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SUMMARY

Accurately timing sub-second sensory events is
crucial when perceiving our dynamic world. This abil-
ity allows complex human behaviors that require
timing-dependent multisensory integration and ac-
tion planning. Such behaviors include perception
and performance of speech, music, driving, and
many sports. How are responses to sensory event
timing processed for multisensory integration and
action planning? We measured responses to viewing
systematically changing visual event timing using
ultra-high-field fMRI. We analyzed these responses
with neural population response models selective
for event duration and frequency, following behav-
ioral, computational, and macaque action planning
results and comparisons to alternative models. We
found systematic local changes in timing prefer-
ences (recently described in supplementary motor
area) in an extensive network of topographic timing
maps, mirroring sensory cortices and other quantity
processing networks. These timing maps were
partially left lateralized and widely spread, from oc-
cipital visual areas through parietal multisensory
areas to frontal action planning areas. Responses
to event duration and frequency were closely linked.
As in sensory cortical maps, response precision var-
ied systematically with timing preferences, and
timing selectivity systematically varied between
maps. Progressing from posterior to anterior maps,
responses to multiple events were increasingly inte-
grated, response selectivity narrowed, and re-
sponses focused increasingly on the middle of the
presented timing range. These timing maps largely
overlap with numerosity and visual field map net-
works. In both visual timing map and visual field
map networks, selective responses and topographic
map organization may facilitate hierarchical
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transformations by allowing neural populations to
interact over minimal distances.

INTRODUCTION

Precisely quantifying sub-second sensory event timing is vital to
understanding and interacting with events in our dynamic world.
This is required for the perception and performance of speech,
music, driving, and many sports: fast, complex behaviors that
are unique to humans. Humans can perceive sub-second event
durations and frequencies, compare these across senses, and
synchronize motor actions to them. Recent fMRI studies have
demonstrated responses in human early visual areas that mono-
tonically change with visual event timing, increasing with event
frequency and duration [1, 2]. For motor planning, macaque
neurophysiological measurements demonstrate responses to
motor event frequency in the macaque supplementary motor
area, following both tuned and monotonic functions [3, 4]. But
how are responses to visual event timing from early visual areas
processed and transformed to allow multisensory integration
and action planning to follow sensory timing?

Evidence from sensory timing perception [5] and computa-
tional modeling [6] suggests neural responses selective for spe-
cific sensory event durations or frequencies [7]. We recently
demonstrated that selective responses to another sensory quan-
tity [8], visual numerosity [9, 10], form an extensive fronto-parietal
network of topographic maps [11, 12]. In this network, neural
numerosity preferences change gradually across the cortical
surface, with maps found in areas involved in visual object pro-
cessing, multisensory integration, and action planning. These
numerosity maps also largely overlap with responses to another
quantity, object size [13], and with visual field maps. We there-
fore hypothesized that human cortical neural populations may
exhibit selective responses to visual event timing in a network
of topographically organized areas. One such topographic
timing map was recently described at the motor planning stage,
in human supplementary motor area, during a duration compar-
ison task [14]. However, it is unclear whether other areas show
similar responses, whether other areas show similar organiza-
tion, whether the precision of timing selectivity varies systemat-
ically within or between maps, whether event frequency is also
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Figure 1. Deriving Timing Selectivity Param-

encoded in these timing responses [6], or whether timing maps
are located together with responses to other quantities. We
further hypothesized that the timing selectivity may be progres-
sively transformed from extrastriate visual areas through multi-
sensory integration areas to motor planning areas to optimize
timing representations for different cognitive functions. Finally,
we hypothesized that these timing responses may overlap with
responses to other quantities and visual space.

We acquired ultra-high-field (7T) fMRI data while showing
repetitive visual events (a circle repeatedly appearing and dis-
appearing) that gradually varied in duration and/or frequency
(Figure 1A; Video S1). Gradual timing changes reveal timing
selectivity at fMRI’s slow timescale. Human timing perception
studies typically vary the duration of single events [5], whereas
animal timing neurophysiological studies typically vary the
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forward comparison. Event duration co-
varies with either mean display luminance (if events begin at
regular intervals) or event period (if each event is immediately
followed by another). Controlling for these correlated proper-
ties, we characterize four stimulus configurations (Figure 1A;
Video S1). The “constant luminance” configuration matched
duration and period so an event was always ongoing. The
“constant duration” configuration presented 50-ms events
with varying period. The “constant period” configuration pre-
sented events with varying duration and 1,000-ms period.
Finally, the “gaps” configuration varied both duration and
period to sample timings absent in other configurations. Sub-
jects made no duration or period judgments but reported
when white circles were presented rather than black (perfor-
mance > 80%). This happened pseudo-randomly, equally
frequently for all timings.
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RESULTS

Timing-Selective Responses

We summarized the responses of each recording site (voxel) to
all four stimulus configurations using one neural response model
(see STAR Methods; Figure 1) [15]. We tested the predictions of
several candidate neural response functions (Figure S1) that
each predicted how each recording site’s response amplitude
changed with stimulus event timing. At every event offset, we
evaluate the candidate response function’s amplitude and scale
this by the frequency exponent (Figures 1A and 1E). This predicts
the neural response amplitude time course of this candidate
response function to our stimulus sequence’s event offsets.
Convolving this with a hemodynamic response function predicts
an fMRI response time course, which we correlate to the
measured response (Figures 1F and 1G). We repeat this for a
large set of parameters of the response function and find those
that produce the prediction best correlated with each recording
site’s response time course. This determined the timing
response selectivity (tuning) parameters (Figures 2A and 2B)
that predict the fMRI response time course best correlated to
the recording site’s observed responses (Figure 2C).

We tested several potential parametric response models (Fig-
ure S1). Comparing potential model fits on cross-validated data
let us distinguish between these models’ performance in predict-
ing observed responses despite differences in model
complexity. Tested models included selectivity for temporal fre-
quency; event duration and period; event period and occupancy
(proportion of that period the event filled; i.e., period/duration);
and event duration and inter-event interval (time from event
offset to the next event onset; i.e., period—duration). We also
compared logarithmic and linear response functions, and mono-
tonic amplitude increases with occupancy (i.e., sustained neural
response component) and/or event onset frequency (i.e., tran-
sient components) [1, 2].

A 2-dimensional anisotropic Gaussian function selective for
duration and period, with a compressive exponent on event fre-
quency, best predicted the observed responses (t test of map
mean response variance explained against next best model,
paired across maps: p < 107'°, t = 8.3, n = 304, mean 31.7%
versus 30.8% variance explained) (Figures S1J and S1K). Even
comparing each subject’s global mean response variance
(rather than each map’s) between models, this model outper-
formed all others (against the next best model: p = 0.016, t =
3.17, n = 8), suggesting the best fitting model generalized across
our population of subjects. This best fitting model’s response
function had five parameters (Figures 1B, 2A, and 2B). The first
two were the preferred duration and period, yielding the largest
response per event. Each recording site responded to a range
of timings, summarized by the function’s extent along its major
and minor axes, and the major axis’s angulation (third, fourth,
and fifth parameters). A sixth parameter, compressive exponent,
captured sub-additive increases in response amplitude with
increasing event frequency (Figures 1E and 2B) [2]: at an expo-
nent of one, response amplitudes would be 10 times larger for
10 events per s than 1 event per s, whereas at an exponent of
zero these response amplitudes would be identical.

Temporal frequency-selective responses are common in early
visual cortex. However, this model’s predictions captured the
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measured responses poorly. Notably, our events have immedi-
ate onsets and offsets with broad temporal frequency power dis-
tributions, whereas narrow temporal frequency stimuli (such as
sinusoidal luminance modulations) lack discrete events with
meaningful durations. Furthermore, power spectra do not distin-
guish between an event’s duration and its inter-event interval,
although their phase differs. Therefore, although a 50-ms event
with a 950-ms inter-event interval produces a different response
to a 950-ms event with a 50-ms inter-event interval, their power
spectra are identical.

Topographic Timing Maps

We found ten maps on each hemisphere’s lateral surface (with
none on the medial surface) where these models captured
response variance best, consistently positioned relative to major
sulci (Figure 3A). These form the basis of our regions of interest.
We named these maps by their anatomical locations, preceded
by “T” for “timing,” following naming conventions for visual field
maps [16] and numerosity maps [11]. Table S1 gives their
Montreal Neurological Institute coordinates. Moving posterior/
inferior to anterior/superior, TLO (timing lateral occipital) lay
in the lateral occipital sulcus. TTOP (timing temporo-occipital
posterior) and TTOA (timing temporo-occipital anterior) lay on
the inferior lateral boundary of the temporal and occipital lobes,
in the posterior inferior temporal sulcus, consistent with the
human MT+ (or TO [temporal-occipital]) visual field maps’ loca-
tion [17, 18]. TPO (timing parieto-occipital) lay superior to the
parieto-occipital sulcus, medial to the posterior intraparietal
sulcus (IPS). TLS (timing lateral sulcus) lay in the posterior lateral
sulcus. TPCI (timing postcentral inferior) lay in the inferior post-
central sulcus. TPCM (timing postcentral medial) lay in the mid-
dle of the postcentral sulcus near its junction with the IPS. TPCS
(timing postcentral superior) lay immediately posterior to the su-
perior postcentral sulcus and medial to the anterior IPS. TFI
(timing frontal inferior) and TFS (timing frontal superior) lay in
the premotor cortex, at the intersection of the precentral sulcus
with the inferior and superior frontal sulci, respectively.

We identified maps in 155 of the 160 locations tested (10 loca-
tions x 8 subjects x 2 hemispheres). Projecting each recording
site’s preferred duration or period (Figures 3B and 3C) onto the
cortical surface revealed that both progressed gradually across
the cortical surface, forming topographic timing maps. We
quantified this progression by sorting recording sites within
each map by their distance from the map borders with the lowest
and highest preferred durations (white lines in Figures 3B and
3C). Recording sites’ preferred durations were significantly
correlated with cortical distance (at p < 0.05) in 101 of 155
maps (65%), and preferred period was correlated with cortical
distance in 89 (57%) (Figures 4 and S4). In split halves of the
dataset, preferred duration and cortical distance were signifi-
cantly correlated in 149 of 310 (2 x 155) map measurements
(48%), and preferred period and cortical distance were signifi-
cantly correlated in 128 (41%). Preferred duration estimates
from odd and even runs were significantly correlated in 55 of
155 maps (35%), whereas preferred period estimates were
correlated in 65 (42%). This repeatability over independent
measures reached significance more often in the superior (and
larger) maps (TPO, TPCM, TCPS, TFS), where 36 of 64 maps
(56%) showed correlated duration preferences and 38 (59%)
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Figure 2. Different Example Recording Site Responses Captured by Different Timing Response Parameters
(A) In each recording site (columns), we fit the timing response function (background) that best predicts responses to all stimulus configurations’ event timings

(colored circles).

(B) Responses accumulate sub-additively with event frequency, summarized by fitting a compressive exponent.

(C) Each stimulus configuration samples its event timings in both directions. At every event offset, we evaluate the candidate response function’s amplitude, scale
this by the frequency exponent, and convolve the result with a hemodynamic response function (see Figure 1). This predicts an fMRI response time course
(colored lines), which we correlate to the measured response (colored dots). For clarity, responses shown here are from recording sites with particularly good
model fits. Response function parameters preferred duration (x), preferred period (y), major (omgj) and minor (omin) axis extents, major axis orientation (6), and

compressive exponent (exp) are fit to maximize this correlation (R?).
See also Video S1.

showed correlated period preferences between odd and even
runs (Figure S4). As such, we are more confident of the repeat-
able topographic organization of the larger maps than of the
smaller maps we describe. Such gradual progressions of
preferred timing group similarly responding neural populations

[19, 20], allowing us to characterize neural response selectivity
at fMRI’s limited spatial resolution.

Within each map, individual recording sites’ response function
extents varied systematically with preferred duration in two
distinct ways (Figure 5). First, the response function’s major
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Figure 3. Cortical Locations of Timing Maps
and Their Progressions of Preferred Dura-
tion and Period

(A) Timing map locations transformed onto the N27
(Talairach) template’s cortical surface anatomy
(grays; major sulci are labeled in black). Colors
show the number of subjects whose maps overlap
with each surface location, whereas crosses show
the transformed locations of individual subjects’
map centers. See also Table S1 and Figures S2
and S3.

(B) Projecting each recording site’s preferred
duration (colors; for recording sites with over 10%
response variance explained by the response
model) onto the subject’s cortical surface anatomy
reveals ten maps, each containing a range of
timing-selective responses (outlined with black
and white lines: fine dashed white lines connect
map border sites with the lowest duration prefer-
ences, and coarse dashed white lines connect map
border sites with the highest duration preferences).
See also Figure S2.

(C) Preferred period of the same recording sites.
See also Figure S3.
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Figure 4. Quantifying Topographic Progressions of Timing Preferences across the Cortical Surface
Progressing across each map in Figures 3B and 3C (from fine to coarse dashed white lines) reveals gradual topographic progressions of preferred duration and
period (fit lines and points) that are reproduced across repeated measures (colored lines). See also Figure S4. *p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001.

Points show bin mean values; error bars show SEs.

and minor extents increased significantly with preferred dura-
tion, except in right TFS (for the major extent) and left TTOA,
and bilateral TLS and left TFI (for the minor extent). Second,
the major extent increased significantly as the preferred duration
moved away from the middle of the presented range. So, the
most posterior timing map responded to brief timings most spe-
cifically, whereas the others focused on the middle of the pre-
sented range, suggesting range-dependent timing selectivity.

Differences between Maps

Map sizes (Figure 6A) and the goodness of response model fits
both showed left lateralization of timing responses. Three-way
ANOVAs (factors: hemisphere, map, and subject) reveal greater
cortical surface areas (p = 0.0009, F(1,153) = 11.6) and better
model fits (p = 0.0003, F(1,153) = 13.9) in left-hemisphere
maps, a partial left lateralization of timing responsivity. Surface
areas also differed between maps (p < 107'°, F(9, 145) = 13.8),
primarily increasing from inferior to superior maps.

TTOP ﬁ?{.
*"fv»ej

T

We captured sub-additive accumulation of response ampli-
tude with increasing event frequency as a compressive
exponential function (Figures 1E and 2B). A three-way ANOVA
revealed this exponent is smaller (more sub-additive accumula-
tion) in the left hemisphere (p = 0.0003, F(1,153) = 14.1) and dif-
fers between maps (p < 107'°, F(9, 145) = 31.9). It decreases
from posterior to anterior (Figure 6B) and from inferior to superior
up the postcentral and precentral sulci. So, responses to
repeating events are hierarchically integrated through this timing
network, resembling similar integration of visual space through
the visual field map hierarchy [2, 21].

Recording sites within each map had a range of preferred
durations and periods. The mean preferred duration across all
maps was 452 ms (Figure 6C), slightly below the presented
range’s center (500 ms), whereas the mean preferred period
was 556 ms, slightly above. Mean preferred durations and pe-
riods were correlated across maps (p < 107'°, r = 0.64).
Preferred durations of each map’s recording sites were also

TPCI

TPCM TPCS

10 02 04 0 406 08 10 02 04 06 08 10

Figure 5. Changes in Response Function Extent within Timing Maps

] 6 08 4 0 1
Preferred Duranon(s) Preferred Duraflon(s) Preferred Duraflon(s) Preferred Duration(s) Preferred Duraflon(s) Preferred Duranon(s) Preferred Duranon(

In data grouped across subjects, response function extent systematically increased with preferred duration in posterior maps (and along the minor axis) and with
distance from the middle of the presented range in the major axis of anterior maps. Left and middle stars show the significance of increase with preferred duration
and distance from the middle of the presented range, respectively. Large and small stars show the significance of major and minor extent increases, respectively.
*p < 0.05, **p < 0.01, **p < 0.001, ***p < 0.0001. Points show bin mean values; error bars show SEs.
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Figure 6. Differences between Timing Maps

(A) Left-hemisphere maps have larger surface areas than right-hemisphere maps, and map surface areas increase from inferior to superior maps.
(B) The compressive event frequency exponent decreases from posterior to anterior maps, from inferior to superior along the postcentral (TPCI-TPCS) and

precentral (TFI-TFS) sulci, and in the left hemisphere.

(C) The mean preferred duration of recording sites differed little between maps.

(D and E) The interquartile range of preferred durations (D) and periods (E) of each map’s recording sites decreases from posterior to anterior.
(F) Response function orientation becomes more horizontal from posterior to anterior.
(G) The response function major extent (timing range to which individual recording sites respond) decreases from posterior to anterior. The minor extent does not

change.

(H) The mean response function aspect ratio (i.e., extent of response function elongation) therefore decreases from posterior to anterior.
Points represent the population marginal mean of values across subjects. Error bars are 95% confidence intervals: separable error bars show significant dif-

ferences at p < 0.05.

correlated (p < 0.05), with their preferred periods in 144 of 155
maps (93%). Therefore, duration and period selectivity co-var-
ied within and between brain areas, and between subjects.

Two-way ANOVAs of interquartile ranges of preferred dura-
tion and periods within each map (factors: map and subject;
no significant hemisphere effect) revealed these differed
between maps (duration: p = 107, F(9,145) = 6.6; period:
p =9 x 107° F(9,145) = 7.4). Primarily, the range of both
duration (Figure 6D) and period preferences (Figure G6E)
decreased from the posterior (TLO, TTOP) to the anterior su-
perior (TPCS, TFS) maps. So, timing selectivity was trans-
formed along the hierarchy to focus increasingly on the middle
of the presented range, again suggesting range-dependent
timing selectivity.

The timing response function was consistently angulated so
that the event duration yielding the maximum response de-
pended on the event’s period (and vice versa) (Figure 6F),
further linking duration and period selectivity. A two-way
ANOVA revealed this orientation differed between maps (p =
107°, F(9,145) = 8.2) progressing from diagonal (equal extent
in duration and period) in the most posterior maps to more
horizontal (broader extent in the duration than period) toward
the anterior maps. So, the precision of period selectivity
became finer than that of duration selectivity through the
hierarchy.
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A two-way ANOVA revealed differences between maps in
mean major axis extent (p < 107'°, F(9, 145) = 11.2). Primarily,
the response function shortened from posterior (TLO, TTOP,
TTOA) to anterior maps (TPCI, TPCM and TPCS; TFI and
TFS) (Figure 6G), demonstrating finer timing selectivity in the
anterior timing map hierarchy. However, the minor axis extent
did not differ between maps, so the response function’s
elongation also decreased from posterior to anterior maps
(Figure 6H) (map effect on response function aspect ratio:
p =1078, F(9, 145) = 7.3).

Relationships to Numerosity and Visual Field Maps
These timing maps largely overlapped with the subjects’ numer-
osity maps (Figure 7A). However, numerosity and timing net-
works appear to be distinct: there was no numerosity map
near TLO or TLS; left-lateralized timing responses contrast with
right-lateralized numerosity responses [11]; and TTO (timing)
was consistently anterior to NTO (numerosity).

The visual field maps (Figures 7B and 7C) largely included
the visual timing maps, unsurprising, as both are visually
driven responses [11]. However, visual field maps and visual
timing map borders did not coincide, their relative positions
differed between subjects, and there were large areas of
the visual field map network lacking timing selectivity. So,
timing, numerosity, and visual position appear to produce
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Figure 7. Numerosity and Visual Field Position Prefer-
ences

(A) Numerosity preferences for recording sites with over 25%
response variance explained by the response model. Numerosity
maps (white outlines) overlap considerably with timing maps
(black outlines). See also Figure S5.

(B) Eccentricity preferences for recording sites with over 10%
response variance explained by the response model. Timing map
locations (black and white outlines) largely fall within the visual
field map hierarchy. Visual field map borders are shown as
magenta lines, and named in magenta text. See also Figure S6.
(C) Polar angle preferences. See also Figure S7.
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distinct responses. Relationships between these (beyond
similar locations and topographic organization) remain un-
clear, and further analyses will be necessary to quantitatively
investigate these relationships.

DISCUSSION

Many studies describe timing-modulated responses in basal
ganglia, hippocampus, and cerebellum. Here we focus on
cortical responses. Recent fMRI results from Protopapa and col-
leagues show similar responses with topographic organization in
human supplementary motor area (SMA) [14]. This appears to be
at a different location from our TFS map, which lies in premotor
cortex rather than SMA. Task differences may underlie this
discrepancy. Protopapa et al.’s task relied on internally guided
actions following duration comparisons, consistent with SMA’s
role in internally generated motor plans [22, 23]. Macaque exper-
iments [3, 4] showing frequency-selective responses in SMA
similarly use internally guided rhythm continuation. Our subjects
responded to stimulus color changes, an externally cued action
consistent with premotor cortex’s role in externally cued motor
planning.

Previous fMRI studies describe cortical activation near TLO,
TFS, and TFI during visual duration comparison tasks [14, 24]
and repetition suppression near TPCl and TLS by duration adap-
tation [25]. Areas near TPCM, TPCS, and right TFI allow visual
event duration decoding, with right parietal decoding accuracy
correlated to subjects’ behavioral timing discrimination perfor-
mance [26]. Furthermore, parietal and frontal lesions can disrupt
timing judgments, as can transcranial magnetic stimulation of
frontal cortex, parietal cortex, and MT+ [24, 27]. These results
may all reflect activity in the network we describe, and link it to
timing perception. The responding locations suggest roles for
timing-selective responses in visual perception, attention con-
trol, multisensory integration, and action planning. Hierarchical
changes suggest sensory-motor transformations: from fast,
broad-range sensory responses to slower motor responses
following the presented range [28].

Macaque lateral intraparietal (LIP) neurons build to maximal
firing rates at remembered, task-relevant visual event durations
or periods [29, 30]. LIP’s human homolog is near TPCS and
TPO, whereas macaque SMA’s is near TFS. However, human
parietal and frontal lobes are greatly expanded compared to ma-
caques. Establishing inter-species homologies is difficult here
[31]. Human timing responses and analysis may be considerably
more complex (as for numerosity [32]), potentially facilitating
complex, timing-dependent behaviors.

Timing preferences do not cover the entire presented range,
and tend to focus on the middle of the presented range moving
anterior/superior in the hierarchy. TLO, TTOP, and TTOA have
interquartile ranges of timing preferences between 0.3 s and
0.4 s. An even distribution of timing preferences between
0 and 1 s would give an interquartile range of 0.5, so here
different timings are represented fairly evenly. By TCPS and
TFS (the most anterior/superior maps), these interquartile
ranges are around 0.2 s (50% of timing preferences in the nar-
row 0.4-0.6 s range). However, our recording sites group the re-
sponses of many nearby neurons [15, 33]. If this population of
neurons contains all timing preferences equally (i.e., high
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scatter of timing preferences), this aggregate population will
prefer the average, although the population of individual neu-
rons may show a broad distribution. Despite this, we propose
that this hierarchical narrowing of the timing preference range
would likely be observed in populations of individual neurons
because an increase in scatter of timing preferences should
be accompanied by a larger population response function,
and we observe smaller response function extents up the hier-
archy. These considerations also suggest that the population
response function extents we measure are larger than those
of individual neurons [15].

Posterior maps show response function major extents
increasing with duration, which may underlie timing perception’s
scalar property (Weber’s law): decreased perceptual precision
for longer timings [34]. Likewise, the anterior maps’ decrease
in response function extent at the middle of the presented range
may underlie timing perception’s regression to the mean (central
tendency): bias of perceptual estimates toward the mean of the
presented range [35]. Typically interpreted in a Bayesian frame-
work, this gives a prior distribution of expected event timings
with the highest precision at the middle of the expected range.
We speculate that more anterior areas may show this effect
more strongly to guide action planning most accurately for the
most likely sensory event timings.

Although all timing maps are consistently positioned across
subjects, only TPO, TPCM, TPCS, and TFS (i.e., the larger
maps) are consistently oriented. This variability resembles that
of many numerosity maps [11] and also fronto-parietal visual
field maps [36, 37]. This variability of anterior topographic map
orientations may arise because these maps are not constrained
by links to neighboring maps or ascending neuronal pathways
such as the optic radiation.

How do timing selectivity and maps emerge? Many models
describe how monotonic or tuned responses could arise
[6, 38, 39]. Early human visual cortex exhibits monotonic re-
sponses to visual event duration and frequency [1, 2], from
which tuned responses can be straightforwardly derived [40].
Our results show correlated and interacting selectivity for event
duration and period (a measure of frequency). This suggests
that event duration- and frequency-selective neural responses
may be derived by a single mechanism [41]. Although filled
and empty intervals do produce different sustained responses
in the early visual cortex [42], any mechanism that captures
the time between transient neural responses (which occur at
both stimulus onset and offset) could give identical responses
to duration and period in our stimuli. Given tuned responses,
topographic maps minimize distances between similarly re-
sponding neurons, thereby increasing neural wiring efficiency
[19, 20].

Timing selectivity and map organization resemble re-
sponses to visual space and to other quantities. Both visual
timing and visual space show hierarchical response transfor-
mations. Selective responses and maps may facilitate these
by allowing efficient interactions between similarly responding
neurons. Similar encoding of timing, numerosity, and space
may underlie perceptual commonalities and interactions.
Similar responses, organization, and processing may underlie
other cognitive functions, allowing their characterization by
ultra-high-field fMRI [43].
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Vistasoft repository https://github.com/vistalab/ https://github.com/vistalab/
vistasoft vistasoft

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, data and code should be directed to and will be fulfilled by the Lead Contact, Ben
Harvey (b.m.harvey@uu.nl).
This study did not generate new unique reagents.

Experimental model and subject details

Eight right-handed subjects (one female, ages 25-35 years) participated in the experiment. Six subjects were naive to the aims of the
experiment. All subjects had normal or corrected to normal vision. All subjects were briefly trained in duration discrimination tasks
before scanning, to encourage attention to stimulus timing and avoid learning or habituation effects at the start of data collection.
All subjects were very well educated academics, employed as PhD candidates, postdocs or professors at our university or hospital.
All subjects gave written informed consent. All experimental procedures were cleared by the ethics committee of University Medical
Center Utrecht.

METHOD DETAILS

Stimuli

We presented all visual stimuli by back-projection onto a 27.0 x 9.5 cm screen inside the MRI bore, viewed from 41cm distance. We
used a digital light processing projector with no frame interpolation (Beng W6000) for its excellent temporal contrast (response time).
The visible display resolution was 1600 x 538 pixels.

We displayed a large red cross over the entire image to facilitate accurate fixation at its center. Presented events consisted of a
single black circle (0.4° in diameter) appearing and disappearing. These circles were placed randomly, but constrained such that the
whole circle fell entirely within 0.75° of fixation and at least 0.25° from the previous circle. The display updated at 20 frame per second.

In all stimulus configurations (see main text), we presented a single event duration and period repeatedly for around 2100 ms
(1 fMRI volume acquisition repetition time (TR)) before progressing to the next. We acquired 56 fMRI volumes during each stimulus
configuration, over 117.6 s. We included each stimulus configuration once in a pseudo-random order within each scanning run
(differing and balanced across runs), allowing their responses to be captured by a single neural response model. We tested each
of 24 possible orders of all four stimulus configurations once per subject, so each subject’s data included 24 scanning runs, each
totaling 470.4 s and acquired in four sessions. The subject’s task was to press a button and when a white circle was presented
instead of the usual black circle. This happened pseudo-randomly, every 21 s on average, equally frequently for all timings.

The number of events presented within the 2100 ms between timing changes varied in the constant luminance, constant duration
and gaps configurations. Here, event periods were not always exact factors of 2100 ms, so increments in event period sometimes fell
slightly before or after 2100 ms. The maximum drift of this timing was only 300 ms, and the increments in event period were only
50 ms, so this deviation was not perceptible. The presented event timing were used for analysis.

In the constant luminance, constant duration and constant period configurations, each stimulus configuration consisted of events
with durations and/or periods gradually increasing from 50-1000 ms in 50 ms steps, followed by 16.8 s with 2000 ms duration events
and/or 2100 ms periods, followed by durations and/or periods gradually decreasing from 50-1000 ms in 50 ms steps, followed by
16.8 s with 2000 ms duration events and/or 2100 ms periods. In the gaps configuration, each timing progression was shorter, sam-
pling 10 timing states rather than 20, again changing in 50 ms steps. So here we first presented events increasing duration from 50 ms
to 500 ms while decreasing period from 950 ms to 500 ms, followed by 6.3 s with 50 ms duration and 2100 ms period, followed by
events increasing duration from 50 ms to 500 ms while increasing period from 550 ms to 1000 ms, followed by 6.3 s with 50 ms dura-
tion and 2100 ms period, followed by events decreasing duration from 500 ms to 50 ms while increasing period from 500 ms to
950 ms, followed by 6.3 s with 50 ms duration and 2100 ms period, followed by events decreasing duration from 500 ms to
50 ms while decreasing period from 1000 ms to 550 ms, followed by 14.7 s with 50 ms duration and 2100 ms period.

The long presentation of 2000 ms duration events and/or 2100 ms periods helped to distinguish between very small response func-
tion extents (which would respond briefly and with low amplitude in the 50-1000 ms range) and very large response function extents
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(which respond continuously and with high amplitude) [12, 15]. This duration and period should produce little response from neural
populations preferring sub-second timing. Conversely, populations whose response monotonically increases with duration, period,
or mean luminance should respond most strongly here.

Repetitive stimuli like ours, rather than single events, are widely used in fMRI paradigms to maximize response amplitudes. How-
ever, repeating events affect neural responses to these events in fMRI paradigms like this, for example due to neural response adap-
tation. To reduce effects of adaptation on estimated timing preferences, we used a single model to capture responses to both
increasing and decreasing duration and/or period progressions. This counterbalanced adaptation effects with stimuli that give
both higher and lower responses preceding presentation of any timing.

MRI acquisition and preprocessing

We acquired MRI data on a 7T Philips Achieva scanner. Acquisition and pre-processing protocols are described fully in our previous
studies [11, 13]. Briefly, we acquired T1-weighted anatomical scans, automatically segmented these with Freesurfer, then manually
edited labels to minimize segmentation errors. We acquired T2*-weighted functional images using a 32-channel head coil at a res-
olution of 1.77x1.77x1.75 mm, with 41 interleaved slices of 128x128 voxels. The resulting field of view was 227x227x72 mm. Repe-
tition time (TR) was 2100 ms, echo time (TE) was 25 ms, flip angle was 70 degrees, and each run contained 224 TRs. We used a single
shot gradient echo sequence with SENSE acceleration factor 3.0 and anterior-posterior encoding. We used a 3rd-order image-based
BO shim of the functional scan’s field of view (in-house IDL software, v6.3, RSI, Boulder, CO, USA). Scan coverage omitted anterior
frontal and temporal lobes, where 7T fMRI has low response amplitudes and large spatial distortions. We typically acquired six runs in
one session, depending on subject comfort, and scanned all 24 runs over 4 sessions.

We corrected for head motion artifacts between and within functional scans. We then aligned functional data from each session’s
runs to anatomical scans and interpolated it into each subject’s anatomical space, allowing data from different scanning sessions to
be joined together. We identified the parts of each scanning run where each stimulus configuration was presented, and averaged
these together across all runs and sessions. We also separately averaged data from odd and even runs to allow cross-validation
in subsequent modeling.

Candidate neural response models
Following previously-described approaches to investigate responses to numerosity [11, 44, 45], we fit various candidate neural
response models and compared their ability to explain the observed responses to all stimulus configurations together.

There are three mathematically equivalent ways to describe the timing of the repeating events in our stimuli using two parameters
(Figures S1A-S1C). First, one parameter is event duration (time from event onset to offset) and the other is event period (time from
event onset to the next event onset) (Figure S1A). Second, one parameter is event duration and the other is inter-event interval (time
from event offset to the next event onset) (Figure S1B). Third, one parameter is event period and the other is proportion of that period
the event filled (occupancy, i.e., duty cycle) (Figure S1C). Occupancy is proportional to the mean luminance and spatial contrast in the
display. Comparing model fits in these different stimulus description spaces allowed us to distinguish between predictions of para-
metric neural response functions in each space: we cannot distinguish between non-parametric neural response functions as these
stimulus descriptions are mathematically equivalent transformations of each other.

We tested various parametric functions that might predict the relationship between the presented event’s timing and each
recording site’s aggregate neural response amplitude to that event. We predict response amplitudes on a per-event basis, but these
responses accumulate over a few seconds due to fMRI’s measurement of slow changes in blood flow and oxygenation. In the
simplest case, the response amplitude to each event is constant with no contribution of duration. FMRI response amplitude will
then increase linearly with event frequency (i.e., 1/period).

Amplitude « Constant (Equation 1)

Next, response amplitude could increase linearly with event frequency and also independently with event duration (Figure S1D), with
these two components effectively capturing transient and sustained neural response components respectively [1]. Accumulated over
repeated events, the response to duration becomes equivalent to period occupancy (i.e., mean display luminance or spatial
contrast).

Amplitude « Duration x AmplitudeRatio + Constant (Equation 2)

Here, AmplitudeRatio is the ratio of relative amplitudes of the sustained and transient components, and is the only free parameter.
Next, the increase in response amplitude with frequency (Figure S1E) or duration (Figure S1F) may be sub-additive, so a compres-
sive exponent is fit to capture the relationship between frequency and/or duration and response amplitude [2].

Frequency®®Frea

Amplitude o Duration®PP"" x AmplitudeRatio +
Frequency

(Equation 3)
Here, expDur and expFreq are exponents fit to event duration and frequency independently for each recording site. None of the
response functions described so far imply any tuning for frequency and/or duration: All exhibit monotonic increases in response
amplitude with increasing frequency and/or duration. Equation 3 is the general form of such monotonic response functions: ampli-
tude increases linearly with frequency and/or duration if the exponents on frequency and/or duration are 1.
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Further response functions could capture tuned responses to duration and/or period, occupancy and/or period, or duration and/or
inter-event interval. Duration and period are used as examples below, but we also tested models with other stimulus description pa-
rameters (Figures S1B and S1C). The function could have a tuned Gaussian response to duration only (Figure S1G), monotonically
increasing in amplitude with frequency.

05x (Duraticn—Durationp,ef) 2 Freq uenc yeXPFreq

Amplitud v
Mplituae o e Frequency

(Equation 4)

Here, e is the base of the natural logarithm, Duration,,. is the Gaussian function’s mean (i.e., the preferred duration, yielding the
largest response) and o is its standard deviation.

Finally, the function could have a 2-dimensional Gaussian tuning to both duration and period, together with a compressive increase
in response amplitude with frequency.

X = (Duration — Durationpes) X cos(8) — (Period — Periodper) X sin(8) (Equation 5)

Y = (Duration — Durationyer) X sin(8) + (Period — Periodper) X cos(f) (Equation 6)

2 2
05 ((a&) * (ﬁ) ) « Frequency®®fred

Amplitude o« e Frequency

(Equation 7)
Here, 0 is the angulation of the Gaussian function’s major axis, 6,5 and o, are its standard deviation along its major and minor axes
respectively. If these standard deviations are equal, the Gaussian is circular symmetric (Figure S1H). Otherwise, it is anisotropic and
angulated (Figures 1B, 2A, and S1l).

Finally, we tested whether responses to both timing parameters could be captured by a model tuned to temporal frequency, as
early visual areas contain temporal frequency-tuned neurons. We determining the Fourier frequency power spectrum of the display’s
luminance time course and fit a Gaussian function to this. We repeated this for a single response to the power spectrum within each
TR, and also for a response to the power spectrum with every event offset.

Neural response model fitting and comparison

The resulting candidate neural response functions (Figures S1D-S1l) each predicted how each recording site’s response amplitude
changed with stimulus event timing. We used forward modeling to convert these response amplitude predictions to fMRI response
time course predictions, and compared these to measured responses following population receptive field (pRF) modeling ap-
proaches [15]. For each recording site on the cortical surface, we repeated this for the average of all data and the two cross-validation
splits. We tested predictions from a large set of candidate combinations of the free parameters for each candidate neural response
model, followed by gradient descent to search between the tested combinations.

At the time of the offset of every stimulus event (Figure 1A), we evaluated the candidate neural response function (Figure 1B) at the
presented timing of that event (Figure 1C). We repeated this for the whole stimulus time course in all stimulus configurations to give a
predicted neural response amplitude time course for the whole stimulus sequence (Figure 1D). Where a compressive exponent on
event frequency was included, we scaled this prediction following the instantaneous event frequency (Figure 1E). We then convolved
this prediction with a hemodynamic response function (HRF) to give a predicted fMRI response time course (Figure 1F) for this candi-
date neural response function. We determined the correlation between this prediction and the measured fMRI response time course
(Figure 1G) at each recording site. We then fit the free parameters of the model to maximize the correlation between this prediction
and the measured fMRI response time course.

We used cross-validation to compare the prediction of different candidate response models despite the different numbers of free
parameters. We took the best-fitting parameter set from the odd numbered scans and quantified the correlation between its predic-
tion and the measured fMRI time course from the even numbered scans, and vice versa, giving the cross-validated variance ex-
plained by each candidate model.

For the best fitting model, we then estimated subject-specific HRF parameters [46] across the whole acquired fMRI volume from all
the data recorded from each subject, as described elsewhere [33]. This avoids systematic over- or underestimation of response func-
tion extents resulting from inaccurate HRF parameters (faster or slower than the subject’s, respectively). However, this procedure
does not systematically affect estimated timing preferences because these are fit to responses to stimulus progressions in two oppo-
site directions. Having fit each subject’s HRF parameters, we then re-fit the response model using these HRF parameters. We used
the resulting neural response model’s parameters for all further analyses.

Candidate preferred durations and periods extended beyond the presented timing range. Therefore, fit parameters within the stim-
ulus range were not just the best fit of a limited set. However, we could not accurately estimate fit parameters outside of the stimulus
range, so excluded any recording sites with preferred durations or periods outside this range from further analysis.
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Region of interest definitions

We rendered the variance explained by the neural response model onto the cortical surface. This highlighted ten localized increases
in variance explained with consistent locations relative to major sulci, which formed the basis of our regions of interest (ROls). We
define our map ROls by taking the variance explain values for each vertex on the cortical surface model and performing surface-
based clustering on these values. We repeated this at several thresholds of variance explained, finding a range of variance explained
values in each subject that produced the same cluster count. We then clustered variance explained values thresholded at the bottom
of this range (the knee), with these clusters forming our ROls. In some cases, we merged two adjacent clusters into a single ROI, or
split a single large cluster into two parts where it contained two contiguous maps (common in TTOP/TTOA and TPCS/TPCM).

We then rendered each recording site’s preferred duration (Figures 3B, 3C, S2, and S3) onto the cortical surface. In each map RO,
we visually defined lines joining locations at map edges with similar preferred duration at the low and high ends of the preferred timing
range seen in the map (the ‘ends’ of the map). These end lines allowed us to quantify how preferred duration and period changed with
distance across each map (Figures 4 and S4). However, because the direction of timing progressions were somewhat variable be-
tween subjects [11], this approach relies on locations of different timing preferences to analyze changes in timing preferences with
cortical location, and is therefore circular. We also looked for changes in the response functions’ major and the minor extents with
preferred duration within each map (Figure 5).

We converted each individual subject’s ROl locations to Montreal Neurological Institute (MNI) X, y, and z coordinates to locate them
in an average brain. We transformed each subject’s anatomical MRI data, together with the locations of each ROI's center on the
cortical surface, into MNI average template space [47] with MINC’s ‘mincresample’ tool (http://packages.bic.mni.mcgill.ca) using
rigid alignment and linear scaling. We took the mean and standard deviation of the resulting MNI coordinates of each map across
subjects (Table S1). This volumetric approach does not allow us to locate maps on the cortical surface to show their overlap. There-
fore we also transformed each subject’s anatomical MRI data, together with the map surfaces and centers to the Talairach N27
surface using AFNI’s 3dAllineate and 3dNwarpApply tools. This gives the template brains shown in Figure 3A and the Talairach co-
ordinates in Table S1.

Analysis of changes within each ROI

To calculate distances along each timing map, we determined the distance along the cortical surface from each point in each ROI to
the nearest point on the lines of the lowest and highest preferred duration. The ratio between the distances to each end line gave a
normalized distance along the ROI in the primary direction of change of timing preferences. We multiplied this by the mean ROl length
in this direction to give a cortical distance measure in millimeters. We binned the recording points within every 2 mm along each timing
map, calculating the mean and standard error of their preferred durations and periods in the full data and the two cross-validation
splits (Figures 4 and S4). In calculating standard errors, we corrected for up-sampling of data onto our cortical surface model.
Bins were excluded if their cortical surface extent of the recording sites they contained was smaller than one fMRI voxel
(1.77 mm?) or smaller than the point spread function of cortical 7T fMRI (2 mm?) [48]. We fit logarithmic functions to bootstrapped
samples of the bin means. From these bootstrapped fits, we took the median slope and intercept as the best fitting progressions
of preferred duration and period. We determined 95% confidence intervals by plotting all bootstrapped fit lines and finding the
2.5% and 97.5% percentiles of their values.

For each ROI we also looked for changes in the response functions’ major and the minor extents with preferred duration, in data
from the same map grouped across subjects (Figure 5). To visualize these changes, we binned the recording sites within every 50 ms
increase in preferred duration, calculating the mean and standard error of the response function extent. Bins were again excluded if
their cortical surface extent was smaller than one fMRI voxel or the point spread function of cortical 7T fMRI.

Analysis of changes between ROIls

We also compared several properties of these maps and their responses between maps. For each map in each hemisphere of each
subject, we quantified the map’s cortical surface area (Figure 6A). We then quantified the mean of several properties across the
recording sites within the map: model variance explained, compressive exponent (Figure 6B), preferred duration (Figure 6C) and
period, the orientation of the response function’s major axis (Figure 6F), the extent of the response function along its major and minor
axes (Figure 6G), and the aspect ratio of the response function (i.e., major axis extent / minor axis extent) (Figure 6H). Finally, we quan-
tified the interquartile range of preferred durations (Figure 6D) and preferred periods (Figure 6E) of recording sites within each map.

Numerosity mapping
We acquired numerosity mapping responses to examine the relationship between timing map and numerosity map positions. The
numerosity mapping paradigm was identical to that described in previous studies [11, 13], although with a smaller set of stimulus
configurations (‘constant area’ and ‘constant dot size’) in subjects 1, 4, 5, 6, 7 and 8. The stimulus consisted of dot patterns that grad-
ually changed their numerosity over time. The stimulus had a radius of 0.75°, the same as the timing stimuli. Again, subjects re-
sponded when dot patterns were white instead of black (> 80% accuracy), and a large diagonal cross was presented to aid accurate
fixation.

Functional runs were each 182 time frames (382.2 s) in duration, of which the first 6 time frames (12.6 s) were discarded to ensure a
steady state of data acquisition and neural responses to stimuli. Data were analyzed following procedures described in detail else-
where [11, 12], which closely follow the analyses described above for characterizing responses to event timing.
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Visual field mapping

We acquired visual field mapping responses to examine the relationship between timing map and visual field map positions. The vi-
sual field mapping paradigm was identical to that described in previous studies [11, 13]. The stimulus consisted of drifting bar ap-
ertures at various orientations, which exposed a moving checkerboard pattern. The stimulus had a radius of 6.35°, larger than the
timing mapping stimuli (0.75° radius). Two diagonal red lines, intersecting at the center of the display, were again presented
throughout the entire scanning run. Subjects pressed a button when these lines changed color, and responded on 80%-100% of
color changes within each scanning run.

Functional runs were each 182 time frames (382.2 s) in duration, of which the first 6 time frames (12.6 s) were discarded to ensure a
steady state of data acquisition and neural responses to stimuli. Visual field mapping data were analyzed following a standard popu-
lation receptive field analysis, as described elsewhere [15, 33]. This gave the preferred visual field position of each recording site, from
which we calculated the eccentricity and polar angle. We identified visual field map borders based on reversals in polar angle and ec-
centricity of visual field position preference and identified particular visual field maps with reference to previous studies [17, 36, 49, 50].

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in MATLAB, with significance defined at p < 0.05. Results of specific tests are stated with
summary statistics and noting the test used in the Results.

Neural response model comparison

We compared the cross-validated variance explained between candidate response models in all recording sites with at least 20%
variance explained by one candidate model. For each subject, we took each map’s mean variance explained from all models, and
compared these using paired t tests (Figures S1J and S1K). To demonstrate generalization of these effects across subjects, we simi-
larly took each subject’s mean variance explained from all models, and compared these using paired t tests.

We converted the variance explained measures from our neural response models to probabilities (of observing these model fits by
chance) by fitting the same response model to recordings from 163,131 white matter recording sites in the same scans. We then
determined the proportion this null distribution exceeding any variance explained [13]. We excluded recording sites where models
explained below 10% of response variance (a probability above 0.03) from further analysis.

Analysis of changes within each ROI

To quantify the statistical significance of duration and period progressions across the cortical surface within each map, we correlated
preferred duration and preferred period against the recording site’s cortical distance along the map (Figure S4). When converting
correlation coefficients to p values, we corrected for up-sampling of data onto our cortical surface model by dividing the number
of cortical surface vertices by the up-sampling factor. We used false discovery rate (FDR) correction for multiple comparisons
[51], taking probabilities from all maps in all subjects into account. Because of the circular nature of this analysis, we repeated
this analysis for models fit to independent splits of odd and even scan runs (to test the repeatability of these progressions) and tested
the correlation between timing preferences on these two halves of the data (which is not circular, but ignores the cortical locations of
recording sites).

To quantify the relationship between preferred durations and periods, we correlated these preferences across the recording sites
within each map, again correcting for upsampling and FDR.

Plotting the relationship between the response functions’ extent and preferred duration revealed that response function extent first
increased with preferred duration, and second increased as the preferred duration moved away from the middle of the presented
range (Figure 5). To test both progressions independently, it was necessary to include the same number of recording sites with
preferred durations on either side of the middle of the presented range. Therefore, we first split the recording sites into those with
preferred durations above and below the middle of the presented range. From the larger group, we repeatedly discarded a random
selection so both groups had the same count, following a bootstrap procedure. We then fit a general linear model to this combined
data, with three predictors: preferred duration; the absolute difference between the preferred duration and the middle of the pre-
sented range; and a constant to capture the intercept of the progressions. We repeated this procedure in 1000 bootstrap permuta-
tions, each permutation discarding a different random selection. We took the mean t-statistic for each predictor across permutations,
and converted this to a probability taking into account the (fixed) number of recording sites, corrected for upsampling as already
described. We repeated this procedure for the bin means in Figure 5 to give the best fitting lines. We determined 95% confidence
intervals by plotting fit lines from all permutations and finding the 2.5% and 97.5% percentiles of their values.

Analysis of changes between ROIs

We also compared several properties of the timing maps and their responses between maps. For each map in each hemisphere of
each subject, we quantified the map’s cortical surface area (Figure 6A). We then quantified the mean of several properties across the
recording sites within the map: model variance explained, compressive exponent (Figure 6B), preferred duration (Figure 6C) and
period, the orientation of the response function’s major axis (Figure 6F), the extent of the response function along its major and minor
axes (Figure 6G), and the aspect ratio of the response function (i.e., major axis extent / minor axis extent) (Figure 6H). Finally, we quan-
tified the interquartile range of preferred durations (Figure 6D) and preferred periods (Figure 6E) of recording sites within each map.
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We compared each of these measures between maps using separate three-way analyses of variance (ANOVAs), with hemisphere,
map and subject as factors (n = 155). For measures where there was no effect of hemisphere in this three-way ANOVA (mean and
interquartile range of preferred durations and period, mean major and minor axis extents, mean aspect ratio and mean response
function orientation), we used a two-way ANOVA with map and subject as factors. Where these ANOVAs revealed significant differ-
ences between maps, we tested where these differences reach significance using subsequent multiple comparison tests [52, 53].

DATA AND CODE AVAILABILITY
The code generated during this study is available in the Vistasoft repository (https://github.com/vistalab/vistasoft).

The datasets supporting the current study have not yet been deposited in a public repository because of data protection issues, but
are available from the corresponding author on request.
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