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The traditional way to study the properties of visual neurons is to measure their responses to visually
presented stimuli. A second way to understand visual neurons is to characterize their responses in terms of
activity elsewhere in the brain. Understanding the relationships between responses in distinct locations in
the visual system is essential to clarify this network of cortical signaling pathways. Here, we describe and val-
idate connective field modeling, a model-based analysis for estimating the dependence between signals in
distinct cortical regions using functional magnetic resonance imaging (fMRI). Just as the receptive field of a
visual neuron predicts its response as a function of stimulus position, the connective field of a neuron predicts
its response as a function of activity in another part of the brain. Connective field modeling opens up a wide
range of research opportunities to study information processing in the visual system and other topographi-
cally organized cortices.

© 2012 Elsevier Inc. All rights reserved.

Introduction

The interpretation of visual neuroscience measurements made in
different parts of the brain is unified by the receptive field concept.
Ameasurement at any point in the visual pathway is usually summa-
rized by referring to the stimulus properties (location, contrast,
color, motion) that are most effective at driving a neural response.
Stimulus-referred receptive fields provide a common framework for
understanding the sequence of visual signal processing. The classic
receptive field construct summarizes the entire set of signal process-
ing steps from the stimulus to the point of measurement. This
sequence of signal processing can be made explicit by modeling
how the activity of one set of neurons predicts the responses in a dis-
tinct set of neurons. Characterizing the responses of a cortical neuron
in terms of the activity of neurons in other parts of cortex can provide
insights into the computational architecture of visual cortex. Such
measurements are exceptionally difficult to achieve with single-unit
recordings. The relatively large field of view in functional magnetic
resonance imaging (fMRI) offers an opportunity to measure re-
sponses in multiple brain regions simultaneously, and thus to derive
neural-referred properties of the cortical responses. These cortical

response properties provide important information about how neuronal
signals are transformed along the visual processing pathways. For
example, stimulus-referred measurements in cortex show that visu-
al space is sampled according to a compressive function (i.e., the V1
cortical magnification factor corresponds to a logarithmic compres-
sion of cortical space with eccentricity). Neural-referred measure-
ments show that this compression is established at the earliest
stages of vision; later visual field maps sample early maps uniformly
and inherit the early compressive representation (Harvey and
Dumoulin, 2011; Kumano and Uka, 2010; Motter, 2009).

A limitation in developingmodels of how fMRI responses in twoparts
of cortex relate to each other is that the problem is under-constrained.
For example, there are many voxels in visual area V1, and there are
many ways in which these responses could be combined to predict the
response in a voxel in V2. Hence, any estimate requires imposing some
kind of prior constraint on the set of possible solutions. Heinzle and
colleagues (Heinzle et al., 2011), for example, used a support vector
machine approach to reduce the dimensionality of the solution of V1 sig-
nals and predict responses in extrastriate cortex. Here, we take a differ-
ent approach based on the idea that in retinotopic cortex connections
are generally spatially localized. We build on a model-based population
receptive field (pRF) analysis that was developed to estimate the
stimulus-referred visual receptive field of a voxel (Dumoulin and
Wandell, 2008). In the pRF analysis, the receptive field is modeled and
fit to the fMRI signals elicited by visual field mapping stimuli. This is
done by generating fMRI signal predictions from a combination of the
receptive field model and the experimental stimuli. In the present
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analysis, fMRI signal predictions are generated from fMRI signals origi-
nating from the regions of cortex covered by a model of the inter-areal
connective field (Angelucci et al., 2002; Lehky and Sejnowski, 1988;
Sholl, 1953). Conceptually, this means that the localized activity in one
cortical region acts as a stimulus for voxels in another region. We
model the connective field as a two-dimensional, circular symmetric
Gaussian that is folded to follow the cortical surface (Fig. 1). The assump-
tion of a Gaussian connective field model is motivated by findings that
the receptive fields of two extrastriate areas in the macaque, V4 and
MT, can bedescribed as two-dimensional, circularly symmetric, Gaussian
sampling from the V1 map (Kumano and Uka, 2010; Motter, 2009). The
Gaussian width parameter provides crucial information about the
connective field, namely its size. Because the inter-areal connective
field size is a measure of spatial integration, the analysis can be used to
trace the extent of spatial integration as informationmoves from the pri-
mary visual cortex to higher visual areas.

Methods

Participants

Cortical responses were measured using 7 Tesla fMRI in subjects
S1 and S2 with 1.6, 2.0 as well as 2.5 mm isotropic voxel sizes. S1
also participated in a 3 Tesla fMRI experiment with a 2.5 mm isotro-
pic resolution. During all experimental sessions, the participants

viewed high-contrast drifting bar stimuli interposed with mean
luminance periods. Both subjects had normal visual acuity. All exper-
iments were performed with the informed written consent of the
subjects and approved by the UMCU Medical Ethics Board.

Stimulus presentation

The visual stimuli were generated in theMatlab programming envi-
ronment using the Psychtoolbox extensions (Brainard, 1997; Pelli,
1997). Stimuli were displayed in one of two configurations. In both
configurations, the participants viewed the display through an angled
mirror. The first display configuration consisted of an LCD projecting
the stimuli on a translucent display at the back of the magnet bore
with a maximum stimulus radius of 5.5 degrees of visual angle. This
configuration was used during the 7 T experiments. The second display
configuration consisted of an LCD with a maximum stimulus radius of
6.25 degrees of visual angle. This configuration was used during the
3 T experiment.

Stimulus description

In both the 7 T and 3 T experiments, we measured responses to
drifting bar apertures at various orientations that exposed a
high-contrast checkerboard pattern (Dumoulin and Wandell, 2008;
Harvey and Dumoulin, 2011; Zuiderbaan et al., 2012). Parallel to the

Fig. 1. Connective field models follow the curvature of the cortex. A two-dimensional, Gaussian connective field model (top-left) is defined as a function of Dijkstra's shortest path
distance between pairs of vertices in a three-dimensional mesh representation of the original, folded cortical surface (top-right). The advantage of this approach is that the mea-
surement of cortical distance avoids the distortions introduced if the Gaussian were projected onto a flattened, two-dimensional cortical surface representation. Panels 1, 2 and 3
(bottom) further illustrate the connective field model projection when the surface mesh is unfolded (smoothed).

377K.V. Haak et al. / NeuroImage 66 (2013) 376–384



bar orientation, alternating rows of checks moved on opposite direc-
tions. This motion reversed at random intervals of at least 4 s. The bar
width subtended 1/4th of the maximum stimulus radius. The bar
moved across the stimulus window in 20 equally spaced steps. Four
bar orientations and two different motion directions for each bar
were used, giving a total of 8 different bar configurations within a
given scan (up, down, left, right, and the four diagonals). After each
horizontal and vertical pass, a 30 s zero contrast, mean luminance
stimulus was presented.

Magnetic resonance imaging

Magnetic resonance images were acquired with 3 T and 7 T
Philips MRI scanners equipped with sixteen-channel SENSE head
coils. Foam padding was used to minimize head motion. Functional
T2* weighted echo-planar images were acquired at both field-
strengths. For the 3 T runs, images were acquired at an isotropic
resolution of 2.5 mm, 24 slices. The TR was 1500 ms, the TE was
30 ms, and the flip-angle was 70°. For the 7 T runs, images were ac-
quired at isotropic resolutions of 1.6 mm, 2.0 mm, and 2.5 mm. The
TR was 1500 ms, the TE was 25 ms, and the flip-angle was 80°. The
functional runs each were 248 time frames (372 s). The first eight
time-frames (12 s) were discarded. At 7 T, eight functional runs
were performed using 1.6 mm isotropic voxels, 5 functional runs
were performed using 2.0 mm isotropic voxels, and 5 functional
runs were performed using 2.5 mm isotropic voxels. At 3 T, 9
functional runs were performed. In addition to the functional runs,
high-resolution T1-weighted whole-brain anatomical MR images
were acquired at 3 T for both subjects.

Preprocessing of MR images

The T1-weighted anatomical MRI data sets were re-sampled to a
1 mm isotropic resolution. Gray and white matter were automatically
segmented from the whole-brain anatomical data set using FSL (Smith
et al., 2004) and subsequently hand-edited to minimize segmentation
errors (Teo et al., 1997). The cortical surface was reconstructed at the
white/gray matter border and rendered as a smoothed 3D surface
(Wandell et al., 2000). Motion correction within and between scans
was applied (Nestares and Heeger, 2000). Finally, functional images
were aligned with the whole-brain anatomical segmentation.

Population receptive field analysis

Population receptive field (pRF) parameters were estimated
according to procedures described by Dumoulin and Wandell
(Dumoulin and Wandell, 2008). Briefly, fMRI time-series predictions
were generated by varying the parameters (x, y and σ) of a circular
symmetric Gaussian pRF model across a wide range of plausible
values. The optimal pRF parameters were found by minimizing the
residual sum of squares (RSS) using a coarse-to-fine search. First,
the fMRI data were re-sampled to an 1 mm isotropic resolution with-
in the identified gray matter. The fMRI data were then smoothed
along the cortical surface using a diffusion smoothing process that
approximated a 5 mm full-width at half-maximum Gaussian kernel,
after which the pRF parameters were estimated for a sub-sample of
the voxels and interpolated for the remaining voxels. Subsequently,
an optimization algorithm (Fletcher and Powell, 1963) was applied
for every voxel whose initial estimates exceeded 10% of the variance
explained, so that the pRF model predictions were fitted to fMRI
time courses without any spatial smoothing. As in previous work,
eccentricity, polar angle, and pRF size maps were derived from the
best pRF fits that exceeded 15% of the variance explained (Baseler et
al., 2011; Haak et al., 2012; Winawer et al., 2010).

Connective field modeling

As in the population receptive field analysis, the connective field
parameters were estimated from the time-series data using a linear
spatiotemporal model of the fMRI response:

y tð Þ ¼ p tð Þβ þ ε ð1Þ

where p(t) is the predicted fMRI signal, β is a scaling factor that ac-
counts for the unknown units of the fMRI signal, and ε accounts for
measurement noise. In the present analysis, p(t) is calculated using
a parametrized model of the underlying neuronal population and
the spatial distribution of its inputs laid out across the cortical surface.
The model is estimated by finding the parameters that best predict
the observed fMRI time course y(t).

The current implementation of the analysis uses a circular sym-
metric Gaussian connective field model. The two-dimensional circu-
lar symmetric Gaussian connective field of voxel v, g(v), is defined
by two parameters: v0 and σ:

g vð Þ ¼ exp– d v; v0ð Þ2=2σ2
h i

ð2Þ

where d(v,v0) is the shortest three-dimensional distance along the
cortical manifold between voxel v and the connective field center v0,
and σ is the Gaussian spread (mm) across the cortical surface. The dis-
tance d(v,v0) was computed using Dijkstra's algorithm (Dijkstra, 1959)
on a triangular mesh representation of the gray/white matter border.
The calculation of g(v) is done for each gray-matter voxel v directly ad-
jacent to thewhite-matter in a predefined region-of-interest; V1 for ex-
ample. Distances were calculated separately for each hemisphere:
hence, a connective field model solution for any given voxel comprised
voxels either in the ipsilateral hemisphere or the contralateral hemi-
sphere, but not both.

The neuronal population inputs, a(v,t), are defined as the percent
BOLD signal change (Δ%) time course for voxels v. Low-frequency
signals were removed from these time-courses using a discrete cosine
transform (DCT) high-pass filter. The time-series prediction is then
obtained by calculating the overlap between the connective field and
the neuronal population inputs (note that there is no need to do a con-
volution with the hemodynamic response function):

p tð Þ ¼ Σv a v; tð Þ⋅g vð Þ½ & ð3Þ

Finally, the optimal connective field parameters were found by min-
imizing the residual sum of squares (RSS) between the prediction, p(t),
and the observed time-series, y(t). To do this, we generated various dif-
ferent fMRI time-series predictions by varying the connective field
parameters v0, andσ, across all existing voxel positions on the V1 surface
(both hemispheres) and 50 sigma values ranging from 0 to 25 mm.
Neither spatial smoothing nor interpolation was performed; all connec-
tive field models were fitted to the observed time-series. Best models
were retained if the explained variance in the fMRI time-series exceeded
15%.

Computing the V1 sampling extent

We obtained the V1 sampling extent by first finding the linear re-
lationship between the pRF laterality index (λ), which indicates the
extent to which a pRF overlaps with the ipsilateral visual field (0 rep-
resents no overlap, 0.5 represents 50% overlap), and the connective
field size (σ):

σ vð Þ ¼ m⋅λ vð Þ þ b ð4Þ
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where m is the slope of the line and b is the intercept. We then com-
puted the V1 sampling extent (r) for each voxel v using the following
formula:

r vð Þ ¼ σ vð Þ þ 2⋅λ vð Þ⋅b½ & ð5Þ

Statistical analyses

We derived the percent variance explained to specify how well the
pRF and connective fieldmodels fit the fMRI time series. These r2 values
were calculated from the total sum of squares of the observed time se-
ries and the residual sum of squares of the predicted versus observed
time series. Given that the time series consisted of 240 samples, the
15% variance explained threshold that was applied to all further ana-
lyzes corresponds to pb0.001, corrected for testing ~100.000 different
models per voxel (Bandettini et al., 1993). Furthermore, the correlation
coefficients that were derived to quantify the agreement between the
polar angle maps were circular–circular correlation coefficients to
appropriately assess the association between these two angular
variables (Behrens, 2009; Jammalamadaka and Sengupta, 2001). Fi-
nally, all ranges reported in text represent 95% confidence intervals
for the bootstrapped weighted means (N=1000) using Student's t-
distribution. Where appropriate, Bonferroni correction was applied to
the confidence intervals — as reported in both the text and in the
figures.

Results

We first employed the conventional model-based pRF method
(Dumoulin and Wandell, 2008) to derive estimates of the population
receptive field for each voxel in visual cortex. These pRF estimates
were used to delineate visual maps V1, V2, V3, and hV4 (Amano
et al., 2009; Brewer et al., 2005; Dougherty et al., 2003; Dumoulin
and Wandell, 2008; Harvey and Dumoulin, 2011; Wandell and
Winawer, 2011; Wandell et al., 2007; Winawer et al., 2010;
Zuiderbaan et al., 2012). We then employed the new analysis
(Fig. 2) to derive several inter-areal connective field models for each
voxel within the delineated visual areas. For the sake of brevity, we
refer to these models in a compact manner; a connective field
model m for voxel v can be specified by S ➤ R (“S projects on R”), if
m has been defined on cortical surface S, and v falls in cortical region
R (note that if S represents the visual field, the same notation can
also be used to describe conventional population receptive fields).
In this notation, we derived the following connective field models:
V1 ➤ {V2, V3, hV4}. Across the two subjects and the three resolution
sets, the best-fitting models explained on average 76%, 66%, and 46%
of the time-series variance in V2, V3, and hV4, respectively.

Fig. 3 further shows two examples of the connective field model fit
to the fMRI time-series. A comparison of the connective field model
prediction with the conventional pRF model prediction suggests that
the connective field model captures more of the time-series variance
than the pRF model. Indeed, across subjects and voxel sizes, we found
an average difference (connective field - pRF) of ~23%, ~14% and ~10%
in variance explained for visual areas V2, V3 and hV4 respectively.
This improvement is particularly evident during the mean luminance
periods when there was no stimulus. During the mean luminance
periods, the conventional pRF predicts a uniform signal: in contrast,
the connective field model can capture some of the time-varying sig-
nals. Note, however, that the standard pRF prediction could be
improved by adding extra model parameters. For example, one could
add a secondGaussian spreadparameter tomodel the pRF's suppressive
surround and explain more of the negative trenches around the peaks
(Zuiderbaan et al., 2012). In addition, some of the time-series variance
during the mean luminance periods could be non-neuronal physiologi-
cal noise (although the time series were averaged across runs).

Connective field modeling links a voxel in one brain region to
many voxels in another region. The voxels in the two regions should
respond to overlapping regions of visual space (i.e., they should have
similar pRFs). This is because voxels that have similar patterns of
stimulus-evoked responses will also have similar time-series. Hence,
once the connective fields are known it should be possible to derive
the visual field map in one area from the visual field map in another
area. Qualitatively, Fig. 4 shows that this is indeed the case. Panels a
and b depict the eccentricity and polar angle maps for visual areas
V1-hV4 derived with conventional pRF mapping. In the same figure,
panels d and e show the result of deriving the V2-hV4 maps from
V1 using the connective field models. To quantify the agreement
between the conventional (pRF based) and derived (connective
field based) visual field maps in these areas, we computed the corre-
lation between the visual field positions of the V2-hV4 voxels' stan-
dard pRFs, and the pRF locations of the V1 voxels corresponding to
the V2-hV4 voxels' connective field centers. The visual field map

Fig. 2. Estimating the V1 ➤ V2 connective field for a V2 voxel. Assuming a linear rela-
tionship between the blood-oxygenation levels and the fMRI signals, the observed
blood-oxygenation level-dependent (BOLD) time course, y(t), can be described in
terms of the predicted BOLD signal, p(t). The prediction, p(t), is calculated using a pa-
rametrized model of the connective field. The parameters of the connective field model
are its center location, v0, in voxel coordinates, and the Gaussian spread, σ, laid out
across the folded cortical surface in millimeters cortex. The definition of this circular
symmetric Gaussian model is achieved by its projection on a three-dimensional mesh
representation of the boundary between the gray and white matter of the brain. The
predicted BOLD time course, p(t), for a V2 voxel is then obtained by calculating the
overlap between the connective field, g(v0,σ), and the fMRI signals in V1, a(v,t). Finally,
the optimal connective field model parameters are found by minimizing the residual
sum of squares (RSS) between the prediction, p(t), and the observed time series, y(t).

379K.V. Haak et al. / NeuroImage 66 (2013) 376–384



estimates of the pRF and connective field methods are highly correlat-
ed. For S1, we found significant (pb0.0001) correlations of r=0.96,
r=0.93, and r=0.83 for the eccentricity maps in V2, V3, and hV4,
respectively. The corresponding values for the eccentricity maps in
S2 were: r=0.89, r=0.81, and r=0.68. Similar values were also
found for the polar angle maps using a circular correlation coefficient:
r=0.93, r=0.89, and r=0.82 for S1, and r=0.92, r=0.91, and r=
0.73 for S2. The high correlation between the two methods indicates
that the connective field method is capable of tracing with high accu-
racy the receptive field coupling between visual areas.

There are several lines of evidence suggesting that the eccentricity-
dependent receptive field scaling from V1 to higher visual areas corre-
sponds to a constant sized sampling from the retinotopic map laid out
across the cortical V1 surface (Harvey and Dumoulin, 2011; Kumano
and Uka, 2010; Motter, 2009; Pelli, 2008; Pelli and Tillman, 2008;
Schwarzkopf et al., 2011). This leads to the prediction that within
extra-striate cortical regions, the size of the V1➤ {V2, V3, hV4} connec-
tive field stays constant with eccentricity (unlike the size of the conven-
tional stimulus-referred receptive field). However, Fig. 5a shows that the
V1 ➤ {V2, V3, hV4} sizes increases significantly as a function of pRF
eccentricity (depicted data are combined across subjects and scan

resolutions). What could explain this dependency? Fig. 5b shows that
the connective field size of a voxel does not only depend on the voxel's
position in the eccentricity map, but also on the extent to which its pRF
overlapswith the ipsilateral visual hemifield (pRF laterality). This feature
is expected on the basis that beyondV1, neurons close to the verticalme-
ridian receive part of their inputs from the opposite cerebral hemisphere
(Gattass et al., 1981, 1988; Salin and Bullier, 1995; Tootell et al., 1998).
For the current implementation of the analysis we chose not to draw
connective fields across the two V1 hemifield maps in each of the two
cerebral hemispheres because this would require seaming the two V1
surfaces together. As such the present analysis is expected to underesti-
mate the true connectivefield size of voxels close to the verticalmeridian
by an amount proportional to the amount by which their pRFs overlap
with the ipsilateral visual field. To assess the effect of eccentricity on con-
nective field size without the influence of laterality effects, we plotted
the connective field size as a function of pRF eccentricity after adjusting
the connective field size for pRF laterality (Fig. 5c; see methods). Both
qualitatively and numerically, this plot agrees very well with Fig. 5 in a
recent report by Harvey and Dumoulin (Harvey and Dumoulin, 2011).
These authors derived the V1 sampling extent theoretically, using the
conventional pRF estimate and an estimate of the cortical magnification

Fig. 3. Examples of the connective field model fit to the BOLD time-series at voxels in V2 and V4. The BOLD time-series are indicated by the dotted lines. The conventional pRF model
predictions are indicated by the solid blue lines. The connective field model predictions are indicated by the solid red lines. The connective field models are shown on an inflated
portion of the left occipital lobe (medial view) on the right. (a) The V1 ➤ V2 connective field model fits the BOLD time-series very well, explaining 72.2% of the variance. For this
particular V2 voxel the best-fitting connective field radius is 3.1 mm. (b) The best-fitting V1➤ V4 connective field model yields a radius of 10.2 mm. The BOLD time series variance
explained by this model is 66.7%. Also note that the pRF model captures the peaks quite well (when the stimulus passes through the receptive field) but that it misses some of the
ripples that occur when the stimulus is not directly on the receptive field. The connective field model, by contrast, does capture some of these fluctuations, which is one of the dif-
ferences between the connective field model and the pRF model: the pRF model will never make accurate predictions when there is no stimulus.
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factor, and also found a constant V1 sampling extent across eccentricity.
Thus, in agreement with several past studies, the results are consistent
with the idea that cortical magnification in extrastriate cortical areas
(V2-hV4) is inherited fromV1, and that there is no furthermagnification
in the pooling of signals from V1.

From Fig. 5 it is also clear that the connective field size increases sys-
tematically between different visual fieldmaps. This feature is expected
on the basis that visual information converges up the visual processing
hierarchy. If the connective field size corresponds to the radius of sam-
pling from V1, then the sampling area is ~30 mm2 for V2, ~90 mm2 for
V3, and ~300 mm2 for hV4. These values correspond to approxi-
mately 1/100, 1/25 and 1/8 of the total V1 hemispheric surface area
(Andrews et al., 1997).

Finally, there are two important instrument-related factors that
could influence the spatial specificity of the connective field estimate.
The first reflects the fact that coarser fMRI resolutions result in a poorer

ability to estimate small changes in the connective field position and
size. The second captures the feature that data from lower magnetic
fields normally have a lower spatial specificity due to the increased
intra-vascular contribution of draining veins (Logothetis, 2008; Ogawa
et al., 1998). Therefore, we asked whether the connective field method
is robust to changing these two parameters. Table 1 summarizes the ef-
fect of changing the resolution and field-strength on the correlation be-
tween the visual field maps derived using conventional pRF modeling
and the connective field method. It is clear that increasing the voxel
size from ~4 mm3 to ~16 mm3 and then decreasing the magnetic field
strength from 7 to 3 Tesla does not systematically influence the
accuracy by which the connective field method accurately links voxels
with overlapping receptive fields. Fig. 6 further summarizes the effect
of changing these two instrument-related features on the estimates of
the V1 sampling extent. This figure indicates that the connective field
size estimate is also robust to increasing the voxel size and decreasing

Fig. 4. Stimulus- and neural-referred maps on the posterior medial surface of the occipital lobe of the left cerebral hemisphere at 7 Tesla. (a, b) Stimulus-referred eccentricity and
polar angle maps revealed using conventional pRF modeling. The pRF eccentricity and pRF polar angle were used to delineate visual areas V1-hV4. Insets indicate the color maps
that define the visual field locations. (c) The stimulus-referred pRF size estimates, as indicated by the colors shown in the color bar. The pRF size increases with eccentricity for all
visual areas shown. (d, e) Neural-referred eccentricity and polar angle maps derived from the best-fitting V1 ➤ {V2, V3, hV4} connective field models in visual areas V2-hV4. The
insets indicate the color maps that define the cortical locations, which are the V1 maps shown panels a and b. (f) The neural-referred connective field size, as indicated by the colors
shown in the color bar.
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the magnetic field-strength. These results show that the connective
field method yields similar quantitative estimates from 3 T and 7 T
data using a wide range of fMRI resolutions.

Discussion

Just as the receptive field of a visual neuron describes its response as
a function of visual field position, the connective field of a neuron
predicts its response as a function of activity in another part of the
brain. Here, we have shown how fMRI can be used to estimate the con-
nectivefield of a population of neurons. The analysis is based on amodel
of neuronal responses, accurately traces the fine-grained topographic
connectivity between visual areas, and provides a quantitative estimate
of the connective field size. The method is non-invasive and robust to
changes in fMRI resolution as well as field-strength.

Connectivefieldmodeling represents a fundamental departure from
the existing approaches to estimating fMRI connectivity in the human
brain. One reason is that it emphasizes the spatial profile of the func-
tional connectivity between brain areas: connective fieldmodeling har-
nesses the core strengths of fMRI— a large field of view and high spatial
resolution— tomake inferences about the spatial coupling among brain
areas. While some of the existing methods such as seed-voxel correla-
tionmapping (Biswal et al., 1995) and independent component analysis
(Arfanakis et al., 2000) are capable of producing spatial connectivity
maps, these methods have not yet provided the level of spatial detail
associated with connective field modeling. Another important aspect
that is unique to connective field modeling is that it informs about the

direction of information flow in terms of converging versus divergent
connections. For example, if the connective field size for V1➤V2 is larg-
er than for V2 ➤ V1, this would indicate that visual information con-
verges from V1 to V2. To the best of our knowledge, existing methods
for fMRI connectivity analysis only deal with the question of direction-
ality by framing cortical information processing in terms of temporal
causation (Buchel and Friston, 1997; Friston et al., 1995, 1997, 2003;
Goebel et al., 2003; Harrison et al., 2003), which is not a trivial thing
to do with fMRI due to its poor temporal resolution.

The connective field modeling method depends on some but not all
of the unwanted factors that also influence the conventional pRF esti-
mate (Dumoulin and Wandell, 2008; Smith et al., 2004). Common fac-
tors include eye and head movements, brain pulsations, and BOLD
spread. These factors create a bias towards larger connective field size
estimates, and add noise but no bias towards the connective field loca-
tion estimates (Levin et al., 2010). Also like the pRF estimate, the
connective field estimate is a statistical summary of the neuronal prop-
erties within the sampled voxel. Therefore, the connective field model
parameters depend on the size and intrinsic properties of the sampled

Table 1
Correlation between the visual field maps derived using pRF and connective field
modeling.

7 T/1.63 mm3 7 T/2.03 mm3 7 T/2.53 mm3 3 T/2.53 mm3

r ϑ r ϑ r ϑ r ϑ

V2 0.96 0.93 0.95 0.96 0.92 0.96 0.95 0.98
V3 0.93 0.89 0.92 0.93 0.87 0.96 0.90 0.92
hV4 0.83 0.82 0.82 0.86 0.78 0.84 0.85 0.64

The correlation coefficients compare the eccentricity (r) and polar-angle (ϑ) maps in
V2-hV4 for subject S1 derived using conventional pRF modeling to those derived
using the connective field method. The correlation coefficients were computed for all
voxels in the regions of interest for which the best-fitting connective field models
explained more than 15% of the time-series variance. Columns indicate different com-
binations of magnetic field-strength and the voxel size. All correlation coefficients were
highly significant (pb0.0001).

Fig. 6. Estimates of the V1 sampling extent for three different voxel sizes and two dif-
ferent field-strengths for visual areas V2-hV4 in subject S1. Increasing the voxel size
from 1.63 mm3 to 2.53 mm3 and then decreasing the magnetic field-strength from
7 T to 3 T reveals that the connective field modeling method is robust to changing
these instrumental parameters; there is noise but no bias. Error-bars indicate the
95% bootstrapped confidence intervals.

Fig. 5. The relationship between eccentricity and V1-referred connective field size in visual areas V2-hV4, grouped from both participants and all voxel sizes. (a) The connective field
size increases up the visual processing hierarchy and is dependent on eccentricity. (b) The connective field size decreases as a function of the pRF laterality index, which indicates
the extent to which a pRF overlaps with the ipsilateral visual field (0 represents no overlap, 0.5 represents 50% overlap). (c) Adjusting the graph in a for pRF laterality yields the V1
sampling extent, which appears roughly constant across eccentricities. Colored lines represent a linear fit to the bins (dots). The bins were bootstrapped and linear fits repeated to
give the 95% confidence intervals (dashed gray lines).
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neuronal population. Different neuronal populations, for example in
different cortical layers, will likely have different connective fields
(Ress et al., 2007). Finally, pRF fits extending outside the maximum
stimulus radius get noisy because they are based on less information
than the fits that lie entirely within the stimulus area. The same is
true of connective fields. If connective fields extended beyond the
stimulated area of V1, then part of the connective field would be de-
termined by the activity of the unstimulated part of V1. This
unstimulated part will have lower amplitude responses than the
stimulated area, so estimates here will be noisier; connective field
model solutions will generally not be great for voxels near the edge
of the stimulus representation.

In the present implementation of the analysis, we used a single circu-
lar symmetric, two-dimensional Gaussian connective field model. This
model provides a compact description of the connective field using
only two parameters. Other models, however, may also be used. The
single isotropic Gaussian connective field model could be readily re-
placed with sums and differences of Gaussians, an anisotropic Gaussian,
or any other type of mathematical function to describe the connective
field. Such models may be suitable to examine connective fields in
other topographically organized cortices. In addition, determining what
connective field forms best explain the fMRI time-series in the different
visual areas could be a very fruitful approach for understanding the dif-
ferent types of computation across the visual pathways.

While different stimuli may alter the connective field estimate, an
important feature of connective field modeling is that the analysis itself
is stimulus-independent. Consequently, the connective field models
also capture some of the spontaneous signal fluctuations during periods
when there is no stimulus. Using connective field modeling, therefore,
it should also be possible to extract the intrinsic properties of sensory
information processing based on resting-state fMRI. This idea is
supported by Heinzle and colleagues' work, who showed that “non-
invasive imaging techniques such as fMRI are applicable to study
detailed spatial interactions between topographically organized cortical
regions in humans even in the absence of inputs driving the system
under investigation” (Heinzle et al., 2011). It should be noted, however,
that if connective field modeling were applied to resting-state rather
than task-evoked responses, it would be important to adopt a physio-
logical noise removal strategy, such as for example, global signal regres-
sion (Birn et al., 2006), retroicor (Glover et al., 2000), or drifter (Sarkka
et al., 2012).

In conclusion, we have described and validated connective field
modeling, a new model-based fMRI data-analysis that can be used to
make inferences about how the spatial coupling among retinotopically
organized brain regions is influenced by changes in experimental
context, development, ageing, and disease. An importantmethodological
difference between this and previous work is the use of a two-
dimensional circular symmetric Gaussian connective field model. This
is a valuable improvement because it is more interpretable biologically,
and it allows for calculations on straightforward parameters such as
the connective field size, a measure of spatial integration. Because the
method is stimulus-agnostic, it should also be possible to employ the
method to non-visual topographically organized brain regions as well
as resting-state responses.
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