

was used to minimize head motion. For the functional scans, echo-planar images (EPI) were 

acquired, with a repetition time (TR) of 1.5 seconds, an echo time (TE) of 30 milliseconds, a 

voxel size of 2.5 x 2.55 x 3 mm (reconstructed voxel size = 2.5 mm isotropic) and a flip angle of 

80 (FOV= 224 x 193.45 x 72 mm). Each scan consists of a maximum of 24 slices, which were 

aligned parallel to the calcarine sulcus. In between the functional scans, inplane T1 anatomical 

scans were acquired (24 slices, voxel size 2.55 x 2.5 x 3 mm, FOV 196 x 226.95 x 72 mm). 

Furthermore, a high-resolution T1 anatomy was acquired (160 slices, voxel size 1 x 1 x 1 mm, 

FOV 256 x 224 x 160 mm). 

 

Preprocessing of the data 

Raw images were converted to nifti using MRIcroGL (University of South Carolina, USA). 

Anatomical scans were aligned to ACPC and re-sliced into isotropic (1 mm) voxels. Then, an 

automatic segmentation was performed using Freesurfer (stable v5, 

https://surfer.nmr.mgh.harvard.edu/). Functional data was preprocessed using Freesurfer 

(Fischl, 2012) and Matlab based vistasoft toolbox (http://white.stanford.edu/software). All 

functional data from 6 pRF mapping runs were motion corrected and averaged. Averaged 

functional data was then coregistered onto the anatomical data and resampled to the 

anatomical resolution. ROIs were defined as the Visual field maps, V1, V2, V3 and hV4 

delineated using a probabilistic atlas of visual areas (Benson & Winawer, 2018; Wang et al., 

2014).  

 

Population receptive field model analysis  

We estimated the pRF model parameters using Matlab-based vistasoft toolbox 

(http://white.stanford.edu/software). We used the standard 2D gaussian model to estimate pRF 

https://surfer.nmr.mgh.harvard.edu/
http://white.stanford.edu/software
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parameters, namely the position (x, y), spatial spread (σ) and response amplitude (β) of the pRF 

for every cortical location (Dumoulin & Wandell, 2008). In order to characterize the center 

surround property of the population of neurons, we used the difference of Gaussians (DoG) 

model (Zuiderbaan et al., 2012). DoG model is implemented as the combination of a central 

positive 2D gaussian (with position (x, y) and standard deviation (σ1)) and a larger negative 2 D 

gaussian (with position (x, y) and standard deviation (σ2)) along with their respective response 

amplitudes (β1, β2). For the further analysis, we used the width of the gaussian at half of the 

maximum amplitude (FWHM) for both 2 D gaussian model and DoG model. For the DoG model, 

we also derived the surround size (SS) as the distance between the points where the pRF 

reaches its minimum amplitude and suppression index (SI) as the ratio between the volumes of 

larger and smaller gaussians (equation 1) (Sceniak, Hawken, & Shapley, 2001; Zuiderbaan et 

al., 2012).  

We estimated the pRF model parameters for the participants from all three groups (SZ 

VH, SZ nVH and HC) for the visual field maps, V1 to hV4. For the comparison between groups 

and visual field maps, we used six metrices – pRF size from 2 D Gaussian model, pRF size 

from DoG model, pRF surround, pRF surround suppression and the two components of the 

DoG model, positive (σ1) and negative (σ2) Gaussian size.  

 

Suppression index,  𝑆𝐼 =  
𝛽2∗ (𝜎2)2

𝛽1∗ (𝜎1)2                       (Equation 1) 

 

We selected the pRF parameters from the cortical locations where the model predicted more 

than 30 percent of the variance in the measured response. For all those pRF parameters, we 

subdivided the cortical locations into 20 eccentricity bins such that there are an equal number of 

data points in each bin. Eccentricity bins were defined between 0.5 degrees to 9.5 degrees to 

avoid the pRFs close to fovea and in the far eccentricity which are at the boundaries of our 

stimulus display. Also, to avoid the effects of pial draining veins (Olman, Ugurbil, Schrater, & 

Kersten, 2004; Winawer et al., 2010), voxels with low mean fMRI signal were excluded.  

For every eccentricity, we then calculated a group mean of pRF size parameters from all 

voxels belonging to that bin. We then fitted a linear function to the eccentricity versus mean pRF 

size parameter distribution. Then, we summarized the pRF size parameter as the pRF size 
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value at a central eccentricity (5 degrees) from the linear fit of pRF size parameter versus 

eccentricity (central value).  

To test if the difference in the parameter values between the three groups were 

significant, we performed a one-way ANOVA on the central values from each of the six pRF 

parameters separately with schizophrenia and visual hallucination as the between group factors 

(SZ VH, SZ nVH, HC) for every visual field map individually (V1- hV4). We then compared the 

parameters between the SZ VH, SZ nVH and HC groups with in every visual field map if the 

result from the ANOVA were significant. For this we performed three separate independent t 

test between two groups at a time (SZ VH and SZ nVH; SZVH and HC; SZnVH and HC). 

 

Results  

Measured and predicted time series from both the patient groups and healthy controls show 

peaks corresponding to the instances when the bars swept the visual field (figure 2). Visual field 

maps for the patients and healthy controls showed the polar angle and eccentricity maps as 

expected, (see supplementary figure 2 for example eccentricity and polar angle maps from 1 

subject in each group) (Dumoulin & Wandell, 2008; Wandell et al., 2007).  

 

 

 

Figure 2: Example fMRI data and pRF model fit. Measured and predicted time series from one cortical location 

from one example subject in each of the groups. Black dotted lines in each condition represent the measured time 

series and the colored lines represent the predicted responses, where green is SZ VH, blue is SZ nVH and red is HC. 

Peaks corresponds to the instances when the stimulus bar aperture crossed the preferred region in the visual field for 

that cortical location. 
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Figure 3: pRF parameters plotted against eccentricity for hV4. Lines show the linear fit for the average of the 

pRF parameters (pRF size (A and B), pRF surround (C), pRF surround suppression (D) and the two components of 

the DoG model, positive (σ1) and negative (σ2) Gaussian size (E and F respectively) across subjects for different 

groups plotted against eccentricity. Individual points are the mean pRF parameter value from each bin across all 

subjects from the corresponding condition and the error bars depict the standard error of mean.  

 

Significant decrease in surround size for SZ VH compared to SZ nVH 

We summarized pRF size parameters using the value at a central eccentricity from a linear fit of 

pRF size parameter versus eccentricity (figure 4). See figure 3 for linear fit for hv4 and 

supplementary figure 3,4 and 5 for V1, V2, and V3 respectively. We observed an increase in the 

pRF size values with visual hierarchy for pRF size from 2 D Gaussian model, pRF size from 

DoG model, surround size, σ1 and σ2. For the suppression index, we see a decrease with visual 

hierarchy, which is consistent with previous studies (Zuiderbaan et al., 2012).  

We found an overall significant difference in hV4 between the three groups for surround 

size (F(32,2)=3.97, p = 0.028), suppression index (F(32,2)=4.79, p = 0.015) and σ1 (F(32,2)= 3.63, p = 

0.037). We did not observe any significant difference in the pRF properties for any other visual 

areas (All F(32,2) < 2.21, all p > 0.12). Using a post-hoc test, we found a significant decrease in 
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the surround size (t(23) = 3.19, p =0.004), suppression index (t(23) = 3.52, p =0.0018) and σ1 (t(23) 

= 3.33, p =0.0029) for SZ VH group compared to SZ nVH group for hV4. We did not find 

significant differences between the patient groups and HC however (both t(23) < 1.5, both  p > 

0.13). We also did not find a significant difference when the two patient groups were combined 

and compared against the HC (all F(33,1) < 2.6, all p > 0.11). 

 

 

 

Figure 4: pRF parameter values for V1 to hV4, for pRF sizes (A and B), pRF surround size (C), pRF surround 

suppression (D) and the two components of the DoG model, positive (σ1) and negative (σ2) Gaussian size (E and F 

respectively). An illustration of the pRF parameter is shown in the inset. Green, blue and red bars represent SZ VH, 

SZ nVH and HC respectively. Significant differences between patients with and without visual hallucinations in 

surround size, suppression index and σ1 values are observed in hV4. * indicates p < 0.05. 

 

Discussion  

We employed pRF models to study the changes in fine-grained functional architecture 

associated with visual hallucinations in patients with schizophrenia. Our results indicate a 
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decrease in the inhibitory surround size for patients with schizophrenia having visual 

hallucinations compared to patients with schizophrenia having no visual hallucinations in hV4.  

Previous studies have proposed computational models to explain hallucinations in psychotic 

disorders. We explain our results using the circular inference model, which works in a Bayesian 

framework and relates the psychotic symptoms such as hallucinations and delusions as an 

imbalance between excitatory and inhibitory mechanism (Jardri & Deneve, 2013). According to 

the model, perception involves a combination of bottom up and top down information transfer. 

These information exchanges are maintained by a set of excitatory and inhibitory cortical 

networks, which are known to be affected in patients with schizophrenia (O’Donnell, 2011). The 

imbalance resulting from this disturbed information flow causes a circular propagation of beliefs, 

where in the sensory evidence is sent back down as if they were prior information and gets 

combined with themselves. A reduced suppressive surround could contribute to the weakened 

inhibition of the sensory information. We speculate that a reduced surround suppression leading 

to an imbalance between the excitatory and inhibitory mechanism could contribute to the visual 

hallucinations observed in people with schizophrenia.  

Our results indicate that an impaired visual processing in the early visual areas predispose 

patients with psychotic disorder to experience visual hallucinations. Thus, our results also is in 

line with the ‘Perception and Attention Deficit’ model which describes that both impairments in 

visual perception and attention are a prerequisite for the occurrence of visual hallucination 

(Collerton et al., 2005). This model describes that in our unawareness, there are ‘potentially 

observed objects’, also called ‘proto-objects’. They compete for further visual processing. Visual 

stimuli from the external world stimulate or activate these proto-objects. After further processing, 

this leads to awareness of the object. This model describes that adequate visual perception and 

attentional binding is necessary to choose the correct proto-object. Impairments in both 

perception and attention would lead to choosing the wrong proto-object, thus experiencing 

visual hallucination. 

The severity of schizophrenia has been linked to the presence or absence of visual 

hallucinations (Mueser, Bellack, & Brady, 1990; Waters et al., 2014) and visual illusions (Keane, 

Silverstein, Wang, & Papathomas, 2013; Norton, Ongur, Stromeyer III, & Chen, 2008; 

Silverstein et al., 2013; Tadin et al., 2006; Yang et al., 2013), while others have found weak or 

no relation (Koethe et al., 2006; Tibber et al., 2015; Yang et al., 2013). We do not believe the 

difference in surround size that we observe is related to increased severity of the disease, 
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because the severity of disease did not differ between the two patient groups (assessed using 

PANSS and QPE metrics).  

Inconsistent with a previous finding, our results do not support a decrease in pRF size in the 

early visual cortex (V1 and hV4) in patients with schizophrenia compared to the HC (E. J. 

Anderson et al., 2017). We separated the schizophrenia into SZ VH and SZ nVH, but it is 

unclear whether the patients used by Anderson and colleagues suffered from visual 

hallucinations. Also, 7 out of 13 subjects in their study used different medications (e.g. 

Clozapine, a drug widely used for treatment resistant schizophrenia) which may also affect pRF 

properties. Therefore, the discrepancy in findings could be related to a difference in the 

characteristics of the patient groups.  

Anderson and colleagues found that three patients with schizophrenia were unable to maintain 

fixation (E. J. Anderson et al., 2017). Eye movements influence the pRF parameters and 

specifically can alter pRF size and position (Hummer et al., 2016; Klein et al., 2014; Levin et al., 

2010) by adding a constant factor to pRF size and position for all visual field maps (Klein et al., 

2014; Levin et al., 2010). However, no study specifically investigated the effect of eye-

movements on the pRF surround component. Although we did not record eye-movements, we 

consider it unlikely that the observed difference in surround size is caused by eye movements, 

because we did not observe such an increase in the pRF sizes for all the visual field maps and 

for all the parameters.  

Similarly, attention affects pRF properties, such as pRF position and size (Klein et al., 2014; van 

Es et al., 2018). PRF position changes due to attention increases up the visual hierarchy. 

Similar to the eye movements, no study has specifically looked at the changes in surround size 

with attention. Could differences in attention underlie our results? Previous studies have found 

disturbed attentional networks in patients with schizophrenia (McKay, Headlam, & Copolov, 

2000; Nuechterlein et al., 2004). A recent study found a decreased performance in attention 

related tasks in patients with schizophrenia compared to healthy controls (Van Ommen et al., 

2016). So, attention related changes may be expected between patients and healthy subjects, 

but we found no indication of that as attention affects the amplitude, pRF size and position 

across visual field maps and not just surround size in hV4.  

Our study has some limitations. The first one is the small sample number of HC because of poor 

or abnormal data quality. This probably has led to a loss of power. Moreover, our HC group 
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shows a relatively large variability. However, our significant comparisons are between SZ VH 

and SZ nVH, which are not directly affected by the HC group. Second, we also used the DoG 

approach, however, this method is less reliable from visual field maps V3 and up (Zuiderbaan et 

al., 2012). We could use other models such as the Bayesian pRF model which could also give 

us information about the uncertainty of the model fits (Zeidman, Silson, Schwarzkopf, Baker, & 

Penny, 2018). Third, 3 of our participants had visual field defects, which could have influenced 

their perception. Nevertheless, we feel that our study contributed to the knowledge about normal 

visual processing in relationship with visual hallucinations in patients with a psychotic disorder. 

For future studies, we recommend researchers do take the presence/absence of visual 

hallucinations into account while investigating the visual system.  

 

Conclusion 

In summary, we provided evidence for decreased pRF surround size in patients with 

schizophrenia with visual hallucinations, possibly indicating a decreased inhibition of sensory 

information. We speculate that this may be a contributing factor to visual hallucinations in 

schizophrenia. Thus, hallucinations in general could be due to disruption in the balance between 

the excitatory and inhibitory information. This imbalance could result in a perceptual 

incoherence and attempts to cope with this imperfect sensory information could alter the 

subjective experiences in atypical ways (de Vries et al., 2013; Postmes et al., 2014).  
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Supplementary data 

 

 

Table S1: Demographics and illness. Demographics of the participants used for the analysis. Various scores used 

for assessing the patient illness are also shown.  

 

 

 

 

 

 

 

   Patients*   HC   SZ VH  SZ nVH   Test score p-value Test score    p-value  

   (n=25)       (n=10)   (n=11)  (n=14)   pt vs HC  3 groups 

   Range    M (sd)  Range    M (sd)____________ Range M (sd) Range   M (sd)  (df)_______________ (df)______________________  

Age (y)   21-57 36.6 (9.4)  20-49 31.4 (11.8)  27-49 36.2 (7.1) 21-57 36.9 (11.1)  85.5 .51 2.09 (2)  .35 

Gender (n, (%))             0.01 (1) 1.00 1.67  .44 

  Males   17 (68.0)   7 (70.0)   6 (54.5)  11 (78.6)  

  Females   8 (32.0)   3 (30.0)   5 (45.5)  3 (21.4)   

Education   3-8 6.6 (1.4)  7-8 7.6 (0.5)  3-8 6.2 (1.7) 4-8 6.9 (1.2)  177 .06 5.33 (2)  .07 

MMSE   26-30 28.8 (1.1)  29-30 29.7 (0.5)  27-30 28.6 (1.1) 26-30 28.9 (1.1)  186 .03 6.15 (2)  .046 

Visual acuity ODS  0.8-1.5 1.2 (0.2)  1-1.5 1.3 (0.2)  0.8-1.5 1.1 (0.2) 1-1.5 1.2 (0.1)  158 .24 3.31 (2)  .19 

Contrast ODS  12-16 15.0 (1.2)  14-16 15.5 (0.7)  12-16 15.0 (1.4) 13-16 15.1 (1.0)  136.5 .41 0.93 (2)  .63 

Diagnosis (n, (%))               1.85  .53  

Schizophrenia  15 (60.0)      6 (54.5)  9 (64.3)         

Schizoaffective  6 (24.0)      2 (18.2)  4 (28.6)       

   disorder  

 Schizophreniform  3 (12.0)           

   disorder  

 Psychosis NOS  1 (4.0)      3 (27.3)  1 (7.1)      

Disease duration (y)  0-44 13.6 (11.4)     2-32 11.9 (9.2) 0-44 14.9 (13.1)    84  .73 

PANSS               10.5 (3,31) .00 6.0 (6,60)   .00 

  tot pos   7-28 16.4 (5.9)  7-8 7.4 (0.5)  11-28 19.3 (5.4) 7-24 14.1 (5.4)  22.6 .00 17.7   .00BC  

  tot neg   8-25 14.7 (4.3)  7-10 7.8 (1.0)  8-25 15.8 (5.2) 8-19 13.8 (3.5)  24.3 .00 13.4  .00 BC 

  tot gen   20-54 34.6 (9.4)  16-20 17.8 (1.2)  23-54 39.0 (9.5) 20-47 31.2 (8.1)  31.0 .00 21.5  .00 BC 

  tot   35-100 65.7 (17.8)  30-36 33.0 (1.8)  45-100 74.1 (17.8) 35-86 59.1 (15.2)  33.1  .00 23.2  .00 BC 

QPE               2.9 (4.30) .04 13.1 (8,58)  .00 

  severity AH  0-28 9.2 (10.0)  0-0 0.0 (0.0)  0-23 12.6 (9.3) 0-28 6.6 (10.0)  8.4  .01 6.2   .01 B  

  severity VH  0-20 5.2 (6.8)  0-0 0.0 (0.0)  3-20 11.8 (4.9) 0-0 0.0 (0.0)  5.9  .02 71.5  .00 AB 

  severity all H  0-41 15.5 (14.6)  0-0 0.0 (0.0)  6-41 26.0 (11.8)0-31 7.2 (10.9)  11.1 .00 21.2  .00 AB 

  severity delusions  0-18 5.0 (5.9)  0-0 0.0 (0.0)  0-18 5.6 (6.4) 0-14 4.5 (5.6)  7.1 .01 3.6  .04 

Use antipsychotics (n, (%))              1.86  .29  

 Yes   21 (84.0)      8 (72.7)  13 (92.9)  

 No   4 (16.0)      3 (27.3)  1 (7.1) 

Type antipsychotics (n, (%))              1.94  .47  

 1 typical   1 (4.8)      0 (0)  1 (7.7) 

 1 atypical   13 (61.9)      4 (50.0)  9 (69.2) 

 Multiple   7 (33.0)      4 (50.0)  13 (23.1) 

Other medication* (n, (%))             0.64  .80 1.64  .88  

 Yes, 1   9 (36.0)   3 (30.0)   4 (36.4)  5 (35.7) 

 No   9 (36.0)   5 (50.0)   3 (27.3)  6 (42.9) 

 Multiple   7 (28.0)   2 (20.0)   4 (36.4)  3 (21.4) 

 

 
* SZ VH + SZ nVH 
A= difference between SZ VH and SZ nVH (p<.05, corrected) 
B= difference between SZ VH and HC (p<.05, corrected) 
c= difference between SZ nVH and HC (p<.05, corrected)  
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Figure S2: Visual field maps for example subjects from each group. Eccentricity and polar angle maps for 

subjects from (A) SZ VH (B) SZ nVH and (C) healthy group for left (columns 1 and 2) and right (columns 3 and 4) 

hemispheres. 
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Figure S3: pRF parameters plotted against eccentricity for V1. Lines show the linear fit for the average of the 

pRF parameters (pRF size (A and B), pRF surround (C), pRF surround suppression (D) and the two components of 

the DoG model, positive (σ1) and negative (σ2) Gaussian size (E and F respectively) across subjects for different 

groups plotted against eccentricity. Individual points are the mean pRF parameter value from each bin across all 

subjects from the corresponding condition and the error bars depict the standard error of mean.  
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Figure S4: pRF parameters plotted against eccentricity for V2. Lines show the linear fit for the average of the 

pRF parameters (pRF size (A and B), pRF surround (C), pRF surround suppression (D) and the two components of 

the DoG model, positive (σ1) and negative (σ2) Gaussian size (E and F respectively) across subjects for different 

groups plotted against eccentricity. Individual points are the mean pRF parameter value from each bin across all 

subjects from the corresponding condition and the error bars depict the standard error of mean.  
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Figure S5: pRF parameters plotted against eccentricity for V3. Lines show the linear fit for the average of the 

pRF parameters (pRF size (A and B), pRF surround (C), pRF surround suppression (D) and the two components of 

the DoG model, positive (σ1) and negative (σ2) Gaussian size (E and F respectively) across subjects for different 

groups plotted against eccentricity. Individual points are the mean pRF parameter value from each bin across all 

subjects from the corresponding condition and the error bars depict the standard error of mean.  
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Chapter 6 

 

 

 

General Discussion 
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The main aim of this thesis was to explore how neurons in the visual cortex process the 

information received from outside the classical RFs with intercellular interactions. For this, we 

employed the pRF modeling approach for quantifying RF properties of a population of neurons 

in humans measured using fMRI (Dumoulin & Wandell, 2008). pRF models are used in vision 

science to predict the responses of a population of neurons to visual stimulation and thereby 

clarify the underlying brain computations (Dumoulin & Knapen, 2018; Wandell & Winawer, 

2015). In this thesis we first validated the pRF model as a true description of neural activity by 

using the model to predict the MEG responses to visual stimulation (chapter 2). We then 

investigated how extra-classical interactions operate in healthy participants. For this we used 

pRF models to first investigate how neurons process simple synthetic stimuli and considered the 

involvement of intercellular interactions in such stimulus paradigms (chapter 3). We then probed 

the inter-cellular interactions in depth using a more naturalistic contextual stimulus (chapter 4). 

Finally, we applied the pRF models to study the abnormal visual perception which are thought to 

be due to disturbed intercellular interactions in patients with schizophrenia (chapter 5).  

 

This chapter discusses the importance of combining different brain measurement modalities for 

understanding the neural computations, and summarizes the main findings from the studies on 

pRF properties in healthy and patient populations. In the end we discuss new possibilities for 

studying spatial properties of vision at high temporal resolution.  

 

Spatial properties of visual processing in healthy population 

fMRI and MEG measures different aspects of brain activity but can be connected to a common 

underlying neural activity 

Before we can use pRF models describing the fMRI responses to visual stimulation, for 

investigating abnormalities in visual processing in patients, we need to show that pRF models 

reflect the properties of underlying neural computations in healthy subjects (chapters 2, 3 and 

4). To do this, in chapter 2, we developed a forward model that can extrapolate the predicted 

responses from pRF models on the cortex to MEG responses elicited by visual stimulation. 

MEG measures the magnetic fields resulting from the electric current instigated by neural 

activity (Hämäläinen et al., 1993), whereas fMRI indirectly measures the local changes in the 

blood oxygenation (Logothetis & Wandell, 2004). pRF models describe the computations 
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performed by the underlying neurons as measured by the fMRI. We found that the model, built 

to capture the properties of fMRI responses, was able to predict the MEG responses to the 

same stimulus. This gives confidence in a common underlying neural computation in both 

measurements and confirms that pRF models used in fMRI reflect neural computations. 

Furthermore, the ability to predict the MEG responses from pRF models opens new possibilities 

for studying the visual system which are discussed in the end of this chapter.    

 

Differences in the RF properties at the neuronal and population level 

Much of what we know about the RFs and the underlying computations are from the single 

neuron studies in non-human primates through electrophysiological measurements. Though the 

estimates of pRFs from the individual fMRI voxels provide a great deal of information about 

visual processing, these are the properties of billions of neurons and not a single neuron. 

Hence, it is important to make sure how much of the computations in the single neuron level are 

reflected in the population level. In chapter 3 we studied this by investigating whether the 

regularities of spatial frequency preference of individual neurons are also displayed by the 

neurons at the population level. We compared the pRF sizes estimated using stimuli containing 

sine wave gratings of different spatial frequencies. Previous single neuron animal studies have 

shown that the pRF sizes decrease with spatial frequency content of the stimuli (De Valois et 

al., 1982; Schiller et al., 1976). However, we found that the differences disappeared at the 

population level indicating an effect of neuronal interactions at the population level. We 

attributed the difference between single-neuron RF and pRF to the activation of extra-classical 

interactions resulting from the intercellular connections present between the neurons. We 

hypothesized that the inter-cellular connections are activated to counteract the decrease in the 

RF size for smaller spatial frequencies. Our results indicate that regularities in the properties of 

individual neurons may play a small role in the behavior of these neurons at the population level 

 

Extra-classical interactions at the population level are amplified using contextual stimuli 

Changes in the pRF size in the presence of extra-classical interactions was shown in previous 

studies using carefully controlled contextual stimuli (Dumoulin et al., 2014; Harvey & Dumoulin, 

2016). In chapter 4, we used naturalistic stimuli which contained statistical regularities that are 

known to elicit such extra classical interactions. We estimated the pRF size for the stimuli with 
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natural images and compared it with the phase scrambled versions of the images. The phase 

scrambled version was chosen since they do not have the statistical regularities that can cause 

extra-classical interactions but contain the same amount of stimulus energy (Adelson & Bergen, 

1985; Dumoulin, Dakin, & Hess, 2008; Felsen & Dan, 2005; Kayser et al., 2003; Mechler et al., 

1998). We found an increase in the pRF size for stimuli with natural images compared to the 

phase scrambled condition in visual field maps V1, V2 and V3. We reason that this increase in 

the pRF size was due to the activation of extra-classical RFs in response to the contextual 

stimulus properties in the natural images. Our results show that pRF models are sensitive 

enough to pick up the subtle modulations in receptive fields due to the presence of extra-

classical interactions at the population level. Our results also validate that the neural 

computations observed in response to carefully controlled synthetic stimuli can be extended to 

less controlled natural images. Natural images activate non-linear responses in a manner which 

is different than the synthetic grating stimuli (David et al., 2004; Dumoulin et al., 2008; Gilbert & 

Wiesel, 1990). Most of the studies in vision are conducted using more synthetic stimuli because 

it is easy to control them (Braun, 2003; Felsen & Dan, 2005; Hansen et al., 2003; Kayser et al., 

2004; Ringach et al., 2002; Simoncelli, 2003; Smyth et al., 2003; Touryan et al., 2005). 

However, in the end such studies should be applicable to more naturalistic stimuli to get a 

complete understanding of visual processing in healthy and patient population.  

 

Abnormal visual perception in patients with Schizophrenia 

Reduced suppressive surround in patients with Schizophrenia with visual hallucinations  

In chapter 4, we showed that the contextual interactions are processed in the early visual cortex 

resulting in a change in the RF size. We believe that such interactions help in the processing of 

local information to form a more global percept in natural images. Such an ability to process the 

information from the contextual stimuli are known to be disturbed in patients with schizophrenia. 

Various studies have attributed the abnormal performance in various cognitive and visual 

perception tasks in patients with schizophrenia to the inability to use context to interpret stimuli 

(Dakin et al., 2005; Hemsley, 2005; Silverstein & Schenkel, 1997). Specifically, the studies 

explained this based on a weaker suppressive surround mechanism which can both be a 

classical RF property and extra-classical RF property. In chapter 5, we investigated whether 

such reduced suppression could explain the visual hallucinations observed in these patients. 

We used the pRF model developed by Zuiderbaan and colleagues to investigate the pRF 
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surround size (Zuiderbaan et al., 2012). We showed evidence for a decrease in the RF surround 

size in patients with schizophrenia with the visual hallucinations compared to those without 

visual hallucinations. We believe that the decreased surround size causing an imbalance in the 

inhibitory mechanism could be resulting visual hallucinations in patients with schizophrenia.  

 

Future directions for studying the temporal properties of pRFs 

In this thesis we explored how different spatial properties are processed by the neurons in the 

visual cortex. In chapter 2 we showed that pRF method can reliably explain both fMRI and MEG 

recordings. In chapters 3 and 4 we showed that known regularities in receptive fields at the level 

of single neurons can be different from regularities at the population level, presumably due to 

intercellular interactions. In chapter 5, we found indications that atypical perception, in this case 

in patients with schizophrenia, may be related to an inability to use contextual information. 

However, to get a complete understanding of visual processing, we need to study the temporal 

properties along with the spatial properties. The forward model that we developed in the chapter 

2 forms a powerful tool for studying the changes in pRF properties over time, thereby allowing 

us to study neural computations at a high spatial and temporal resolution. To end this chapter 

and this thesis, I briefly consider some of the possible future applications. 

First, the contextual interactions leading to the activation of extra-classical RFs can happen at a 

time-scale of milliseconds which cannot be measured by fMRI. However, neural activity in the 

millisecond resolution can be recorded using MEG. Our forward model (chapter 2) provides the 

possibility to investigate the changes in the pRF size over millisecond time scale and clarify the 

activation of extra-classical RFs. Second, apart from the abnormal perception in the spatial 

domain (Phillipson & Harris, 1985; Robol et al., 2013; Slaghuis, 1998), patients with 

schizophrenia also show aberrant temporal processing (Chen et al., 2004; Kim et al., 2006). Our 

forward model (chapter 2) provides the opportunity to explore such abnormal temporal 

processing deficits in patients with schizophrenia by studying changes in pRF size and surround 

size over time. Also, our model can be used for investigating the effect of motion on the pRF 

parameters at the temporal resolution of MEG by extending a previous study in fMRI (Harvey & 

Dumoulin, 2016). Apart from the pRF properties, the forward model approach can be used for 

extending other models such as the attention model and numerosity model to MEG (Harvey, 

Klein, et al., 2013; Klein et al., 2014).  
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To summarize, in this thesis our main goal was to study how neurons in the visual cortex 

process information through various intercellular interactions. We explored this thoroughly in the 

spatial domain for healthy participants and a patient population and opened new possibilities for 

studying the information received in the temporal domain.     
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Mensen zijn visueel ingesteld. Het gezichtsvermogen is een belangrijk zintuig en essentieel om 

te communiceren en te navigeren in de wereld om ons heen. Kennis over de werking van het 

visuele systeem is daarom van fundamenteel belang. Visuele waarneming omvat verschillende 

biologische systemen, van de ogen tot aan de neuronen in het brein. In dit proefschrift 

onderzoeken we de verwerking van visuele informatie door populaties van miljoenen neuronen.  

 

Visuele informatie wordt verwerkt door neuronen in de visuele cortex van ons brein, waarbij elk 

individuele neuron reageert op een specifiek gebied in het gezichtsveld; het receptieve veld 

(RV) van het neuron. Het RV is ook selectief voor verschillende kenmerken van de visuele 

informatie, zoals de vorm, oriëntatie, positie en spatiale frequentie van hetgeen waarnaar 

gekeken wordt. Neuronen waarvan de RVs dicht bij elkaar liggen, bevinden zich ook dicht bij 

elkaar in de visuele cortex en vormen hier zogenaamde visuele gebieden in het brein.  

 

Het klassieke RV van een neuron is het deel van het visuele veld waarbinnen aanwezigheid van 

een stimulus een response van het neuron opwekt. Soms kunnen stimuli die buiten het 

klassieke RV van een neuron vallen de respons van een neuron toch beïnvloeden via 

intercellulaire verbindingen. Visuele neuronen kunnen namelijk met elkaar communiceren via 

deze intercellulaire verbindingen. Men spreekt dan van een extra-klassiek RV. Een stimulus 

buiten het klassieke RV van een neuron kan op zichzelf geen respons van het neuron 

opwekken, maar als deze stimulus wel binnen het extra-klassieke RV van het neuron valt kan 

de aanwezigheid van deze stimulus de respons van het neuron op stimuli binnen het klassieke 

RV wijzigen. In Figuur 1 worden verschillende vormen van extra-klassieke RVs weergegeven. 

Interacties tussen klassieke en extra-klassieke RVs, kortweg extra-klassieke interacties, spelen 

een cruciale rol bij de overgang van lokale naar globale verwerking van visuele informatie. Ze 

spelen een belangrijke rol bij bijvoorbeeld de herkenning van objecten en het opdelen van een 

complexe afbeelding in verschillende onderdelen (scene segmentation). Vergeleken met 

afbeeldingen van simpele vormen, zoals strepen of cirkels, vinden er daarom veel extra-

klassieke interacties plaats als we kijken naar afbeeldingen van een natuurlijke omgeving. 

 

RV eigenschappen van individuele neuronen bij mensen kunnen over het algemeen niet worden 

onderzocht, omdat het gebruik van invasieve elektrofysiologie voor niet-klinische doeleinden 
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niet toegestaan is . Om RV-eigenschappen toch bij mensen te onderzoeken, kan beeldvorming 

middels non-invasieve functionele magnetische resonantie (fMRI) worden gebruikt. Echter, de 

spatiële resolutie van fMRI is beperkt tot ongeveer 1 mm. Op deze schaal geven de metingen 

de activiteit van miljoenen neuronen weer. RVs onderzocht met fMRI worden om deze reden 

aangeduid als populatie RVs (pRV). Bovendien meet fMRI een indirecte maat van neurale 

activiteit, namelijk bloedoxygenatie. Deze metingen worden daarom bloedoxygenatieniveau 

afhankelijke signalen genoemd (blood oxygenation level dependent, afgekort als BOLD).  

 

Naast fMRI zijner ook andere methoden om hersenactiviteit te meten, zoals magneto-

encefalografie (MEG), elektro-encefalografie (EEG) en elektrocorticografie (ECoG). Deze meten 

echter eveneens indirecte gevolgen van de activiteit van populaties neuronen. Daarom is de 

precisie waarmee deze metingen de onderliggende neurale activiteit representeren enigszins 

onzeker. Wanneer modellen gebaseerd op een specifieke techniek metingen met een andere 

techniek kunnen verklaren kan een directe relatie tussen neurale activiteit en de verschillende 

meetmethoden kan aannemelijk worden gemaakt. Om dit te bereiken, hebben we in hoofdstuk 2 

van dit proefschrift een nieuw model geïntroduceerd. Dit model kan MEG metingen tijdens 

visuele stimulatie voorspellen op basis van een pRV analyse van fMRI metingen tijdens visuele 

stimulatie. 

 

pRV eigenschappen worden berekend door met behulp van fMRI metingen de reactie van 

populaties neuronen op visuele stimuli te modelleren. Deze modellen worden pRV modellen 

genoemd. PRV modellen vormen een fundament in de visuele neurowetenschappen voor het 

bestuderen van spatiële eigenschappen van het visuele systeem. PRV modellen geven 

gedetailleerde informatie over pRV eigenschappen, zoals de positie en de grootte van het RV, 

waaronder de grootte van het excitatoire centrum van het RV (excitatory center) en de grootte 

van de daaromheen liggende suppressieve schil (suppressive surround). Ook andere complexe 

eigenschappen, zoals spatiële summatie en connectiviteit tussen neuronen, kunnen worden 

onderzocht. Met behulp van zorgvuldig ontworpen experimentele stimuli en taken kunnen we 

pRV modellen gebruiken om verschillende eigenschappen van het visuele systeem te 

onderzoeken bij zowel gezonde proefpersonen als mensen met een klinische aandoening.  
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In hoofdstuk 3 van dit proefschrift hebben we onderzocht in hoeverre pRV eigenschappen de 

eigenschappen van RVs van individuele neuronen weergeven. Hiervoor hebben we visuele 

stimuli gebruikt met verschillende spatiële frequenties, om zo subpopulaties neuronen te 

stimuleren die verschillen in hun gevoeligheid voor spatiële frequenties. In hoofdstuk 4 hebben 

we het effect van de extra-klassieke interacties op de pRV eigenschappen onderzocht. Ten 

slotte hebben we in hoofdstuk 5 pRV modellen gebruikt om afwijkingen in he visuele systeem 

die leiden tot visuele hallucinaties bij patiënten met schizofrenie te onderzoeken. 

 

Het huidige proefschrift heeft de kennis van het menselijke visuele systeem in zowel gezonde 

proefpersonen als mensen met schizofrenie uitgebreid met behulp van pRV modellen. We 

ontdekten dat pRV modellen, gebouwd om fMRI metingen te voorspellen, ook MEG metingen 

kunnen voorspellen. Dit geeft vertrouwen in een gemeenschappelijke onderliggende maat van 

neurale activiteit in beide metingen en maakt aannemelijk dat pRV modellen die in fMRI 

onderzoek worden gebruikt inderdaad onderliggende neurale activiteit representeren. 

Bovendien biedt ons nieuwe model mogelijkheden om het visuele systeem met zowel een hoge 

spatiële als een hoge temporele resolutie te onderzoeken. De bevindingen in dit proefschrift 

tonen tevens aan dat eigenschappen van individuele neuronen verdwijnen op populatieniveau, 

waarschijnlijk als gevolg van intercellulaire interacties. Het gebruik van afbeeldingen van een 

natuurlijke omgeving stelde ons in staat om deze extra-klassieke interacties op populatieniveau 

in beeld te brengen. Daarnaast hebben we onze kennis van het visuele systeem en pRV 

eigenschappen uitgebreid naar een klinische populatie door visuele hallucinaties te bestuderen 

bij patiënten met schizofrenie. Er was een afname te zien in de grootte van de suppressieve 

schil van het RV bij patiënten met visuele hallucinaties in vergelijking met patiënten zonder 

visuele hallucinaties. Wij vermoeden dat deze afname in grootte komt door een onbalans in 

inhibitoire interacties tussen neuronen. 

 

Het voornaamste doel van dit proefschrift was het bestuderen van de invloed van intercellulaire 

en extra-klassieke interacties op pRV eigenschappen, zodat we meer te weten komen over de 

eigenschappen van ons visuele systeem op het niveau van grote populaties neuronen. Wij 

hebben dit voornamelijk onderzocht wat betreft spatiële modulaties van pRVs en ontdekt dat 

pRV eigenschappen kunnen afwijken van de eigenschappen van RVs van individuele neuronen. 

Daarnaast hebben we deze methode toegepast op een klinische populatie en nieuwe 
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mogelijkheden ontdekt om onderzoek te doen naar temporele modulaties in pRV 

eigenschappen. 
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