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SUMMARY

The absence of the optic chiasm is an extraordinary
and extreme abnormality in the nervous system.
The abnormality produces highly atypical functional
responses in the cortex, including overlapping hemi-
field representations and bilateral population recep-
tive fields in both striate and extrastriate visual
cortex. Even in the presence of these large functional
abnormalities, the effect on visual perception and
daily life is not easily detected. Here, we demonstrate
that in two achiasmic humans the gross topography
of the geniculostriate and occipital callosal connec-
tions remains largely unaltered. We conclude that
visual function is preserved by reorganization of
intracortical connections instead of large-scale reor-
ganizations of the visual cortex. Thus, developmental
mechanisms of local wiring within cortical maps
compensate for the improper gross wiring to
preserve function in human achiasma.

INTRODUCTION

Ordered maps of the contralateral visual field are presumed
imperative for proper visual system function and are a core prin-
ciple of the notion of hemispheric specialization (Huberman
et al., 2008; Wandell et al., 2007). A prerequisite for this map
formation in animals with binocular vision is a partially crossed
projection of the optic nerves at the optic chiasm. Here, axons
from the nasal and temporal retinae are guided by molecular
markers to the contralateral and ipsilateral hemisphere, respec-
tively (Petros et al., 2008). There they form a retinotopic map of
the visual hemifield contralateral to the respective hemisphere

(Figure 1A and see Figure S1, available online). In congenital
achiasma, this crossing is absent providing large-scale erro-
neous input to the visual system (Apkarian et al., 1994, 1995;
Victor et al., 2000;Williams et al., 1994). Both hemiretinae project
to the ipsilateral hemisphere, which as a consequence receives
input not only from the contralateral, but also from the ipsilateral
visual hemifield. This poses a substantial challenge to the orga-
nization of visual field maps and prompts potential sensory
conflicts. Despite these sizable aberrant projections, achiasmic
humans have relatively normal visual function (Apkarian et al.,
1994, 1995; Prakash et al., 2010; Victor et al., 2000). Therefore
achiasma offers a unique opportunity to study the principles
governing cortical map development in humans. The knowledge
of cortical mapping in this condition would provide insights into
scope andmechanisms of developmental plasticity in the human
visual system.
The organization of the visual cortex and of the visual path-

ways beyond the lateral geniculate nucleus (LGN) in achiasma
is unknown as only very few studies addressed related issues
(Victor et al., 2000; Williams et al., 1994). A study in a canine
model of achiasma investigated the precise mapping of informa-
tion in the visual system, but it was confined to the level of the
LGN. Here retinotopic maps of opposing hemifields in adjacent
LGN layers were revealed (Williams et al., 1994). Another pio-
neering study addressed the cortical organization in human
achiasma using functional magnetic resonance (fMRI) (Victor
et al., 2000). This case study suggested that stimuli in opposing
visual hemifields are represented in close cortical vicinity, but
visual field map representations could not be reconstructed.
To date the geniculostriate projections (LGN-striate or optic radi-
ations), cortico-cortical projections and the corresponding
cortical organization pattern are still obscure in achiasma, such
that the developmental mechanisms that make the abnormal
visual input available for visual perception remain unknown. An
idea of the cortical organization patterns to be expected,
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however, can be inferred from visual field representations in
albinism, where part of the temporal retina projects abnormally
to the contralateral hemisphere (Guillery, 1986). Thus, input
from both hemifields reaches each hemisphere. In fact, in albi-
nism three different resulting cortical organization patterns
have been reported. The geniculostriate projection can be reor-
dered resulting in a contiguous retinotopic map of both visual
hemifields (‘‘Boston’’ pattern); alternatively, reordering can be
absent with intracortical suppression inducing a lack of behav-
ioral sensitivity of the temporal retina (‘‘Midwestern’’ pattern) or
without suppression retaining sensitivity (‘‘True Albino’’ pattern).
While the former organization patterns of the visual cortex
appear to be reserved to nonprimate models of albinism, the
latter is found in both nonprimates and primates (Guillery et al.,
1984; Hoffmann et al., 2003). Our aim was to resolve the organi-
zation pattern in human achiasma.

We investigated two of these extremely rare achiasmic
subjects. Three types of investigations were performed using
1.5, 3, and 7 Tesla MRI: (1) optimized retinotopic mapping
(DeYoe et al., 1996; Engel et al., 1994, 1997; Hoffmann et al.,
2009; Sereno et al., 1995; Wandell et al., 2007), (2) characteriza-

tion of the population receptive field (pRF) properties (Dumoulin
and Wandell, 2008), and (3) diffusion-tensor imaging (DTI) and
tractography to investigate white matter integrity (Sherbondy
et al., 2008a, 2008b). Our results indicate that the abnormal
visual input in human achiasma does not induce a sizable topo-
graphic reorganization in the geniculostriate projection or of the
occipital callosal connections.We propose that reorganization of
intracortical architecture in the visual system underlies the ability
to cope with these abnormal inputs.

RESULTS

Hemifield Mapping Reveals Overlapping Visual
Field Maps
In subject AC1, visual hemifield representations on the cortical
surface were obtained separately for each visual hemifield and
eye using fMRI-based retinotopic mapping (DeYoe et al., 1996;
Engel et al., 1994, 1997; Hoffmann et al., 2009; Sereno et al.,
1995; Wandell et al., 2007). Mapping of either visual hemifield
yielded dominant responses on the occipital lobe ipsilateral to
the stimulated eye (Figures 1 and S1). Figure 1 illustrates that

Figure 1. Hemifield Retinotopic Mapping Results
(A) Schematic of the normal projection pattern of the optic nerve of the right eye together with the visual contracting ring stimulus for hemifield eccentricity

mapping and its color-coded representation in a schematic V1-flatmap. The nasal retina (blue) projects to the contralateral and the temporal retina (red) to the

ipsilateral hemisphere, resulting in a representation of each hemifield on its respective contralateral hemisphere.

(B) Schematic of the achiasmic optic nerve projection and eccentricity maps in AC1’s flattened representation of the early visual areas upon separate monocular

stimulation of the right eye in the left and right visual hemifield. Responses are dominant in the right hemisphere and organized as an orderly eccentricity map for

both visual hemifields. The visual area boundaries are indicated as determined from polar angle mapping (Figure S1).

(C) Correlation of the respective hemifield mappings to quantify the cortical superposition of hemifield maps in right V1 (mean ± SD across four controls and for

AC1 across repetitive correlations). In the controls the two repetitions of contralateral hemifield mappings were correlated (p < 0.01) and, to a lesser degree

(p < 0.04), also those of two repetitions of ipsilateral hemifield mappings, but, in contrast, not those of contra- and ipsilateral field mappings. For AC1 both contra-

and ipsilateral field mappings were highly correlated (p < 0.001). See also Figure S1.

Abbreviations: V, visual area; LO, lateral occipital area; d, dorsal; v, ventral; m, medial; l, lateral; R, right hemisphere; L, left hemisphere; c, visual hemifield

contralateral to right V1; i, visual hemifield ipsilateral to right V1.
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stimulation of the right eye revealed orderly eccentricity maps of
both hemifields on the right hemisphere only (Figure 1B). More-
over, opposite visual hemifields were represented as a cortical
superposition of mirror-symmetrical visual field positions.
Accordingly, the phase maps obtained for stimulation in oppo-
site hemifields were highly correlated (Figure 1C) and the borders
of the early visual areas were identical for the representation of
the contralateral and the ipsilateral visual hemifield as derived
from polar angle maps (Figure S1). Similar results were obtained
on the left hemisphere for stimulation of the left eye (Figure S1).

PRF Mapping Reveals Bilateral Population-Receptive
Fields
The above results predicted that in the visual cortex of achiasmic
humans, neural populations within an fMRI recording site have
bilateral receptive fields (population receptive fields, pRFs),
receiving distinct inputs from the contra- and the ipsilateral visual
hemifield. To test this directly, we extended a model-based
data-analysis technique to estimate the properties of the pRF
(Dumoulin and Wandell, 2008). The stimuli consisted of
moving-bar apertures covering both visual hemifields. The con-
ventional pRF model consists of a circularly symmetric 2D
Gaussian, whose resulting parameter estimates vary systemati-
cally across visual cortex and match closely to nonhuman
primate electrophysiology (Amano et al., 2009; Dumoulin and
Wandell, 2008; Harvey and Dumoulin, 2011; Winawer et al.,
2010). We compared four models of the pRF: the conventional
2D Gaussian pRF model and three additional models that
consisted of two 2D Gaussians. The two 2D Gaussians were
identical, except that their positions were either mirrored around
the vertical meridian, fixation, or horizontal meridian. Because all
parameters of the two Gaussians were linked, these newmodels
have the same degrees of freedom as the conventional one
Gaussian pRF model, i.e., the model performance can be
compared directly. But unlike the conventional model, the three
alternate models predict that each cortical location responds to
stimuli from two distinct regions of visual space. We compared
the four models by computing the average goodness-of-fit,
i.e., variance explained, within the right Calcarine sulcus. Both
achiasmic subjects were included in this analysis.
For both achiasmic subjects in the right Calcarine sulcus, the

pRF model consisting of two Gaussians mirrored across the
vertical-meridian explained most of the variance, whereas for
control subjects the conventional pRF model explained most
of the variance in the data (Figure 2A). Inspection of individual
fMRI time series of the achiasmic subject (AC2), indicate that
the pRFmodel consisting of two Gaussians captures systematic
signal modulations that the conventional model cannot explain
(Figures 2B and 2C). These improvements are evident for most
individual recording sites across the cortical surface extending
beyond V1, again in contrast with control subjects (Figures 2D
and 2E). Another line of evidence supporting the notion that
achiasmic subjects have symmetric pRFs both in contra and
ipsilateral visual hemifield comes from pRF sizes. The pRF size
properties are comparable to controls, only when considering
the atypical pRF model consisting of two Gaussians mirrored
across the vertical meridian (Figures 2F and S2). The pRF sizes
across early visual cortex in conjunction with the persistence

of dual receptive fields into extrastriate cortex, also implies
relatively unaltered cortico-cortical connections (Harvey and
Dumoulin, 2011).

DTI and Tractography Reveal Relatively Normal White
Matter Tracts
Since each hemisphere contains information of the whole visual
field in achiasma, we questioned whether the two hemispheres
needed to communicate to the same degree. Therefore, we
investigated the visual pathway connectivity including the occip-
ital callosal connections. A previous study demonstrated the
sensitivity of these connections to alterations of the visual input
(Levin et al., 2010). Visual pathways white matter analysis was
performed in two steps: identifying the fiber bundles and evalu-
ating their properties. Using a new probabilistic algorithm (Sher-
bondy et al., 2008a, 2008b), we could clearly identify the optic
tract and the optic radiation composing the input fibers to the
visual cortex as well as the output fibers from each hemisphere,
which cross at the corpus callosum (Figure 3A). Following fiber
identification, we studied white matter integrity using directional
diffusivity measures. By measuring diffusivity in multiple direc-
tions we obtained estimates of the principal diffusion direction
(longitudinal) as well as the perpendicular direction (radial). The
ratio of these two values is similar to the fractional anisotropy
(FA). We found that the properties of the achiasmic subject’s
(AC2) visual pathways were within the range of 30 normally
sighted control subjects (Figure 3B). Finally, the cross-sectional
area of the occipital fibers that connect right and left visual cortex
was assessed (Figure 3C). In normal sighted controls, there is
a correlation between the cross-sectional area of this tract and
the cross-sectional area of the entire callosum. The cross-
sectional area of the achiasmic subject’s occipital callosal fiber
group was smaller than that of controls, yet the overall size of
his corpus callosum was small too (Figure 3D). These results
highlight that the white matter integrity at the resolution of our
neuroimaging measurements is comparable to control subjects.

DISCUSSION

Our results highlight both differences and similarities of the
achiasmic compared to the typical human visual system. In
achiasma, we found a highly atypical organization of the visual
cortex consisting of overlapping visual hemifield maps with
bilateral pRFs. In contrast, pRF sizes were in the normal range
as were the properties of all major visual pathways, in particular
the geniculate-cortical and occipital-callosal fibers. Moreover,
normal pRF sizes across early visual cortex in conjunction with
the persistence of bilateral pRFs imply relatively unaltered
cortico-cortical connections (Harvey and Dumoulin, 2011).

Conservative Geniculostriate Projections in Human
Achiasma
Our results can be explained by conservative developmental
mechanisms in human achiasma that largely preserve the normal
visual pathways beyond the LGN. Both retinotopic and pRF
mapping demonstrated an overlay of orderly retinotopic maps
from opposing hemifields in the visual cortex, such that each
cortical location represents two separate visual field locations,
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namely one in each hemifield. This intermixed representation
could result from individual neurons with bilateral receptive
fields, but also from the interdigitation of two different neural
populations representing the contra- and ipsilateral visual field
at the current fMRI resolution. These two neural representations
are not mutually exclusive. In support of the latter, behaviorally
achiasmic subjects do not make any obvious confusion between
visual hemifields in line with previous reports (Victor et al., 2000).
Furthermore, Williams et al. (1994) demonstrated that in the only
animal model of achiasma, the Belgian sheepdog, the different
layers of the LGN receive input from the ipsilateral eye of either
the contra- or the ipsilateral visual hemifield. As a consequence,

a conservative geniculostriate projection would yield interdigi-
tated representations of the contra- and ipsilateral fields in V1,
as those would occupy the former ocular dominance columns
(Guillery, 1986; Huberman et al., 2008). This corresponds to
the intermixed cortical visual field representations we observed.
Thus, the data are in support of largely conservative geniculostri-
ate pathways in achiasma preserving the normal gross topog-
raphy of the projections. This is further corroborated by the
normal gross anatomy of the optic radiations as determined
using DTI and tractography. It should be noted, however, that
the data do not speak to the fine-grained organization in V1 in
achiasma. Thus, it is not clear whether the afferents from the

Figure 2. Population Receptive Field Modeling Results
(A) pRF model comparisons for AC1 and AC2 (left and right, respectively) and two control subjects at the respective measurement sites. The mean variance

explained and 95% confidence intervals for fMRI responses in the right Calcarine sulcus are shown for four different pRF models. Only cortical locations where

any model explains more than 50% of the variance are included the analysis. However, the results are near-identical for any other or no threshold. Four different

models were tested: the conventional pRF model containing 1 Gaussian and three different pRF models with 2 Gaussians where the Gaussians are mirrored

around the y axis, fixation or x axis. The pRF models are indicated by the x axis’s cartoon representations. There is no difference in degrees of freedom in the

models. In the right hemisphere of the achiasmic subjects, the model containing 2 pRFs mirrored around the y axis explains most of the variance. In control

subjects, the conventional model explainsmost of the variance in the data. Two example pRFmodel fits are shown in (B) and (C). These panels show the fMRI data

of AC2 (dotted line) fitted (solid line) with a conventional pRF using a single Gaussian (B) and a 2 Gaussian pRF model (C). The insets indicate the particular pRF

model that is fitted to the data and the variance explained (r2). The conventional pRF model consistently misses certain time-series features that are captured by

the 2 Gaussian pRF model (gray arrows). Next, we compared the conventional pRF model to the pRF model consisting of 2 Gaussians mirrored on the y axis by

subtracting the variance explained of either model. The difference in percent variance explained of both models is shown on the cortical surfaces of AC2 (D) and

a control subject (E). The data that is shown has at least a variance explained of 30% in any pRFmodel. The dashed white lines indicate the V1–V2 border (vertical

meridian or y axis). In the subject without an optic chiasm, the pRF model with two Gaussians mirrored on the y axis explains most of the variance within and

beyond V1, whereas in the control subject the conventional model explains most of the variance in the fMRI data.

(F) pRF size versus eccentricity in the right Calcarine sulcus of AC2 (mean ± SEM) and 4 control subjects. In the control subjects pRF sizes increase with

eccentricity (Dumoulin andWandell, 2008). This relationship is also plotted for the subject without an optic chiasm for two pRFmodels (conventional model: open

circles; pRF model consisting of two Gaussians mirrored on the y axis: closed circles). The pRF sizes of the conventional pRF model deviate from the known

relationship between (p)RF size and eccentricity in humans and animals, but the pRF sizes of the novel two Gaussian pRF model are consistent with the known

relationship as illustrated by control subjects.

See also Figure S2.
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different LGN layers organize themselves into structures reminis-
cent of ocular-dominance columns, namely into hemifield
columns. In conclusion, the highly atypical functional responses
in V1 appear to be a consequence of the gross miswiring at the
chiasmwithout corresponding changes in the gross wiring of the
geniculostriate projection.

Conservative Cortico-Cortical Projections in Human
Achiasma
Beyond V1, cortico-cortical connections remain stable as
indicated by normal pRF sizes in both striate and extrastriate
cortex (Harvey and Dumoulin, 2011) and the persistence of
bilateral pRFs in extrastriate cortex. Even interhemispherical
connections appear little affected, as stable normal occipital
callosal connections were observed. The finding that the repre-
sentation error in the LGN is propagated in an unaltered manner
to the primary visual cortex and beyond highlights the domi-
nance of conservative developmental mechanisms in human
achiasma.

Developmental Mechanisms Associated with Visual
Pathway Abnormalities
The mapping of the abnormal input observed in achiasma
resembles that of human and nonhuman primates with com-
pletely different types of misrouting, namely abnormal crossing
from the temporal retina in albinotic subjects (Guillery, 1986;
Hoffmann et al., 2003) or an absenceof crossing due to a prenatal
hemispheric lesion (Muckli et al., 2009). In contrast, a variety of
organization patterns in V1 have been reported for nonprimate
albinotic animal models of misrouted optic nerves, part of which
involves sizable remapping (Guillery, 1986). In the human visual
cortex, such large scale remapping does not appear to be a

prevalent strategy to avoid sensory conflicts (Hoffmann et al.,
2007; Wolynski et al., 2010).

Visual Perception
Our results demonstrate a remarkable degree of both stability
and plasticity in human achiasma. The observed cortical organi-
zation with overlapping visual hemifield maps with bilateral pRFs
is highly atypical and the consequence of a large degree of
stability in the geniculostriate and cortico-cortical projections.
Still visual function is relatively unaffected, with the exception
of nystagmus and the absence of stereopsis. In line with previ-
ously reported achiasmic subjects (Apkarian et al., 1994, 1995;
Prakash et al., 2010; Victor et al., 2000), the subjectsmade effec-
tive use of their vision in daily life, including sport activities and
reading. They performed normal on various clinical tasks,
including largely normal visual field sensitivities and no visual
field defects associated with the abnormal representation of
the nasal retina. Further, there was no apparent confusion
between left and right visual fields, in line with previous reports
that have found no evidence for perceptual crosstalk across
the opposing hemifields, neither in achiasma (Victor et al.,
2000) nor albinism (Klemen et al., 2012).
In order to make the abnormally represented visual informa-

tion available for perception, neural plasticity is required. We
propose that instead of large-scale reorganizations, compara-
tively subtle intracortical mechanisms mediate the achiasmic
subjects’ ability to cope with the abnormal visual input. For
example, normally binocular information is integrated to yield
stereovision. In achiasma, however, these integrative mecha-
nisms would result in major sensory conflicts such as confusions
between the two hemifields. Plasticity of intracortical mecha-
nisms is therefore required to selectively block such integrative
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Figure 3. Diffusion Tensor Imaging (DTI)
and Tractography Results of AC2 and 30
Controls
(A) ROIs and estimated fiber bundles super-

imposed on the T1 weighted axial slice,

viewed from below. Estimates of the right

(red) and left (blue) optic tracts; the right (pink)

and left (purple) optic radiations; the right

(dark red) and left (dark blue) occipital callosal

fibers. Yellow spheres represent the optic

chiasm (large anterior) LGN’s (small in the middle)

and Calcarine sulcus (posterior) regions of

interest.

(B) Scatter plot of the radial and longitudinal

diffusivities of the optic tract, optic radiation and

occipital callosal fiber groups (see color legend

on the right). The two standard deviation covari-

ance ellipsoid of 30 normally sighted subjects is

drawn for each fiber group. The black stars

represent the averaged right and left diffusivity

values for each fiber group in the achiasmic

subject which are within the range of control

subjects.

(C) The location of the occipital callosal fibers in

the plane of the corpus callosum.

(D) Scatter plot of the cross-sectional area of

the occipital callosal fiber group in relation to the cross-sectional area of the entire corpus callosum. The cross-sectional area of achiasmic occipital callosal fiber

group (purple star) is small compared to the controls (gray diamonds); however, the overall size of AC20s corpus callosum is small too.
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processes while supporting others, e.g., those required to shape
monocular spatial receptive field properties. Remarkably,
conservative geniculostriate and cortico-cortical mapping of
abnormal retinogeniculate input provides a sufficient scope of
developmental plasticity in humans to make substantially
abnormal representations available for relatively normal visual
perception.

EXPERIMENTAL PROCEDURES

Subjects
Data of two male achiasmic patients and their respective controls were

acquired at two sites, at Magdeburg University, Germany (AC1 and four

controls), and Stanford University, USA (AC2 and 34 controls). The control

subjects were visually and neurologically normal. The procedures followed

the tenets of the declaration of Helsinki, and the participants gave their written

consent. The ethical committees of the University of Magdeburg and the

Stanford Institutional Review Board approved the respective protocols.

AC1 (aged 22) was referred with the clinical diagnosis of severe hypoplasia

of the optic chiasm based on a T1 weighted MRI and functional achiasma was

confirmedwith VEPs (Apkarian et al., 1983, 1995). Hemade effective use of his

vision including reading and the diagnosis of the chiasmic malformation was

incidental (age 20). His best-corrected decimal visual acuity was 0.5 for the

dominant right and 0.17 for the left eye, and there was no foveal hypoplasia.

He had alternating exotropia (2 deg), dissociated vertical deviation (5 deg),

and was stereoblind. Automated perimetry (Octopus 101 Perimeter; Haag-

Streit, Koeniz, Switzerland) with optimized protocols (Hoffmann et al., 2007)

revealed normal visual fields. Specifically, no visual field defects were associ-

ated with the nasal retina, and visual field sensitivities did not differ between

nasal and temporal hemiretinae of the dominant right eye (mean

sensitivities ± SEM [dB] for nasal and temporal hemiretina [n = 47 test locations

each] 25.9 ± 0.37 and 25.5 ± 0.46, respectively; p = 0.48, paired t test). The

subject exhibited normal visual and visuomotor behavior throughout testing.

There was no left-right confusion as tested for saccadic eye movements

(100% correct saccades to 12 targets in the right and 12 in the left visual hemi-

field, displaced laterally 5.8 deg from a central fixation target). Moderate

see-saw nystagmus (around 3 deg horizontal and vertical amplitude for the

right eye) was evident. It has been shown previously that fixation instabilities

of such moderate extent have only little effect on the visual field map recon-

struction (Baseler et al., 2002; Levin et al., 2010). The left eyes of the four

male control subjects and both eyes of AC1 were stimulated monocularly

during the retinotopic hemifield mapping experiments. A control’s and AC1’s

right eye were also measured for pRF mapping.

AC2 (aged 30) has been described in detail in a previous publication

(Prakash et al., 2010). In summary, the subject was born with a nonrandom

association of birth defects know as VACTERL (vertebral anomalies, anal

atresia, cardiovascular anomalies, tracheosophageal fistula, esophageal

atresia, renal and/or radial anomalies, and limb anomalies). Appendicular

abnormalities were surgically repaired. As a child, he had mild infantile

nystagmus with relatively normal visual function. He had been diagnosed

with attention deficit disorder as a child and bipolar affective disorder as an

adult. Even so, he completed high school and worked full-time. He also

made effective use of his vision, including during sport activities and reading.

At 29, he was evaluated for a two-year history of gradually worsening head-

ache, blurred vision, and increased nystagmus amplitude and the diagnosis

of achiasma was made at this time by brain MRI and fMRI showing functional

noncrossing of the visual pathway. On examination, his visual acuities were 1.0

and 0.8 in the right and left eye, respectively, with a small left relative afferent

pupillary defect. Anterior and posterior segments were normal. The subject’s

eye movements had full duction, normal saccade latencies, amplitudes, and

peak velocities. He exhibited pendular nystagmus and episodic seesaw

nystagmus, which were relatively minimal during the current fMRI studies

(age 30). Stereopsis was absent. Color perception was within normal limits

per Hardy-Rand-Rittler pseudoisochromatic plates. There was no left-right

confusion or neglect per clinical testing using visual stimuli in nasal or temporal

fields or simultaneously to one or both eyes. Goldmann perimetry revealed

slightly constricted visual fields bilaterally with no evidence of temporal or

other visual field defect.

Hemifield Mapping
Visual Stimuli

For retinotopic hemifield mapping (DeYoe et al., 1996; Engel et al., 1994, 1997;

Sereno et al., 1995) a section of a contrast reversing circular checkerboard

stimulus (6 reversals/s, 90 cd/m2 mean luminance) presented in a rectangular

mask (30 deg wide and 15 deg high; Figure 1A) was used to stimulate monoc-

ularly either the nasal or the temporal retina in separate experiments. The

stimulus contrast was set to 98% in the hemifield to be mapped and to 0%

in the opposing hemifield. Seven 36 s cycles of the stimulus stepping either

through the polar angles (clockwise and counterclockwise for the left and right

hemifield, respectively) as a rotating wedge (90 deg) for polar angle mapping

or through the eccentricities as a contracting ring for eccentricity mapping

(ring width: 0.82 deg; ring was off-screen entirely for 7 s of the 36 s stimulus

cycle before reappearing in the periphery) were projected (DLA-G150CL,

JVC Ltd.) on a screen using Presentation (NeuroBehavioral Systems). For

eccentricity and polar angle mapping, we collected for each subject and

each hemifield two data sets, which were averaged for subsequent analyses.

During stimulation subjects were instructed to maintain fixation and to report

color changes of the central target (diameter: 0.25 deg) via button press. Fixa-

tion was monitored during the scans with an MR-compatible eye tracker

(Kanowski et al., 2007).

Data Acquisition

To enhance the signal-to-noise-ratio as well as the blood oxygenation

level-dependent (BOLD) response, T2*-weighted MR images were acquired

during visual stimulation using a Siemens Magnetom 7T MRI system with a

24-channel coil (Hoffmann et al., 2009). Foam padding minimized head

motion. A multislice 2D gradient echo EPI sequence (TR 2.4 s; TE 22 ms)

was used to measure the BOLD signal as a function of time. Every 2.4 s, 42

approximately axial slices (thickness: 2.5 mm; interleaved slice order without

gap) were acquired in an 80 3 80 grid covering a field of view (FOV) of

200 3 200 mm (voxel size: 2.5 3 2.5 3 2.5 mm3). Functional scans measured

at 110 time frames (4.4 min, i.e., 7 1/3 stimulus cycles of 36 s each). The

acquired images were motion and distortion corrected online (Zaitsev et al.,

2004). Additionally, T1 weighted inhomogeneity corrected MPRAGE MR

images (Van de Moortele et al., 2009) were acquired (TR 2.0 s; TE 5.24 s,

1763 2563 256matrix, voxel size: 13 13 1mm3) to create a flattened repre-

sentation of the cortical gray matter (Teo et al., 1997; Wandell et al., 2000).

Data Analysis

After registration of the T1 weighted images to the T2* weighted images’

coordinate frame the fMRI time series were projected onto the flattened

representation (Engel et al., 1997). Each voxel’s time-series (TS) underwent

the following analysis: (1) five temporal samples were discarded from the TS

to avoid transient onset artifacts, (2) the TS were divided by the voxel’s

mean intensity, (3) the TS were filtered with a high-pass cut-off of 4 cycles/

scan, (4) the TS of repeated experiments were averaged, (5) Fourier analysis

was applied to the TS to obtain the amplitude and phase for each frequency,

and (6) the coherence with a sinusoid with a frequency equal to that of

the visual stimulation (1/36 Hz), was calculated (Engel et al., 1997). The coher-

ence and phase values in the flattened representation were blurred by

convolving aGaussian kernel (1.7mm full width at half height) with the complex

vector representation of the BOLD response. The blurred phase values that

exceeded a coherence threshold that corresponded to p < 0.001 (Silver

et al., 2005) were then plotted on the flattened representation of the occipital

lobe in false color.

Statistics

To assess the correlation of the hemifield maps, the significance of the differ-

ences of the z-transformed correlation coefficients (Berens, 2009) from 0 were

determined with Student’s t test.

PRF Model-Based Analysis
Visual Stimuli

We measured responses to drifting bar apertures at various orientations

(Dumoulin and Wandell, 2008); these bar apertures exposed a checkerboard

pattern (100% contrast). The bar width subtended one-fourth of the stimulus
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radius. Four bar orientations and two different motion directions for each bar

were used, giving a total of eight different bar configurations within a given

scan. Note that the bars were not ‘‘phase-encoded’’ stimuli; there was no

repetition of the stimulus because the bars change orientation and motion

direction within a scan. The visual stimuli were generated in the Matlab

programming environment using the PsychToobox (Brainard, 1997; Pelli,

1997) on a Macintosh G4 Powerbook. Stimuli were displayed with an LCD

projector (Stanford: NEC LT158, Magdeburg: DLA-G150CL, JVC Ltd.) with

optics that imaged the stimuli onto a projection screen in the bore of the

magnet. The stimulus radius was 7.5 deg (Magdeburg setup for AC1) and 14

deg (Stanford setup for AC2) of visual angle. The subjects viewed the display

through an angled mirror. Fixation was monitored during the scans with an

MR-compatible eye tracker (Magdeburg: Kanowski et al., 2007; Stanford:

MagConcept, Redwood City, USA).

Data Acquisition

At Stanford University, magnetic resonance images were acquired with a 3T

General Electric Signa scanner and a custom-designed surface coil (Nova

Medical, Wilmington, MA) centered over the subject’s occipital pole. Foam

padding and tape minimized head motion. Functional MR images (TR 1.5 s;

TE 30 ms, flip angle 55 deg) were acquired using a self-navigated spiral-

trajectory pulse sequence (Glover, 1999; Glover and Lai, 1998) with 20 slices

oriented orthogonal to the Calcarine sulcus with no slice gap. The effective

voxel size was 2.5 3 2.5 3 3 mm3 (FOV = 240 3 240 mm). Functional scans

measured at 138 time frames (3.5 min). Eight functional scans were performed

in each session. T1-weighted anatomical MR images were acquired using a

fast spoiled gradient echo (SPGR) sequence prior to the functional scans

and using the same slice prescription as the functional scans. In a separate

session, high-resolution T1-weighted MRI images were acquired on a 1.5T

Signa LX scanner with a vendor-supplied head-coil using a 3D-SPGR pulse

sequence (1 echo, minimum TE, flip angle 15 deg, effective voxel size of

0.94 3 0.94 3 1.2 mm3). At the Magdeburg site, images for fMRI-based

pRF-mapping were acquired using a Siemens Magnetom 7T MRI system

with the hemifield mapping parameters detailed above, except for the

following deviations for similarity to the Stanford parameters: 26 slices, 138

time frames, TR 1.5 s.

Data Analysis

For the data acquired at Stanford University the T1-weighted anatomical MRI

data sets were averaged and resampled to a 1 mm3 isotropic resolution. The

surface-coil anatomical MRI, taken at the same time as the functional images,

was aligned with the head-coil anatomical MRI using a mutual information

method (Ashburner and Friston, 2003; Maes et al., 1997). The functional

images and surface-coil anatomical data were acquired in the same session

and thus were co-registered. Using the spiral acquisition and small field of

view surface-coil limits the size of the distortions between the functional and

surface-coil anatomical images. Hence, we used the transformation derived

from the surface-coil anatomical to align the functional data to the head-coil

anatomical. The preprocessing for the data acquired at Magdeburg University

followed that applied to the hemifield mapping data described above. For both

data sets, gray and white matter was segmented from the anatomical MRI

using custom software and hand-edited to minimize segmentation errors

(Teo et al., 1997). The cortical surface was reconstructed at the white/gray

matter border and rendered as a smoothed 3D surface (Wandell et al.,

2000). The first eight time frames of each functional run were discarded due

to start-up magnetization transients. Head movement and motion artifacts

within and between scans were measured (Nestares and Heeger, 2000).

With all subjects, the scans contained minimal head motion (less than one

voxel), so no motion correction algorithm was applied. The population recep-

tive field (pRF) is defined as the region of visual space that stimulates the

recording site (Dumoulin and Wandell, 2008; Jancke et al., 2004; Victor

et al., 1994). We used a model-based method to estimate the properties of

the pRF. Details of the pRF analysis and rationale are provided in our previous

study (Dumoulin andWandell, 2008). Briefly, for each cortical location, we pre-

dicted the fMRI response using a model of the pRF. The conventional model

consists of a 2D Gaussian. The predicted fMRI time series is calculated by

a convolution of the model pRF with the stimulus sequence and the BOLD

hemodynamic response function (HRF); the pRF parameters for each cortical

location minimize the sum of squared errors between the predicted and

observed fMRI time-series for all stimuli. Here, we tested several other models

of the pRF in addition to the conventional 2D Gaussian. These models con-

sisted of two 2D Gaussians mirrored around the x axis, y axis or fixation.

Because the two Gaussians are linked to each other, these models have the

same degrees of freedom as the conventional one Gaussian pRF model. But

unlike the conventional model, these alternate models represent two distinct

regions of visual space within each cortical location.

DTI and Tractography
Data Acquisition

DTI data were acquired on a 1.5T Signa LX (Signa CVi; GE Medical Systems,

Milwaukee, WI) with a self-shielded, high-performance gradient system

capable of providing a maximum gradient strength of 50 mT/m at a gradient

rise time of 268 ms for each of the gradient axes. A standard quadrature

head coil was used for excitation and signal reception. The DTI protocol

used eight 90 s whole-brain scans. The pulse sequence was a diffusion-

weighted, single-shot, spin-echo, echo-planar imaging sequence (echo time,

63 ms; repetition time, 6 s; field of view, 260 mm; matrix size, 128 3 128;

bandwidth, ± 110 kHz; partial k-space acquisition). We acquired 48–54 axial,

2-mm-thick slices (no skip) for two b-values, b = 0 and b = 800 s/mm2. The

high b-value was obtained by applying gradients along 12 different diffusion

directions (six noncollinear directions). Two gradient axes were energized

simultaneously to minimize echo time. The polarity of the effective diffusion-

weighting gradients was reversed for odd repetitions to reduce cross-terms

between diffusion gradients and imaging and background gradients.

Data Analysis

Eddy current distortions and subject motion were removed by a 14-parameter

constrained nonlinear coregistration based on the expected pattern of eddy-

current distortions given the phase-encode direction of the acquired data

(Rohde et al., 2004). Each diffusion-weighted image was then registered to

the mean of the (motion-corrected) non-diffusion-weighted images using

a two-stage coarse-to-fine approach that maximized the normalized mutual

information. The mean of the non-diffusion-weighted images was also auto-

matically aligned to the T1 image using a rigid body mutual information

algorithm. All raw images from the diffusion sequence were then re-sampled

to 2 mm isotropic voxels by combining the motion correction, eddy-current

correction, and anatomical alignment transforms into one omnibus transform.

and resampling the data using a seventh-order b-spline algorithm based on

code from SPM5 (Friston and Ashburner, 2004) was done. An eddy-current

intensity correction (Rohde et al., 2004, 2005) was also applied to the diffusion

weighted images at this resampling stage. The rotation component of the

omnibus coordinate transform was applied to the diffusion-weighting gradient

directions to preserve their orientation with respect to the resampled diffusion

images. The tensors were fit using a least-squares algorithm. The eigenvalue

decomposition of the diffusion tensor was computed, and the fractional

anisotropy was calculated from the eigenvalues (Basser, 1995; Basser and

Pierpaoli, 1996). The FA is the normalized standard deviation of the three

eigenvalues and indicates the degree to which the isodiffusion ellipsoid is

anisotropic. The mean diffusivity (MD) is the mean of the three eigenvalues,

which is equivalent to one-third of the trace of the diffusion tensor.

Tractography

We identified the fibers using the probabilistic ConTrack algorithm (Sherbondy

et al., 2008a). This method is designed to find themost likely pathway between

two regions of interest and has been validated against gold-standard post-

mortem tract-tracing methods (Sherbondy et al., 2008b).

Optic Tract. Large ROIs that contain the optic chiasm, including both optic

tract origins, were positioned on T1 maps of each subject, centered at the

infundibular stem of the hypothalamus. This way we were able to compare

the optic tracts of the subject who lack an optic chiasm and the controls.

Both LGNs were also defined anatomically on the T1 maps, and their volumes

were standardized to 485 mm3. ConTrack calculated the most likely pathway

between the ROIs of the optic chiasm and the LGN. A set of 5,000 potential

pathways were generated and the top 10% (500) highest scores fibers were

chosen as the most likely pathways connecting these two regions.

Optic Radiation. In this case, we estimated the optic radiation as the most

likely pathway between the LGN ROI and each hemisphere’s Calcarine. The

Calcarine ROIs were delineated for each subject on their T1 maps. We
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sampled 100,000 possible pathways and estimated the optic radiation as

the top 1% (1000) of these pathways. A few clearly misidentified fibers were

eliminated (Sherbondy et al., 2008b).

Occipital Callosal Fibers. To analyze diffusion properties in the corpus

callosum, we adopted parts of the corpus callosum segmentation procedure

described by Dougherty et al. (2007) and Huang et al. (2005). We manually

defined an occipital ROI within the white matter and a corpus callosum ROI

for each subject. We sampled 100,000 fibers that pass through both ROIs

and estimated the 1% (1,000) of these generated pathways. We then

measured the cross-sectional area of these callosal-occipital fibers in the

plane of the corpus callosum. The process was performed on each hemi-

sphere separately; we also estimated the cross-sectional area of the whole

corpus callosum.
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