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Vision is one of the important senses that make us able to observe and interact with our 

environment. When we look around in the world, we see many different objects and 

shapes. In our interaction with the world around us, we need to be able to search, locate 

and recognize objects. Therefore, the visual system needs to segment and detect objects 

from the visual scene.  

Visual processing (in primates) starts with the retina being stimulated by light. The 

visual system has to interpret this incoming light so we are able to make sense of our 

environment. Since the information coming from the retina is noisy and ambiguous, the 

visual system needs to make an interpretation of it. It does this based on our knowledge of 

the world. Using this prior knowledge, the visual system derives the most likely cause of the 

retinal image.  

How does the visual system make this interpretation of the outside world? It does 

this in a hierarchical way. The retinal image that contains luminance information is being 

processed into ever more abstract representations. The brain processes the retinal image 

via different visual areas. Early visual areas process information from a small region of the 

visual field and represent simple sensory-driven image properties such as contrast and 

orientation (Hubel & Wiesel, 1962). Later visual areas extract their meaningful 

information from the representation of the early visual areas. The representation in later 

visual areas becomes more complex. Later visual areas process the information from a 

larger region of the visual field and represent more meaningful information about for 

instance the presence and shape of objects.  

 

The interaction between the sensory-driven and knowledge-based information in visual 

perception is illustrated in the visual illusion in Fig. 1 (Adelson, 1995). The two squares 

indicated with ‘A’ and ‘B’ have the same local sensory-driven input based on the 

brightness of the square. When the two squares are presented in isolation, the squares are 

perceived as being equally gray. However, when perceiving the squares in a context in 

which square A is illuminated directly and square B lies in the shadow, our subjective 

experience is that the squares have a different brightness (Adelson, 2000).  



GENERAL INTRODUCTION! !
!

! 11!

 

Figure 1 The checker shadow illusion from Adelson (figure adapted from Adelson, 1995). 

This visual illusion illustrates the interaction between the sensory-driven and knowledge-

based information in visual perception. The local sensory-driven information of Square A 

and B is similar, but the subjective experience based on the context of the global percept is 

that they have a different brightness (Adelson, 2000).  

 

How the retinal image is processed in our brain and how this influences our behavior is a 

big question in neuroscience. In this thesis, we investigated how visual 

perception is affected by both the sensory-driven and knowledge-based 

information. We will investigate the effect that these sources of information have on our 

behavior and on the neural signal. For this, we quantified both sensory-driven and 

knowledge-based information of natural images. To study the effects on our perceptual 

functioning we use a psychophysical method and to study how the information is 

represented in the neural signals in visual cortex we use computational neuroimaging 

techniques. 

 

Synthetic versus natural images 

 

In the experiments described in this thesis, we used different stimuli. We used both 

synthetic and natural images. The synthetic images dominated in their content of contrast-

energy and mainly contained sensory-driven information, whereas the natural images 

contain both sensory-driven and knowledge-based information.  
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Synthetic images 

The synthetic images were randomly generated patterns consisting of a hexagonal grid 

that was partially filled with a high-contrast pattern. Fig. 2 shows an example of the 

synthetic images used in the experiment. The synthetic images contained mainly sensory-

driven information.  

 

 

Figure 2 Examples of the synthetic images that we used in this thesis. The synthetic 

images were used to study the effects of sensory-driven information on visual perception.  

 

 

Natural images 

The natural images used in our experiments (Fig. 3A) were taken from the 'Berkeley 

Segmentation Dataset and Benchmark' database (D. Martin, Fowlkes, Tal, & Malik, 

2001). Where the dominant information of the synthetic images was the sensory-driven 

image feature contrast-energy, we quantified this in the natural images by calculating the 

amount of Root-Mean-Squared (RMS) contrast for the natural images (Fig. 3B). The 

RMS contrast is the ratio between the local image intensity and the average image 

intensity.  

The natural images contain besides sensory-driven information also knowledge-based 

information. For every image of the 'Berkeley Segmentation Dataset and Benchmark' 

dataset, there are manually labeled images available. The manually labeled images were 

made by human observers and contain a description of the subjective importance of the 

images (Fig. 3C). The task of the observers was to identify the most important aspects of 

the scene. We used the average manually labeled images of five observers as our definition 

of the knowledge-based image information.  

 The database of the manual labels was developed as a ground truth for 

object and boundary detection algorithms in computer vision. When parts of an image are 
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shown in isolation, human observers are poor at identifying the boundaries and junctions 

(McDermott, 2004). The sensory-driven image features that are used to identify the 

boundaries and junctions in natural scenes are highly ambiguous. Therefore, boundaries 

and junctions need to be inferred using the global context of the scene and our knowledge 

of the world. 

For the dataset of images that we used in our experiments, Martin et al. also 

compared the manual labels with the performance of local boundary detector algorithms. 

Where the algorithms detected parts of the manual labels, a significant portion was not 

detected (D. R. Martin, Fowlkes, & Malik, 2004). This suggests that the manual labels 

were not only based on local sensory-driven image properties, but also on global image 

context and our knowledge of the world. 
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Figure 3 A: In this thesis we used natural images from the ‘Berkeley Segmentation 

Dataset and Benchmark' database (D. Martin et al., 2001). We investigated how visual 

perception is affected by both the sensory-driven and knowledge-based information. B: To 

quantify the sensory-driven information we calculated the RMS-contrast of the images. C: 

For all the images of this database human observers manually labeled the important 

aspects of the image that represent the subjective importance of the image. We used the 

subjective importance to quantify the knowledge-based information of the images.  
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Behavior 

 

Change blindness 

 

When we look around in the world, we have the experience that we perceive the world 

around us in high detail, like a camera. However, even when we are confronted with large 

changes in a visual scene, we often fail to notice them. And once we notice the change, it is 

hard to imagine that we didn’t see it. This phenomenon is called change blindness and 

illustrates that not every part of the visual scene is processed in such great detail as we 

intuitively experience.  

The visual system is bombarded with a large amount of information from the light 

that falls on our retina, and our brain needs to make a coherent percept from this. 

However, the brain only has a limited amount of processing capacity, therefore, not every 

part of the visual scene can be processed in great detail.  

In a change blindness experiment, subjects need to detect a change in two 

alternating images. Some changes are easier to detect than others. Current theories 

propose that our ability to detect changes in a visual scene is influenced by the knowledge-

based image representation of the scene. Therefore, changes that occur in this knowledge-

based image representation are detected faster (O'Regan, Rensink, & Clark, 1999; 

Rensink, ORegan, & Clark, 1997; Sampanes, Tseng, & Bridgeman, 2008; Shore & Klein, 

2000; Stirk & Underwood, 2007). On the other hand, the representation in early visual 

cortex is dominated by sensory-driven information such as contrast-energy of the image 

(Boynton, Demb, Glover, & Heeger, 1999; De Valois & De Valois, 1988; Dumoulin, 

Dakin, & Hess, 2008; Mante & Carandini, 2005; Olman, Ugurbil, Schrater, & Kersten, 

2004).  

Our visual percept is made from the interactions of both the sensory-driven 

information and the knowledge-based information of the scene.  In chapter 2 we 

investigated whether these interactions are reflected in our behavior, more specifically on 

our ability to detect changes in a visual scene. 
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Neurons  

 

Neuronal response properties 

 

Since the visual system receives an enormous amount of information from the retina, it 

needs efficient ways to interpret and represent the relevant information from the retinal 

image. The brain interprets this information by the computations on the retinal image. A 

way to understand the computations of the brain is by the ability to predict how neurons 

will respond to stimulation.  

 

Contrast response function 

The responses of neurons in early visual cortex are known to be strongly modulated by 

contrast (Boynton et al., 1999; De Valois & De Valois, 1988; Dumoulin et al., 2008; 

Mante & Carandini, 2005; Olman et al., 2004). These responses do not increase linearly 

with increasing contrast, but the responses saturate at high contrast levels. How a neuron 

will respond to different levels of contrast is also referred to as the contrast response 

function (CRF) (Albrecht & Hamilton, 1982). The non-linear CRF makes neurons only 

sensitive to differences in a limited range of contrasts. This range is dynamic and can be 

modulated by different mechanisms (Carandini & Heeger, 2011). The non-linear CRF can 

be for instance shifted by the average contrast in the environment. This shift of the CRF 

explains adaptation effects; when the average contrast level changes, the visual system is 

able to optimally detect differences around the new average level of contrast.   

 

Receptive field properties  

Neurons in visual cortex respond to a certain region in the visual field, which is called the 

receptive field of this neuron (also referred to as the classical receptive field). When 

stimulating this part of the visual field, the neuron is activated. Neurons in early visual 

cortex have small receptive fields and will therefore only contain information from a small 

region of the visual scene. Neurons with small receptive fields will lack an amount of 

information, which makes their representation to be ambiguous. A way to solve this 
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ambiguity is by putting the information in context. A meaningful percept can be made 

when the information of smaller receptive fields are integrated over a larger space in the 

visual field.  

 

Throughout the visual system, neurons are found that have so called center-surround 

receptive fields  (for review see: (Allman, Miezin, & McGuinness, 1985; Carandini, 2004; 

Cavanaugh, Bair, & Movshon, 2002; Fitzpatrick, 2000; Hubel & Wiesel, 1968)). The 

response of these neurons is adjusted based on information that is outside their classical 

receptive field. When the information in the center is different from the information in the 

surround, these neurons will give the biggest response. The functional property that these 

neurons have is to detect changes in the visual scene; they make a comparison between the 

information of the center and the surround. These neurons can detect for instance changes 

in luminance, orientation or direction (Hubel & Wiesel, 1962, 1968). Center-surround 

modulations are supposed to play a role in mechanisms such as edge detection and are 

also widely used for this purpose in computer vision algorithms.  

 

Receptive field properties are expected to play a functional role in visual computations. 

These properties become progressively more sophisticated in later visual areas. Receptive 

fields in later visual areas show responses to more complex stimulus properties. Studying 

the receptive field properties is needed to gain a better understanding of their 

computational function in the visual system.  

 

Receptive fields of neurons that are nearby in visual cortex respond to regions nearby in 

the visual field. As a result, the visual cortex is organized into retinotopic maps. They are 

called retinotopic since they show a similar layout as in the retina and are also referred to 

as visual field maps (Wandell, Brewer, & Dougherty, 2005). These visual field maps can be 

measured using fMRI.  
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fMRI 

 

Functional Magnetic Resonance Imaging (fMRI) is a commonly used technique to 

measure brain activity. The brain needs oxygen to function, and the fMRI signal is based 

on the differences in the local concentration of blood oxygen. The activation measured 

with fMRI is an indirect measurement of the activation of a population of neurons 

(Moseley & Glover, 1995). FMRI measures the activation of volumes of the cortex that are 

typically of a size of 2x2x2mm. These volumes are called voxels (volume-element) and 

contain about a million of neurons. Since this is a non-invasive technique it can be used to 

measure neural activity in human subjects. This technique is widely used to localize brain 

areas that are involved for specific tasks. However, fMRI can also be used to study more 

complex neuronal properties. 

 

Computational neuroimaging 

 

Conventional fMRI studies focus on whether a certain task or stimulus leads to an increase 

of neural activity, and in which brain areas this activation is found. The drawback of this 

approach is that it ignores the differences in neuronal properties. For example, different 

cortical locations respond to different parts of the visual field. An approach that takes these 

differences into account is computational neuroimaging. In computational neuroimaging, 

fMRI is not only used for investigating which parts of the brain respond to a certain 

stimulus, it also investigates how this part of the brain responds to the stimulus. In this 

approach, fMRI is used as a tool to test hypotheses about the neural computations 

(Wandell, 1999). There are various methods of computational neuroimaging: visual field 

mapping, biologically inspired models such as population receptive field models and 

classifiers that decode information from the fMRI signal.  

 

Visual field mapping 

The methodology of fMRI can be used to distinguish the different visual field maps in 

cortex. For this, the traveling-wave method (Engel, Glover, & Wandell, 1997) (also known 

as the phase-encoded paradigm (Sereno et al., 1995)) was designed. This technique infers 



GENERAL INTRODUCTION! !
!

! 19!

the preferred spatial location in the visual field for every voxel. For this, different parts of 

the visual field are stimulated while measuring the fMRI response simultaneously. While 

the subjects fixate at the center of the visual field, expanding and contracting rings are 

presented. The expanding and contracting rings stimulate parts of the cortex that respond 

to different peripheral locations of the visual field. These stimuli are used to define the 

borders of the visual field maps based on eccentricity, i.e. the distance to fixation. Rotating 

wedges stimulate parts of the cortex that respond to locations in the visual field that are 

different in preferred polar-angle. These stimuli are used to distinguish the borders 

between the visual field maps. By reconstructing the positions of the visual field on the 

cortical surface, the visual field maps can be drawn based on the borders of polar-angle 

and eccentricity (Fig. 4).  

!
Figure 4 Visual field maps in occipital cortex can be identified from polar angle (left) and 

eccentricity (right). Figure from (Wandell, Winawer, & Kay, 2015). 

!
 

Population receptive field mapping 

The traveling wave method estimates the preferred location of a voxel as a point in visual 

space. However, neurons in visual cortex do not only respond to a point, but to a region in 

the visual space, called the receptive field. fMRI measures from a neuronal population 
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instead of a single neuron, therefore, the aggregate receptive field measured with fMRI is 

referred to as the population receptive field (pRF) (Dumoulin & Wandell, 2008; Victor, 

Purpura, Katz, & Mao, 1994). The properties of pRFs in visual cortex can be measured 

using the pRF-method (Dumoulin & Wandell, 2008). The stimuli used for the estimation 

of the pRF-model are bar apertures that move trough the visual field in 8 different 

directions. The original pRF-model describes the pRF with a single circular Gaussian in 

the visual field. In short, the parameters of the pRF are estimated by combining the 

measured fMRI time series with the presented stimulus over time. A prediction of the time 

series is made based on the overlap of the pRF and the stimulus. The model estimates the 

parameters of the pRF that give the best prediction to the measured time series (Fig. 5). 

This method estimates for every cortical location not only the parameters for its preferred 

location in the visual field, but also for the size of this region.  

 

The conventional pRF-model uses only a single circular Gaussian to describe the pRF, 

and it therefore doesn’t capture any influences of possible surround effects of the pRF. In 

Chapter 3 we extend the conventional pRF-model by adding a suppressive surround to 

the pRF.  

 

The strength of the pRF-model is that it allows the selection of voxels that respond to 

certain parts of the image. Therefore, it is possible to select responses elicited by different 

contrast-energy levels in natural images. In Chapter 5 we use the pRF-model to derive 

contrast response functions from the inherent variation in contrast of natural images. 
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Figure 5 Model fit routine of the original (One Gaussian) pRF-model. For every cortical 

location a pRF is estimated. The pRF is modeled as a single circular Gaussian in the visual 

field with parameters for its location (x0,y0) and for the size of the pRF (σ). The pRF-model 

makes a prediction of the measured fMRI signal based on the overlap of the pRF and the 

stimulus over time. The parameters of the pRF are those that give the best prediction to 

the measured fMRI signal.  

 
 

Brain reading 

Another challenge of computational neuroimaging is to predict the mental state from the 

measured brain activity. Different studies showed that it is possible to determine from the 

measured fMRI signal what the subject was seeing, hearing, remembering or even 

dreaming (for review see: (Tong & Pratte, 2012). Most of these studies make use of the 

statistical differences between activation patterns that are elicited by different stimuli. For 

example, in the study of Haxby et al. they trained a classifier to determine whether the 
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subject saw an image with a house or a face (Haxby et al., 2001). The drawback of these 

approaches is that it is not possible to make a prediction when the stimulus comes from a 

different category, for instance an image of a car.  

A different approach is to use biologically inspired models that are able to make 

predictions about the presented stimulus. The advantage of this approach is that it is 

possible to make a prediction about any stimulus containing properties that are defined by 

the model. The pRF-model is such a biological model that estimates for every cortical 

location the region in the visual field that it responds to.  

 

Using the pRF-model we can make a prediction of the brain activity for any visual 

stimulus. In Chapter 4 we describe an fMRI study in which we used the pRF-model to 

identify the visually presented image. We identified both synthetic and natural images 

based on the sensory-driven contrast-energy information.  

 

 

Theories of neural mechanisms of inference  

 

Where visual processing starts with the extraction of simple sensory-driven image 

properties, the computations become more complex in later stages of visual processing. 

Our visual percept is made from the interactions of both the sensory-driven information 

and the knowledge-based information of the scene. It is unclear how this interaction is 

reflected in the neural signal.  

Different computational and statistical theories propose a different effect on the 

neural signal for the interaction between the sensory-driven and knowledge-based 

information. In these theories, later visual areas form a perceptual hypothesis about the 

external source, which they feedback to early visual areas. The feedback modulates the 

sensory-driven neural representation in early visual areas according to this perceptual 

hypothesis. The difference between the theories lies in the effect of the feedback; it can be 

either boosting or suppressing the neural representation of the early visual areas.  

Fig. 6 illustrates two different theories that predict opposing effects of the feedback 

on the internal representation of early visual areas. On the one hand, predictive coding 

states that the feedback from later areas subtracts the perceptual hypothesis from the 
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neural representation of early visual areas (Friston, 2002; Mumford, 1992; Rao & Ballard, 

1999). By subtracting the perceptual hypothesis from the internal representation of early 

visual areas, the unpredicted information remains represented in the signals of early visual 

areas. On the other hand, the efficient coding theory proposes that the internal 

representation of early visual areas is enhanced according to the perceptual hypothesis 

(Barlow, 2001; Friston, 2002; Rao, 2005; Series, Lorenceau, & Fregnac, 2003; Simoncelli 

& Olshausen, 2001). This causes the internal representation to sharpen the sensory-driven 

representation according to the perceptual hypothesis.  

 

There is no consensus on how the interaction of the sensory-driven information and the 

knowledge-based perceptual hypothesis takes place in early visual areas. Where the 

interaction effect has only been studied using synthetic images, in chapter 5 we 

investigated the effect that these interactions have on the internal representation of early 

visual areas using natural images. 
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Figure 6 Two theories of neural mechanisms of inference. Opposing effects are proposed 

for the effect of the knowledge-based perceptual hypothesis on the internal representation 

of early visual areas. Where the predictive coding predicts that the perceptual hypothesis is 

subtracted from the representation of early visual areas, the effective coding predicts that 

the representation of early visual areas is enhanced according to the perceptual hypothesis.    
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Abstract 

 

Our visual system receives an enormous amount of information but not all information is 

retained. This is exemplified by the fact that subjects fail to detect large changes in a visual 

scene, i.e. change-blindness. Current theories propose that our ability to detect these 

changes is influenced by the high-level image interpretation of an image. On the other 

hand, low-level image features such as contrast-energy dominate the representation in 

early visual cortex. Here we investigated the interaction of the low-level feature contrast-

energy and the higher-level image interpretation on our ability to detect changes in a 

visual scene. We measured reaction times while manipulating the low and high-level 

image properties using the change blindness paradigm. Our results suggest that our ability 

to detect changes in a visual scene, as measured with a change blindness paradigm, is not 

only influenced by the high-level image interpretation, but also by low-level image statistics 

such as contrast-energy. Furthermore, we find that the low-level and high-level image 

properties interact. We speculate that low-level and high-level image features are not 

independently represented in the visual system. 
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Introduction 

 

Given the overload of information that our eyes receive, the visual system needs an 

efficient mechanism to extract the behaviorally relevant features and ignore other features. 

The change blindness paradigm reveals our inability to see changes in two sequentially 

presented visual scenes when separated by a disruption like a saccade or a flicker (for 

review see: Rensink, 2002; Simons and Ambinder, 2005). Without the disruption, the 

change is often easy to detect. Where our intuitive idea is that our visual representation of 

the outside world is highly detailed, the change blindness paradigm highlights limitations 

of this visual representation (Rensink, 2000; Martin et al., 2001). The failures to detect 

changes in the visual scene highlight the limits of our ability to retain and compare 

information from one visual scene to the other (Simons and Rensink, 2005).  

 

Some changes in the visual scene are easier to detect than others. Many change blindness 

studies focus on the notion that changes made in parts of a scene that represent the general 

interpretation of the image are detected faster (Rensink et al., 1997; O'Regan et al., 1999; 

Shore and Klein, 2000; Stirk and Underwood, 2007; Sampanes et al., 2008). What causes 

these changes to be detected faster? One interpretation is that these parts of a scene 

receive more attention, and are therefore more likely to be encoded and compared 

(Simons and Rensink, 2005). Some studies refer to this high-level image representation as 

regions of high interest (Rensink et al., 1997; O'Regan et al., 1999; Shore and Klein, 2000; 

Verma and McOwan, 2010), where others refer to a semantic summary of the scene (gist) 

that is related to our knowledge of the world (Stirk and Underwood, 2007; Sampanes et 

al., 2008). In all scenarios, changes in high-level image representation are detected easier. 

 

On the other hand, we know that the early visual system, i.e. primary visual cortex, 

encodes low-level image features such as contrast-energy (De Valois and De Valois, 1988; 

Boynton et al., 1999; Olman et al., 2004; Mante and Carandini, 2005; Dumoulin et al., 

2008). Previous change blindness studies did not always account for differences in low-level 

image features (Verma and McOwan, 2010) and low-level features might contribute to 
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change detection, such as saliency or size of the change (Landman et al., 2003; Verma and 

McOwan, 2010). 

 

Here, we ask whether low-level image features, in particular contrast-energy, contribute to 

our ability to detect changes in a visual scene. Furthermore, we compared change 

detection for these low-level image features with the high-level image representation. Last, 

we investigated whether our high-level image interpretation interacts with the low-level 

image feature contrast-energy in our ability to detect changes to a visual scene.  

 

To this aim, we measured reaction times (RTs) in a flicker-task using the change-blindness 

paradigm (Rensink et al., 1997), subjects indicated when and where they detected the 

change between the images. We used images from the Berkeley Segmentation Dataset and 

Benchmark database (Martin et al., 2001). In this dataset, Martin and colleagues asked 

human observers to identify the most important aspects of the image (Fig. 1). We used 

these manually labeled aspects of the scene to define and quantify our measure for the 

high-level image representation. Using the combination of the natural images together 

with their manually labeled images, we were able to measure the amount of change that a 

manipulation to an image brings both to the low-level and to the high-level image 

representation. We manipulated the amount of change in the high-level image 

representation (manually labeled aspects of the scene) and in the change of the low-level 

image features (contrast-energy).  

 

We found both significantly shorter RTs for manipulations dominated by a change in the 

high-level image representation, as well as those dominated by changes in contrast-energy. 

Furthermore, these two properties interacted: shortest RTs were found when the changes 

both contained a large change in contrast-energy and in the high-level image 

representation. These results show that our ability to detect changes in a visual scene is not 

only influenced by the high-level image interpretation of the image, but is also influenced 

by low-level image statistics such as contrast-energy. Finally, our results suggest that the 

low-level and high-level image features are not independently processed in the visual 

system, but interact with each other.  
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Figure 1 Five example images from the ‘Berkeley Segmentation Dataset and Benchmark' 

database (Martin et al., 2001). For all the images of this database human observers 

manually identified the important aspects of the image. Different observers drew the 

labels, and their task was to draw lines on the image to highlight the parts of the image 

they considered to be important for the representation of the scene. We took the average 

manually labeled images of five observers (B) as our definition of the higher-level image 

interpretation. The pixels of the manually labeled images have values between 0 (not 

labeled) and 1 (pixel labeled by all 5 observers). 
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Methods 

 

Participants 

 

In total 60 subjects participated in the experiment (30 female, age range = [18 39], mean 

age = 23.9, SD = 4.0). The total number of 60 subjects was based on a power analysis 

informed by previous literature (Verma and McOwan, 2010). All subjects had normal or 

corrected-to-normal visual acuity. The study was approved by the local Ethics Committee 

of the Utrecht University and the experiments were carried out in accordance with the 

Code of Ethics of the World Medical Association (Declaration of Helsinki). All 

experiments were performed with the informed written consent of the subjects.   

 

Apparatus 

 

The experiment was programmed in MatLab (MathWorks, USA), using the Psychophysics 

Toolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on a 21-inch CRT monitor 

type LaCie-C22BW711 (60 Hz, 1024x768) using a Mac Pro 4.1 computer. The monitor 

was calibrated with a light meter type Gossen Mavo-Monitor USB. The viewing distance 

was 57 centimeters, which was maintained using a chin and forehead rest.  

 

Stimuli 

 

The images were taken from the 'Berkeley Segmentation Dataset and Benchmark' 

database (Martin et al., 2001). We used a selection of the grayscale images and we only 

used the images that were in landscape orientation. Also, we did not include any images in 

which a human was present in the image. Using Adobe Photoshop CS6 (Version 13.0, 

USA), we manipulated the image content. In total 108 different changes to the images 

were made, giving with 108 independent image pairs. Changes to the images were for 

instance deletions of (part of) objects, or changes in textures. Fig. 2 shows four example 

image pairs. The arrows indicate where the manipulation to the image was made.  
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Figure 2 Examples of image pairs that were used in the experiment. The original images 

were taken from the 'Berkeley Segmentation Dataset and Benchmark' database (Martin et 

al., 2001). The arrows indicate where the manipulation in the image was made (the arrows 

were not present in the actual experiment). For every condition we show one example 

image pair. The conditions were based on the amount of contrast-energy change and the 

amount manual labeling change. The conditions were balanced for changes in size, 

distance from the center, contrast, luminance and spatial frequency. 
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All stimuli were presented on a gray background. The size of the images was 481x321 

pixels, extending 18.6 x12.4 degrees of visual angle. 

 

Measure of change in contrast-energy and manual labeling 

 

The aim of the study was to investigate the role of the low-level feature contrast-energy 

and the high-level image interpretation on our ability to detect changes in a visual scene. 

We simultaneously measured the influence of both; for every image manipulation we 

calculated how big the change in the low-level feature contrast-energy was and its 

corresponding change in the high-level image representation.  

 

Calculation of change in the low-level image property contrast  

To compute the amount of contrast-energy change that the manipulation to an image 

brings, the first step was to calculate the local contrast-energy values both of the original 

image and of the manipulated image. For every pixel of the image we calculated the local 

contrast-energy inside a spatial window of neighboring pixels. This spatial window is 

defined by a Gaussian weighting function: 

 

wi = exp!
(xi ! xc )

2 + (yi ! yc )
2

2(! )2
"
#$

%
&'

                (1)
 

  

where (xi,yi) is the location of the ith pixel and (xc,yc) is the location of the pixel at the 

center of the image patch. σ is the standard deviation of the Gaussian window and defines 

the size of the spatial window. For the size of σ, we used 19.4 pixels, which corresponds to 

0.75° of visual angle.  

The local contrast-energy value is based on the Root-Mean-Squared (RMS)-

contrast (Pelli, 1997; Bex and Makous, 2002) which is defined as the standard deviation of 

the luminance intensities relative to the mean. The RMS-contrast is weighted by the 

Gaussian function to obtain the local contrast-energy value per pixel:  
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local _ contrast _ energy = 1
wii=1

N!
wi
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!
              (2)

 

Where wi is the Gaussian weighting function. N Is the number of pixels in the spatial 

window. L is the mean luminance from the pixels inside the spatial window, and Li is the 

luminance of the ith pixel.  

Using the local contrast-energy values per pixel, we computed for every image pair 

the change in contrast-energy between the original image and the manipulated image. Fig. 

3 gives an illustration of this procedure. We used the local contrast-energy values of the 

pixels that were changed in the image; the red line represents this region. The difference 

between the mean local contrast-energy values from the original image and the mean local 

contrast-energy values from the manipulated image defined our measure of contrast-

energy change.  

 

Calculation of change in subjective important aspects of the scene 

For every image from the 'Berkeley Segmentation Dataset and Benchmark' database 

(Martin et al., 2001), there are manually labeled images available. In each manually 

labeled image, a human observer drew lines on the image to highlight the parts of the 

image they considered to be important for the representation of the scene. We used the 

average of 5 manually labeled images as our definition of the higher-level image 

interpretation. In Fig. 1 five examples of natural images (A) are shown together with the 

averaged manually labeled images (B).  

 

We used the averaged manually labeled images to calculate the amount of change in the 

high-level image representation that a manipulation brings to an image. The pixels of the 

manually labeled images have values between 0 (not labeled) and 1 (pixel labeled by all 5 

observers). The amount of change in the high-level image representation was calculated by 

summing the values of the pixels in the averaged manually labeled images that were 

manipulated. The computation is illustrated in Fig. 3. The red line in Fig. 3 represents the 

changed region. From this region we computed how big the change in the manually 
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labeled aspects of the image was and this gives us our measure of change in the higher-

level image representation. 
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Figure 3 An illustration of the procedure of calculating the change in contrast-energy and 

manual labeling. Two example images (taken from the 'Berkeley Segmentation Dataset 

and Benchmark' database (Martin et al., 2001)) are shown with changes predominant in 

manually labeling (A) and contrast-energy (B). The red line represents the region 

manipulated to alter the image. From this region we calculated the difference in local 

contrast-energy as well as the amount of manual labeling change.  

 

 

From this region we also computed the amount of change in contrast-energy. Two 

example images are shown: one in which the change is dominated by high-level aspects 

(Fig. 3A) and one in which the change is dominated by low-level aspects (Fig. 3B). The 

region was controlled for changes in size, distance from the center, mean luminance and 

mean contrast of the changed area and spatial frequency (see below). 

 

Conditions 

 

Based on the changes in contrast-energy and manually labeled aspects we defined four 

conditions based on the image-pairs that are ‘low’ and ‘high’ in their differences for 

contrast and manual labeling. We made a 2(contrast: high vs. low) x 2(manual labeling: 

high vs. low) within subjects design. The definition of ‘low’ and ‘high’ was based on the 

50th percentile of the values for contrast-energy change and manual labeling change 

(median split). We took the first 50th percentile of the changes for the condition ‘low’ and 

the second 50th percentile for the condition ‘high’, both for contrast-energy as for the 

manually labeled aspects. Fig. 4 shows the histograms of the changes in contrast-energy (A) 

and manually labeled aspects (B); the vertical black striped line represents the 50th 

percentile. All the images below this boundary-line were placed in the ‘low’ condition. The 

images above the 50th percentile were placed in the ‘high’ condition. Fig. 2 shows for every 

condition an example of an image pair.  
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Figure 4 The distribution of local contrast-energy change (A) and change in manual 

labeling  (B) for all the image pairs. The vertical striped black line indicates the 50th 

percentile used to define our four different conditions. Image pairs left of the 50th 

percentile were used in the ‘low’ condition, both for contrast-energy change and manual 

labeling change. Image pairs right to the 50th percentile were used in the ‘high’ conditions.   

 

The conditions were balanced for changes in size, distance from the center, mean contrast, 

mean luminance change and spatial frequency change of the manipulated area. The size 

of the change was calculated as the number of pixels that were changed in the original 

image. The distance from the center was calculated as the eccentricity where the center of 

mass of the change was. The mean contrast was calculated as the average contrast of the 

manipulated area in the original image and the manipulated image. The luminance 

change was the difference of the mean luminance of the original image and the 

manipulated image in the area that was changed. The change in spatial frequency was the 

difference of the median spatial frequency of the changed area in the original image and 

the manipulated image. In Fig. 2 the corresponding values for the calculated changes are 

reported next to the image pairs. No significant changes were found using an ANOVA to 

test for group differences (changes in size: F(3,104)=0.66, p=0.58, distance from the 

center: F(3,104)=1.75, p=0.16, mean contrast: F(3,104)=1.17, p=0.33, maximum contrast 

of both images F(3,104)=1.07, p=0.37, minimum contrast of both images F(3,104)=0.60, 

p=0.61, mean luminance difference: F(3,104)=1.03, p=0.38, spatial frequency difference 

F(3,104) = 0.31, p=0.81), or the Kruskal-Wallis test to test for group differences (changes 

in size: H(3,104)=2.76, p=0.43,  distance from the center: H(3,104)=5.01,p=0.17, mean 
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contrast: H(3,104)=4.18, p=0.24, maximum contrast of both images H(3,104)=4.51, 

p=0.21, minimum contrast of both images H(3,104)=1.84, p=0.61, mean luminance 

difference: H(3,104)=4.19, p=0.24, spatial frequency difference H(3,104) = 1.5, p=0.68).  

 

We made 108 different image pairs (i.e. 108 different manipulations) and every condition 

contains 27 of these image pairs. Some of the images were used more than once, so 

different manipulations to the images could be made. To make sure that every subject did 

not see multiple manipulations to the same image, we made 6 different subsets, in which 

every original image was only inserted once. The subsets contained 36 different image 

pairs and the subsets were balanced so that every condition contained 9 individual image 

pairs. Every subset of images was presented to 10 subjects. Apart from these image pairs 

that were used for the experiment, we also used 4 trial image pairs. Every trial image pair 

is an example from one of the 4 conditions. These trial image pairs were used before the 

actual experiment began. 

 

Design 

 

For the change blindness experiment we used a flicker task (Rensink et al., 1997). In the 

flicker task, an original image was repeatedly alternated with a manipulated image, until 

the observer notices the change. The original and the manipulated image were presented 

for 600ms and were separated by a gray screen that was presented for 100ms. The 

separation with a gray screen of approximately 80ms prevents the observer from seeing the 

change due to movement transients caused by the change between the two images 

(Rensink et al., 1997). The maximum duration of the experiment was 240 seconds. 

Subjects were instructed to indicate when they saw the change by pressing the space bar. 

After this response, the last presented image from the image pair was presented again. At 

this image, the subjects indicated with the mouse where they had noticed the change in the 

image. After every trial the subject received feedback whether the change was correctly 

detected. The answer was classified correctly when the subject pointed within a small 

region of the change. The 36 different image pairs were presented in a randomized order 

for every individual experiment. The experiment started with four trial image pairs to 
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make the participants acquainted with the experiment, these trials were excluded from the 

analysis.  

 

Analysis 

 

We measured the time from the onset of the stimulus to the time at which the subject 

pressed the spacebar as the reaction time (RT). Trials in which the subject did not report 

to see a change (misses) or did not report the change at the accurate location (false alarms) 

were analyzed using repeated measures ANOVA. There were no significant differences in 

the proportion of false alarms (F(3,236)=1.39, p=0.25) and misses (F(3,236)=1.62, p=0.19) 

in the different conditions, so these trials were excluded from the analysis (61 out of 2160 

trials). 

  

The effect that the different conditions have on the RTs was analyzed using a general 

linear model (GLM, Matlab, Mathworks, USA). Since the distribution of RTs was skewed, 

we used an inverse Gaussian as a linking function in the GLM. Fig. 6B shows the inverse 

Gaussian fits to the data. Using the GLM approach we investigated the relation of the 

measured RTs with contrast-energy change, manual labeling change and the interaction 

between the two.  

 

We further examined whether the interaction effect can be explained by statistical 

facilitation alone, i.e. RTs can be faster only because more than one feature is present. We 

compared the cumulative distribution functions (CDF) of the high-contrast/low-manual 

labeling (RThl) and low-contrast/high-manual labeling (RTlh) conditions with the CDF of 

the high-contrast/high-manual labeling (RThh) condition (Fig. 6C). The upper bound of 

statistical facilitation was calculated using the race model inequality (Raab, 1962; Miller, 

1982; 1986; Ulrich et al., 2007): 

 

P(RThh <  t) <= P(RThl < t) + P(RTlh < t)                 (3) 

 

The race model inequality reflects the probability that an RT of the condition high-

contrast/high-manual labeling is equal or less to the probability of the combined RT 
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distributions of the low-contrast/high-manual labeling and high-contrast/low-manual 

labeling. Shorter RTs for the condition high-contrast/high-manual labeling compared to 

the race-model reflect a violation of the race-model and can thus not be explained by 

statistical facilitation alone. Note that the race-model only provides an upper bound of 

statistical facilitation, since the CDF of the race-model sums to 2.  

The CDFs were compared for different quantiles of the RTs (10, 20 and up to 90 

percentile). We bootstrapped the CDFs over our subjects to obtain the 95% confidence 

interval and the p-values to test for a statistical violation of the race model for the different 

quantiles (corrected for multiple comparisons using the Bonferroni method).   

 

 

Results 

 

We measured detection rate and reaction times for the four different categories based on 

changes that are either low or high in contrast-energy (CE) and low or high in manual 

labeling of important aspects of the scene (ML). 

 

The average detection rate for all changes in all image categories was 97%, i.e. all the 

changes to these images were detected within the 240 seconds that the images were 

presented. Fig. 5 shows the proportion of detections (hits), detections in which subjects 

failed to indicate the correct location (false alarms) and failures to detect the change 

(misses). Since there were no significant differences in the proportion of false alarms and 

misses in the different conditions we excluded these trials from the analysis. Thus only the 

trials in which the subjects correctly detected the changes to the images were used for 

further analysis.  

  

 

 

 

 

 



! CHAPTER 2 

!

! 40!

 

Figure 5 Proportion of detections (hits), detections in which subjects failed to indicate the 

correct location (false alarms) and the failure to detect the change (misses). The averaged 

data are the mean from all subjects, and the error bars reflect 1 standard error of the 

mean. 

!
!
!
!
!
!
!
!
!
!
!
!
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Figure 6 A: The median reaction times of all the correct detections for all subjects for the 

different image categories. The striped line represents the median RT of the race-model. 

The error bars reflect the bootstrapped 95% confidence interval. B: the cumulative 

distributions of the correct responses for the different conditions. We analyzed our results 

using a GLM approach, with the inverse Gaussian as a linking function. The striped lines 

are the fits to the data with an inverse Gaussian function. We found significantly shorter 

reaction times for both changes in contrast-energy (CE) and manual labeling (ML). 

Furthermore, we found a significant interaction effect, i.e. reaction times were shorter 

when changes affected both contrast-energy and manual labeling. C: The comparison of 

the CDF of the condition high-contrast/high-manual labeling with the CDF of the race-

model. The CDF of the race-model is the summed CDFs of the conditions high-

contrast/low-manual labeling and low-contrast/high-manual labeling. We found statistical 

significant shorter RTs for the condition high-contrast/high-manual labeling compared to 

the race-model for the 10th to the 70th percentile. This indicates that the interaction effect 

cannot be explained by statistical facilitation alone. 

 

 

We measured the time from the beginning of the stimulus, until the time the subjects 

noticed the change and pressed the spacebar as the RT. Fig. 6A shows the median RTs 

per condition, the error bars reflect the bootstrapped 95% confidence intervals. The 

condition in which the manipulations to the image were the most difficult to detect was 

when the manipulation of the image was both low in manual labeling change and low in 

contrast-energy change, i.e. in this condition the RT was longest (median RT = 7.1 s). 

Comparing this condition to the condition in which the manipulations were also low in 

manual labeling change but were high in contrast-energy change, we see that these were 
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detected faster (median RT = 5.5 s, median decrease RT= 1.6 s). Comparing the first 

condition to the condition in which manipulations were low in the change of contrast-

energy, but the changes in manual labeling were high, we also found a faster detection of 

the manipulations (median RT = 5.3 s, median decrease RT= 1.8 s). Last, when the 

manipulations were both high in the change of contrast-energy and high in the change of 

manual labeling, we found that the manipulations were detected fastest (median RT = 1.9 

s, median decrease RT= 5.2 s).  These results indicate an effect both for the amount of 

manual labeling change and the amount of contrast-energy change on the RT. A 

manipulation to an image with a larger change in either contrast-energy or manual 

labeling to the image led to a faster detection of the manipulation. The results also suggest 

an interaction effect for the amount of contrast-energy change and the amount of 

manually labeled change. A manipulation that was both high in its change for contrast-

energy and manual labeling resulted in the fastest detection of the manipulation.  

 

To quantify these observations, we performed a GLM-analysis to compare the effects of 

contrast-energy change, manual labeling change and the interaction of the two on the 

RTs. Since the distribution of RTs was skewed, we did not use the canonical linking 

function that tests for differences in the conditions based on their mean. Instead of the 

canonical linking function, we used the inverse Gaussian linking function to take into 

account the non-normal or non-Gaussian distribution of the data. The differences of the 

distributions are now based on the fit of the inverse Gaussian distribution. Fig. 6B shows 

the fits of the inverse Gaussian function to the distribution of the data for the different 

conditions. All fits had a variance explained R2 > 0.97.  Using the GLM analysis, we 

found a significant effect for the level of contrast-energy change: t(2095)=9.92, p<<0.001. 

Also, we found a significant effect for the level of manual labeling change: t(2095)=6.54, 

p<<0.001. Furthermore, we found a significant effect for the interaction of the amount of 

contrast-energy change and the amount of manual labeling change: t(2095)=7.90, 

p<<0.001. Thus, our ability to detect changes in a visual scene is influenced by both the 

higher-level image representation and the low-level image properties, and they interact.  
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To further examine this interaction effect, we investigated whether it can be explained by 

statistical facilitation alone. We compared the CDF of the high-contrast/high-manual 

labeling condition to the CDF of the race model (Fig. 6C). We compared the bootstrapped 

CDFs at different quantiles, from the 10th to the 90th percentile. For the 10th to the 70th 

percentile we found a statistically significant violation of the race model (p < 0.001 for all 

significant percentiles, Bonferroni corrected for multiple comparisons), with a maximum of 

1 second difference in RT that was unexplained by statistical facilitation.  

 

 

Discussion 

 

In our study we used manually labeled images to investigate the simultaneous effect of low-

level and high-level image features on our ability to detect changes in a visual scene. We 

measured RTs within a change blindness task and compared RTs over four different 

categories. The categories were based on the amount of change in the low-level image 

feature contrast-energy and the amount of change in the high-level image representation.  

 

Shorter RTs for high change in the manually labeled aspects of the image  

 

Analyzing the reaction times for the different categories, first, we found a significant effect 

for manual labeling. RTs were shorter for manipulations that have a larger change in their 

high-level image representation. This measure of change was based on the manually 

labeled aspects of the images, in which people indicated which parts represented the image 

most (Martin et al., 2001). Our results are in line with previous change blindness studies, 

which showed that changes made in parts of a scene that were considered to be important 

for their high-level image representation were detected earlier (Rensink et al., 1997; 

O'Regan et al., 1999; Shore and Klein, 2000; Stirk and Underwood, 2007; Sampanes et 

al., 2008; Verma and McOwan, 2010). However, different notions of the high-level image 

representation have been used in these studies. Some refer to it as the gist; the general 

interpretation of a scene (Stirk and Underwood, 2007; Sampanes et al., 2008), where 

others refer to it as regions of high interest (Rensink et al., 1997; O'Regan et al., 1999; 
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Shore and Klein, 2000; Verma and McOwan, 2010). Where our study resembles most 

with the studies that use the notion of the high-level image representation as regions of 

high interest, our definition of the high-level image representation can also partly be seen 

as capturing properties of a figure-ground representation of the image. Mazza et al. found 

that changes in images that belong to the figure are easier to detect than changes 

belonging to the ground of that image (Mazza et al., 2005). Where this study used non-

natural experimental stimuli, we show that it holds for natural images as well.  

 

Arguably, the manual labeled images represent figure-ground representations. Figure-

ground may be thought of as more of a mid-level image representation than a high-level 

one, but we believe this is not the only property that is captured in the manual labeling. 

The manually labeled images were made subjectively by human observers with the 

intention to develop a ground-truth database to test automatic segmentation algorithms. 

Different cues for the manual labeling can be used, from low-level and mid-level to high-

level knowledge based cues. So even if the manually labeled aspects of the image partly 

capture a figure-ground representation, we believe it also captures the high-level properties 

of an image.  

 

Shorter RTs for high contrast-energy change 

 

We also found a significant effect for the amount of contrast-energy change on the RTs. 

Manipulations with a larger change in contrast-energy were detected earlier. 

Neurophysiological data shows that the early visual cortex responds strongly to changes in 

contrast-energy (De Valois and De Valois, 1988; Boynton et al., 1999; Olman et al., 2004; 

Mante and Carandini, 2005; Dumoulin et al., 2008). We speculate that this preference of 

early visual cortex underlies the ability to detect these changes. Alternatively, changes in 

contrast-energy might attract more (exogenous) attention. These two explanations are not 

mutually exclusive and both or either one may explain why changes in contrast might be 

detected earlier.  

 

Most change blindness studies do not account for effects of low-level image statistics. Some 

studies did, but show deviating results. Verma & McOwen find earlier detection for 
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changes in a region with high salience (Verma and McOwan, 2010). On the other hand, 

Stirk & Underwood do not find any differences based on saliency (Stirk and Underwood, 

2007). The definition of saliency in these studies is based on variations in color, luminance 

and orientation (Itti and Koch, 2000). Here, we show that low-level image features, and in 

particular contrast, can lead to differences in the detection of changes.  

 

Interaction of change in contrast-energy and manual labeling  

 

Last, we found a significant interaction effect for the amount of change in manual labeling 

and contrast-energy change. By using the combination of the manually labeled images 

simultaneously with the inherent contrast energy of the images, we were able to investigate 

not only the effect of low-level and high-level image statistics on the change blindness 

paradigm. Most importantly, we were able to simultaneously measure the effect of both 

because the levels of contrast change and change in manual labeling was independent in 

the images. The interaction we find cannot be explained by the added benefit of two 

independent observations (race-model). This suggests that the low-level and high-level 

image features are not independently processed in the visual system, but instead they 

facilitate each other. 

 

Our result that the high-level image representation interacts with contrast-energy is in line 

with the study of Self et al., where they find differences in the perceived contrast between 

figure and ground. The contrast of Gabor probes that are placed on figures are perceived 

as higher contrast as the probes placed on the background (Self et al., 2015). Where they 

use non-naturalistic stimuli, we confirm their findings of this interaction effect with natural 

images. 

 

The objects that we perceive are segmented by the visual system through a hierarchy of 

cortical areas that extract increasingly complex forms of information. Different theories 

propose that higher-order areas feedback to lower-order areas and modulate their 

responses according to the prior expectations about the visual world (Mumford, 1992; 

Koch and Poggio, 1999; Rao and Ballard, 1999; Friston, 2005). We speculate that this 
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interaction is the origin of our interaction effect of the high-level image representation and 

the low-level image statistics.  

 

Attention, memory and awareness 

 

Change blindness is often explained in terms of attention and memory. Attention is 

thought to have a role in the encoding of a coherent representation for retention across 

disruptions (Rensink, 2000). The storage of information in working memory is determined 

by attention. In change blindness, subjects have to compare two image representations. 

Working memory is supposed to play an important role in this comparison process. 

Besides the working memory, a different memory storage is proposed that stores the image 

features in greater detail and is not dependent on attention. This is called the iconic 

memory. Where the iconic memory decays fast and is easily overwritten by new stimuli, 

the working memory is longer lasting.  

 

Another way of interpreting the difference between iconic memory and working memory 

is that the iconic memory is led by bottom-up attention, which is drawn to endogenous 

low-level features. Whereas the working memory is drawn by top-down attention driven 

by exogenous high-level cues. In line with this idea, studies showed that short term 

memory for low-level features such as contrast (Xing et al., 2013) and orientation 

(Harrison and Tong, 2009) resides in early visual cortex. 

 

Lamme & Roelfsema make the distinction of feedforward and recurrent processing 

(Lamme and Roelfsema, 2000). The feedforward sweep is thought to be pre-attentive and 

encodes the visual information based on the low-level image statistics. The recurrent 

process plays a role in the high-level image interpretation and is driven by attention. It is 

supposed that the recurrent processes are needed for visual awareness. Only recurrent 

processing reaches a conscious state. The feedforward sweep and the recurrent processes 

are not independent, but influence eachother. Our internal representation of a visual scene 

is build up from these interactions.  
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These processes relate to the results of our study. Where the effects for the low-level 

feature contrast-energy can be acquainted to the iconic memory or the feedforward sweep, 

the effect for high-level features can be acquainted to the working memory. Furthermore, 

in the recurrent processes low-level and high-level image properties influence each other, 

which can be related to the interaction effect that we find, and in particular to the 

facilitating role that we find when comparing the RTs to the race-model.  

 

Conclusion 

 

Where earlier studies on change blindness conclude that our ability to detect changes in a 

visual scene is influenced by the higher-level image interpretation of the scene, we find that 

it is not only the higher-level image interpretation we also find that it is influenced by the 

low-level feature contrast-energy. Manipulations that are either high in their change for 

the high-level image interpretation or contrast-energy are detected earlier. We also found 

an interaction effect; manipulations that were both high in their change for manual 

labeling and contrast-energy were detected earliest.  

Presumably, these parts of an image are processed in greater detail. The change 

blindness paradigm can be used to give more insight in how low-level image statistics and 

high-level image representations are processed in the visual system. Our results suggest 

that they are not processed independently, but instead interact in how they are 

represented in the visual system.  
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Abstract 

 

Antagonistic center-surround configurations are a central organizational principle of our 

visual system. In visual cortex stimulation outside the classical receptive field can decrease 

neural activity and also decrease functional Magnetic Resonance Imaging (fMRI) signal 

amplitudes. Decreased fMRI amplitudes below baseline -0% contrast- are often referred to 

as “negative” responses. Using neural model-based fMRI data-analyses, we can estimate 

the region of visual space to which each cortical location responds, i.e. the population 

receptive field (pRF). Current models of the pRF do not account for a center-surround 

organization or negative fMRI responses. Here, we extend the pRF model by adding 

surround suppression. Where the conventional model uses a circular-symmetric Gaussian 

function to describe the pRF, the new model uses a circular-symmetric difference of 

Gaussians (DoG) function. The DoG-model allows the pRF analysis to capture fMRI 

signals below baseline and surround suppression. Comparing the fits of the models, an 

increased variance explained is found for the DoG-model.  This improvement was 

predominantly present in V1/2/3 and decreased in later visual areas. The improvement of 

the fits was particularly striking in the parts of the fMRI signal below baseline. Estimates 

for the surround-size of the pRF show an increase with eccentricity and over visual areas 

V1/2/3. For the suppression index, which is based on the ratio between the volumes of 

both Gaussians, we show a decrease over visual areas V1 and V2. Using non-invasive 

fMRI techniques, this method gives the possibility to examine assumptions about center-

surround receptive fields in human subjects.  
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Introduction 

 

Antagonistic receptive fields are found throughout the visual system. In the visual cortex, 

the responses to stimulation in the classical receptive fields can be modulated by 

stimulation in the extra-classical receptive field. These modulations can be excitatory or 

inhibitory and have been characterized in detail by electrophysiological and 

psychophysical studies (for review see: (Allman, Miezin, & McGuinness, 1985; Carandini, 

2004; Cavanaugh, Bair, & Movshon, 2002; Fitzpatrick, 2000; Hubel & Wiesel, 1968)). 

Recent human brain imaging techniques have also found evidence of these center-

surround organizations. Using functional magnetic resonance imaging (fMRI), center-

surround configurations have been implicated in the amplitude changes of the fMRI signal 

due to stimulus size (Kastner, De Weerd, Pinsk, Elizondo, Desimone & Ungerleider, 2001; 

Nurminen, Kilpelainen, Laurinen, & Vanni, 2009; Press, Brewer, Dougherty, Wade, & 

Wandell, 2001), surround (Tajima et al., 2010; Williams, Singh, & Smith, 2003; Zenger-

Landolt & Heeger, 2003) or contextual modulations (Dumoulin & Hess, 2006; Harrison, 

Penny, Ashburner, Trujillo-Barreto, & Friston, 2007; Kastner et al., 2001; Murray, 

Kersten, Olshausen, Schrater, & Woods, 2002). 

 

In addition, when measuring recording sites in the vicinity of regions that are positively 

correlated with a stimulus manipulation, negative Blood Oxygenation Level Dependent (BOLD) 

responses (NBRs) have been reported in the visual cortex (Shmuel, Augath, Oeltermann, & 

Logothetis, 2006; Shmuel et al., 2002; Smith, Williams, & Singh, 2004). These NBRs are 

defined as BOLD responses below those elicited by viewing mean-luminance gray (0% 

contrast). Also, when identifying or reconstructing visual stimuli from the fMRI signals, 

local cortical sites may contribute either positively or negatively (Kay, Naselaris, Prenger, 

& Gallant, 2008; Miyawaki et al., 2008). The coupling between measured fMRI responses 

and the underlying neural activity is complex (for review see: (Logothetis & Wandell, 

2004)) and neural inhibition per se may not necessarily result in a decrease of the BOLD 

response. Studies combining electrophysiology and fMRI report that these NBRs are 

caused by decreases in overall neural activation (Shmuel et al., 2006; Shmuel et al., 2002). 

They state that the NBR can be either caused by a suppression of the local neuronal 
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activity and/or a decrease in afferent input, both caused by the activation of the positively 

responding regions. These results suggest that the neural center-surround organization 

influences the fMRI signal, and also suggest that the spatial center-surround profile of the 

recorded neural population may be resolvable at the resolution of fMRI. 

 

Here, we extended a computational method for estimating receptive fields of a population 

of neurons (Dumoulin & Wandell, 2008), to measure center-surround configurations 

throughout the visual cortex. Since a receptive field measured with fMRI is estimated from 

a neuronal population instead of a single neuron, we refer to it as the population receptive field 

(pRF) (Dumoulin & Wandell, 2008; Victor, Purpura, Katz, & Mao, 1994). This method 

fits a model of the pRF to the fMRI data. We compare two models of the pRF. The 

original pRF-method describes the pRF with one single circular symmetric Gaussian (OG) 

in the visual field. This model can only represent positive responses to stimulation in any 

region of the visual field, and can therefore not explain negative fMRI responses. We 

extended the current pRF model by incorporating a suppressive surround using a Difference 

of Gaussian (DoG) function to represent the pRF. This model can account for suppression 

effects.   

 

The DoG-model yielded improved performance in predicting the fMRI time-series. This 

improvement was predominantly present in V1/2/3 and decreased in later visual areas. 

We attribute the absence of a measurable center-surround configuration in later visual 

areas to technical limitations, which would hide this configuration at the resolution of 

fMRI though it may be present at neural resolutions.  The properties of the center-

surround configurations varied systematically across V1/2/3. The pRF center sizes 

increased with eccentricity and visual field maps, similar to previous reports (Amano, 

Wandell, & Dumoulin, 2009; Dumoulin & Wandell, 2008; Harvey & Dumoulin, 2011; 

Kay et al., 2008; Winawer, Horiguchi, Sayres, Amano, & Wandell, 2010). In addition, we 

show that the surround size of the pRF increases with eccentricity and up the visual field 

map hierarchy. To compute the total amount of suppression we need to take into account 

the surround volume not just its size. Therefore we defined the suppression index by the 

volume ratio of the two individual Gaussian components of the DoG-model. The 
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suppression index decreases with eccentricity and also decreases up the visual field map 

hierarchy. These results extend the notion of center-surround configurations to the spatial 

scale of fMRI measurements. This gives the ability to measure and test assumptions of 

center-surround population receptive fields in human subjects.  

 

 

Methods 

 

Subjects 

 

Four subjects (one female; ages 21-37 years) participated in this study. All subjects had 

normal or corrected-to-normal visual acuity. All studies were performed with the informed 

written consent of the subjects and were approved by the Human Ethics Committee of 

University Medical Center Utrecht. 

 

Stimulus Presentation 

 

The visual stimuli were generated in Matlab using the PsychToolbox (Brainard, 1997; 

Pelli, 1997) on a Macintosh Macbook Pro. Stimuli were displayed by a configuration 

where optics back-projected the imaged stimuli of the projector onto a screen located 

outside the MRI bore. The subjects viewed the screen by mirrors placed on top of the 

scanner head coil. The stimulus radius was 6.25° of visual angle.  

 

Stimulus Description 

 

For the experiment, we used moving bar apertures which revealed a moving checkerboard 

pattern (100% contrast) that moved parallel to the bar orientation (Figure 1).  The width of 

the bar subtended 1/4th of the stimulus radius (1.56°). Four bar orientations (0°, 45°, 90° 

and 135°) and two different motion directions for each bar were used, giving a total of 8 

different bar configurations within a given scan. The bar sweeps across the stimulus 

aperture in 20 steps (each 0.625° and 1.5 seconds), each pass taking 30 seconds. After a 
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horizontally or vertically oriented sweep, a period of 30 seconds of mean-luminance (0% 

contrast) is presented. This gives a total of 4 blocks of mean-luminance during each scan, 

presented at evenly spaced intervals.   

To make sure subjects fixated at the center of the screen, a small fixation dot 

(0.125° radius) was presented in the middle of the stimulus. This fixation dot changed 

color (red-green) at random time intervals and subjects were instructed to respond at this 

change of color. An air pressure button was used to record these responses. When 

performance on the fixation task was below 75% correct, the scan was discarded (one scan 

total).  

Eye movement data examining fixation during the presentation of this stimulus 

were measured outside the scanner using a highly accurate Eyelink II system (SG 

Research, Mississauga, Ontario, Canada). Values obtained during moving bar 

presentations and the mean-luminance blank periods were not significantly different, and 

so presentation of the moving bar did not appear to affect eye movements. Subjects had a 

fixation position distribution with a standard deviation of 0.22°, indicating a highly 

accurate fixation. Because there is inevitably some noise in the measurement of eye 

positions, this value represents an upper bound of the actual variation of fixation positions 

(Harvey & Dumoulin, 2011). 

 

 

t = 0 t = 330t = 30 t = 60 t = 90 t = 120 t = 150 t = 180 t = 210 t = 240 t = 270 t = 300
Time (seconds) 

Figure 1 A schematic illustration of the stimulus sequence. The bar apertures revealed a 

high contrast checkerboard (100%). The checkerboard rows moved in opposite directions 

along the orientation of the bar. The bars moved trough the visual field with 8 different 

orientation-motion configurations as indicated by the arrows (arrows not present in actual 

stimulus). The total stimulus sequence lasted 360 seconds. 
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Functional imaging and processing 

 

MRI data was acquired using a Philips Achieva 3T scanner with an 8-channel SENSE 

head-coil. The participants were scanned with a 2d-echo-planar-imaging sequence with 24 

slices oriented perpendicular to the Calcarine sulcus with no gap. The following 

parameters were used; repetition time (TR) = 1500 ms, echo time (TE) = 30 ms and a flip angle 

of 70°. The functional resolution was 2.5x2.5x2.5 mm, given a field of view (FOV) of 

224x224 mm.  

The duration of each scan was 372 seconds (248 time-frames), of which the first 12 

seconds (8 time-frames) were discarded due to start-up magnetization transients. For every 

subject 9 or 10 scans were acquired during the same session. These repeated scans were 

averaged to obtain a high signal-to-noise ratio.  

Foam padding was used to minimize head movement. The functional images were 

corrected for head movement between and within the scans (Nestares & Heeger, 2000). 

For computation of the head movement between scans, the first functional volumes for 

each scan were aligned. Within scan motion correction was computed by aligning the 

frames of a scan to the first frame. 

 

Anatomical imaging and processing 

 

The T1-weighted MRI images were acquired in a separate session using an 8-channel 

SENSE head-coil. The following parameters were used: TR/TE/flip angle = 

9.88/4.59/8. The scans were acquired at a resolution of 0.79x0.80x0.80 mm and were 

resampled to a resolution of 1mm3 isotropic. The functional MRI scans were aligned with 

the anatomical MRI using an automatic alignment technique (Nestares & Heeger, 2000). 

From the anatomical MRI white matter was automatically segmented using the FMRIB's 

Software Library (FSL) (S. M. Smith et al., 2004). After the automatic segmentation it was 

hand-edited to minimize segmentation errors (Yushkevich et al., 2006). The gray matter 

was grown from the white matter and to form a 4 mm layer surrounding the white matter. 

A smoothed 3D cortical surface can be rendered by reconstruction of the cortical surface 

at the border of the white and gray matter (Wandell, Chial, & Backus, 2000). 
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Figure 2 Flow chart of the fitting procedure of the two pRF models. The left panels 

illustrate the conventional one Gaussian pRF model, the right panels illustrate the 

difference of Gaussians pRF model. The middle panels indicate the analysis input, shared 

between both pRF models, consisting of the stimulus aperture and fMRI data. 

Convolution of a pRF model with the stimulus sequence predicts the fMRI time series. 

The pRF model parameters are estimated by minimizing the sum-of-squared errors 

between the predicted and the measured time-series. 
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pRF model-based analysis 

 

The model estimates a pRF for every cortical location using a method previously described 

(Dumoulin & Wandell, 2008). In short, the method estimates the pRF by combining the 

measured fMRI time-series with the position time course of the visual stimulus. A 

prediction of the time-series is made by calculating the overlap of the pRF and the 

stimulus energy and a convolution with the haemodynamic response function (HRF). The 

optimal model parameters are chosen by minimizing the residual sum of squares between 

the predicted and measured time-series.  

 

We compared two different models of the pRF. The conventional pRF model consists of 

one circular symmetric Gaussian (OG).  The OG-model has four parameters: position 

(x0,y0), size (σ1), and amplitude (β1). Here we extend the pRF model to add an inhibitory 

surround. This model represents the pRF using a difference of Gaussians (DoG) function. 

The DoG-model is made up of a subtraction of 2 Gaussian functions, in which the 

Gaussian with the largest standard deviation is subtracted from the smaller one. The 

center of the two Gaussians is at the same position, and therefore the DoG adds two extra 

parameters to the model; the size of the negative surround (σ2) and the amplitude of the 

surround (β2). All parameters are in degrees of visual angle (°), except for the amplitudes 

(% BOLD/deg2/sec). Restrictions of the DoG-model are that σ2 is larger than or equal to 

σ1, and β2 is negative with an absolute value that is smaller than β1. These restrictions 

ensure a center-surround configuration.  

 

Thus the DoG pRF model (g(x,y)) is defined as a combination of two Gaussians (g+(x,y) 

and (g-(x,y)): 

 

 

g + (x, y) = exp! (x ! x 0)2 + (y ! y0)
2(" 1)2
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g ! (x, y) = exp! (x ! x 0)2 + (y ! y0)
2(! 2)2
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g(x, y) = g + (x, y)! g ! (x, y)                              (3) 

 

 

The next step is to define the stimulus. Assuming that all parts of the stimulus contribute 

equally to the fMRI response (Engel, Glover, & Wandell, 1997) the stimulus is defined as a 

binary indicator that marks over time each position of the stimulus in the visual field; 

s(x,y,t). Combining the position of the pRF in the visual field with the stimulus positions 

over time, the response of the pRF, r(t) is obtained by calculating the overlap for each 

Gaussian. We obtain two values of r(t); r+(t) for the positive Gaussian and r-(t) for the 

negative Gaussian.  

 

r + (t) = s(x, y, t)g + (x, y)
x,y
!                     (4) 

 

r ! (t) = s(x, y,t)g ! (x, y)
x,y
"                    (5) 

 

The prediction of the time-series, p(t) is then calculated by convolution of the response of 

the pRF, r(t), with the HRF, h(t). Two different predictions of the time-series are made: 

one for the positive Gaussian and one for the negative Gaussian of the pRF. Since the 

negative BOLD responses exhibit a similar HRF as the positive BOLD response (Shmuel 

et al., 2006), the same HRF (h(t)) is used for both parts of the pRF.  

 

p + (t) = r + (t)*h(t)                     (6) 

 

p ! (t) = r ! (t)*h(t)                        (7) 
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Where * denotes convolution. Assuming there is a linear relationship between the blood 

oxygenation levels and the MR signal (Birn, Saad, & Bandettini, 2001; Boynton, Engel, 

Glover, & Heeger, 1996; Hansen, David, & Gallant, 2004), a scaling factor β1 is used on 

p(t). This scaling factor accounts for the unknown units of the fMRI signal, which in turn 

represents the amplitude of the pRF. β1 is calculated by using a general linear model (GLM) in 

which measurement noise, e, is taken into account as well. The two values for the 

amplitudes of the Gaussians are calculated using a GLM with two unknown values for β; 

β1 for the positive amplitude and β2 for the negative amplitude.  

 

y(t) = p + (t)! 1+ p " (t)! 2 + e                       (8) 

 

The optimal parameters of the pRF are estimated by minimizing the RSS.  

 

RSS = (y(t)! (p + (t)" 1+ p ! (t)" 2))2
t
#                                  (9) 

 

To compare the performance of the two different models in predicting the fMRI time 

series, the variance explained predicted to measured fMRI time-series was computed. 

 

Since it is possible that not all the voxels show a center-surround configuration, it should 

still be possible to obtain a configuration of the pRF without the suppressive surround. 

Therefore, we replaced all the voxels in the DoG-model where the OG-model fits better 

with the pRFs estimated by the OG-model. 

 

For further technical and implementation details see (Dumoulin & Wandell, 2008). 

 

Baseline estimation  

 

The fMRI signal is without units, and the baseline activation must be indirectly deduced 

from the parts of the fMRI time-series where a baseline stimulus was shown (mean 

luminance, 0% contrast). The conventional pRF model-based analysis estimates this 

baseline level as a component within the GLM fit over the whole time-series. Initial 
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observations indicated different parameters for the baseline in the two different pRF 

models (Supplementary figure 1). Different baseline values suggest that the conventional 

pRF model may compensate for the negative fMRI signal by lowering its estimate of 

baseline activity. To ensure that differences in variance explained between the various 

models are not interfered by differences of the baseline estimation, the time-series of the 

mean luminance blocks are used to estimate the baseline. The standard HRF model 

(Glover, 1999) takes about 22.5 seconds to diminish to 0.55 % of its maximal amplitude. 

Therefore, to remove all fMRI signals caused by the stimuli, the first 22.5 seconds of the 

mean luminance blocks are removed, and the remainder of 7.5 seconds is used to estimate 

the baseline. Since every scan contains 4 sequences of mean-luminance (Fig 1), a total of 

30 seconds of the fMRI time-series is used to estimate the level of the baseline activation. 

This baseline correction is required when comparing the two models using the same 

baseline, but is not necessary when estimating each model independently. 

 

Region of Interest  

 

Using the estimated position parameters x0, and y0 of the pRF model, values for the polar 

angle (atan(y0/ x0)) and eccentricity (√(x02 + y02)) can be calculated. By rendering these 

polar angle and eccentricity maps onto the inflated cortical surface (Wandell et al., 2000), 

the borders of the visual areas can be drawn on the basis of their location in the visual field 

(DeYoe et al., 1996; Engel et al., 1997; Sereno et al., 1995; Wandell, Dumoulin, & Brewer, 

2007). Visual areas V1, V2, V3, V3a, hV4 and LO-1 are defined as regions of interest (ROIs).  

 

Surround Suppression Index 

 

To indicate the effect of the suppressive surround on the pRF we use a measure for its 

suppression index that is based on the volumes under the two Gaussians that make the 

pRF (adapted from: (Sceniak, Hawken, & Shapley, 2001)). We only take into account the 

total volume of the two Gaussians that falls inside the stimulus range (6.25° radius). 

 

SI = ! 2 *(" 2)2

! 1 *(" 1)2
                             (10) 
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Results 

 

The DoG pRF model captures systematic events of the fMRI time-series. 

 

The pRF models give a prediction of the measured fMRI time-series for every voxel. 

Figure 3A shows the prediction of the time-series for the OG-model for an example voxel 

in V1. Comparing the time-series with the prediction of the model shows that the OG-

model fails to explain many parts of the time-series that fall below the baseline activity (< 

0% BOLD signal), these are indicated by the gray arrows. Aside from the parts of the 

prediction that show the negative undershoot of the HRF, the OG-model is unable to 

predict responses below the baseline. The prediction for the identical fMRI time-series 

made by the pRF of the DoG-model is shown in figure 3B. Where the OG-model misses 

the ability to predict the negative fMRI signal, the DoG-model shows a clear improvement 

of the fit. This improvement is particularly evident at the negative parts of the time-series.  

 

To quantify these observations in the fits of the OG-model and the DoG-model, we 

computed the difference of the measured fMRI time-series and the predicted time-series 

(residuals). Figure 3C shows the distribution of these residuals for both models of the pRF 

from one subject’s V1 (in percent BOLD signal change). The distribution height is 

normalized according to the peak of the DoG-model. A residual value of zero indicates 

that the prediction matched the measured fMRI signal perfectly. The arrows indicate 

where the means of both curves are. These are -0.23/-0.20% and -0.07/-0.05% for the 

mean/median of the OG and DoG-model respectively. The DoG-model’s residuals are 

distributed tighter and with higher amplitude around zero than the OG-model, indicating 

a better fit to the time-series, whereas the residuals of the OG-model are balanced around 

a negative difference and with a slight skew. 
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Figure 3 Example of the model fits for a cortical location (voxel) in V1 for both models of 

the pRF. The gray dotted lines indicate the fMRI time-series; the black solid lines show 

the fits of the models. Gray regions indicate mean-luminance presentations, whereas the 

dark gray regions indicate parts of the time-series used to estimate the baseline (0). The 

circular patches below indicate the visual field (gray), the estimated pRF for the voxel (the 

red part for the positive part of the pRF and the blue part for the negative part of the pRF) 

and the stimulus at a given time. A: The model fits of the OG-model of the pRF. The OG-

model shows an accurate fitting for the positive parts of the time-series. The parts where 

the OG-model misses the ability to follow the time-series are particularly evident for the 

negative parts of the time-series. The gray arrows indicate these parts. B: The model fits of 

the DoG-model of the pRF. A clear improvement of the fit of the DoG-model can be seen 

at the negative parts of the fMRI signal. In parts where the OG-model misses the ability to 

give a correct prediction, the DoG-model that incorporated a suppressive surround is able 

to give an accurate prediction of the time-series. The models explain 49% and 72% of the 

variance, respectively. C: From the same subject this shows the distribution of the residuals 

from all the voxels in V1. To calculate the residuals, the predicted time-series is subtracted 

from the measured time-series (for all time-points). The gray line shows the residuals for 

the predicted time-series of the OG-model; the black line shows the residuals of the DoG-

model. The arrows indicate the means of both curves. The mean of the residuals of the 

OG-model is -0.23%, for the DoG-model this value is -0.07%. Where the OG-model 

shows a negative shift in its residuals, the DoG-model shows a more balanced distribution 

of the residuals around zero. 
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The DoG-model explained more of the fMRI signal variance in V1 and 

decreasing in later visual areas 

 

To quantify the goodness-of-fit of the pRF models, we compared the variance explained of 

the two models. The difference in variance explained of the DoG-model and the OG-

model is depicted on the cortical surface in figure 4. For all subjects, only the values were 

plotted that have a minimal variance explained of 40% in the one Gaussian model. This 

figure illustrates that for all subjects the largest gain in variance explained for the DoG-

model is found in V1. This difference in variance explained between the two models 

decreases in later visual areas.  
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Figure 4 The difference in variance explained of the DoG-model and the OG-model 

depicted on inflated cortical surfaces. We show the left occipital lobe of all four subjects 

from a lateral (left panels) and medial (right panels) perspective. The largest difference in 

variance explained is found in visual area V1. This difference seems to decrease in later 

visual areas. Similar results were obtained in the right hemisphere (not shown). Only 

locations were the OG-model explained more than 40% of the variance in the time-series 

is shown. 
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To quantify these visual field map differences, the mean variance explained in the different 

visual areas is calculated for both models. Figure 5 shows the normalized variance 

explained of the different identified visual areas for both models. The averaged data is 

from all subjects for recording sites where both pRF models explained more than 30% of 

the variance in the fMRI time-series between 1.5-6 deg. eccentricity. We corrected for 

overall individual differences and then normalized the variance explained relative to the 

OG-model. Similar to Figure 4 this figure shows an increase of variance explained for the 

DoG-model. For V1 a relative improvement of ~14% is found for the DoG-model 

compared to the OG-model (absolute improvement is ~7%). This improvement decreases 

in V2 and V3 to ~12, and even more (~1%) in the other later visual areas V3a, hV4 and 

LO-1.  
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Figure 5 The variance explained for both the models of the pRF normalized to the OG-

model. In V1 the increase of variance explained for the DoG-model is found to be ~14 % 

with respect to the OG-model. This improvement decreases in later visual areas. In V2 

and V3, the improvement dropped to ~12%. The difference becomes even less in later 

visual areas V3a, hV4 and LO-1 (~1%). The averaged data is from all subjects, and the 

error bars reflect 1 standard error of the mean. 
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pRF size increases with eccentricity and in V1-V3 

 

For both the OG-model as well as the DoG-model, estimates of the positive (center) pRF 

size are obtained. Both models estimate the standard deviation (σ1) of a Gaussian to 

represent the positive part of the pRF. The DoG-model subtracts a second Gaussian from 

the positive one to obtain the total pRF. This subtraction leads to a change in the effective 

positive pRF size. For this reason the full-width-half-max (FWHM) was used to compare the 

effective positive pRF size. Figure 6 shows the relationship between eccentricity and 

FWHM in V1-V3. The averaged data is from the voxels of all subjects that have a 

variance explained > 30% and with eccentricity values between 1.5-6 deg. The lines are fit 

by a linear regression analysis. Both the linear regression and the averaging procedure are 

weighted by the variance explained of the individual voxels. The error bars represent one 

standard error of the mean. For both models of the pRF an increase of FWHM with 

eccentricity is shown as well as an increase of FWHM from V1-V3.  
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Figure 6 The relationship between eccentricity and pRF size in visual field maps V1-V3 

for both models of the pRF. The averaged data is from all subjects, and the error bars 

reflect the standard error of the mean. The lines are fit from the data by a linear regression 

analysis. The pRF size increases with eccentricity and from V1-V3. These pRF sizes are 

similar between the two pRF models. 
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Measured sizes of the surround and suppression index 

 

Besides producing measurements for the positive pRF size, the DoG-model gives estimates 

of the suppressive surround size as well. As a measure for the size of the surround we took 

the distance between the points where the pRF reaches its minimum amplitude. The 

relationship between eccentricity and the size of the negative surround is shown in Fig. 7A. 

We see an increase of the size of the surround with eccentricity and an increase of the 

surround from visual areas V1 to V3. 

 

Fig. 7B shows the relationship between eccentricity and the suppression index of the 

volumes for visual field areas V1 to V3. The suppression index is calculated by dividing 

the volumes of the two estimated Gaussians that make the pRF (Formula 10). Since the 

pRFs can have a size that is beyond the size of the stimulus range, we only take into 

account the total volume of the two Gaussians that falls inside the stimulus range. For the 

suppression index we see a decrease over visual areas V1-V3. In visual areas V1 and V2 

we see a decrease of the suppression index with eccentricity, where in V3 there is an 

increase of the suppression index with eccentricity. For both the surround size and the 

suppression index the averaged data is for the voxels that have a variance explained > 

30% between 1.5-6 deg. eccentricity. The lines are fit from the data by a linear regression 

analysis; both the linear regression and the averaging procedure are weighted by the 

variance explained of the individual voxels. The error bars represent one standard error of 

the mean. For calculating the average surround size we only take the values of the voxels 

that show surround suppression. The voxels that do not show surround suppression have a 

suppression index of 0.  
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Figure 7 The relationship between eccentricity and pRF surround in visual field maps 

V1-V3 for both models of the pRF. A: The relationship between eccentricity and the size 

of the surround in visual field maps V1-V3. As a measure for the size of the surround we 

take the distance between the points of the pRF where it reaches its minimum amplitude. 

The averaged data is from all subjects, and the error bars represent 1 standard error of the 

mean. We see an increase of the size of the surround with eccentricity and an increase of 

surround-size over visual areas V1-V3. B: The relationship between eccentricity and the 

suppression index. The suppression index is calculated by dividing the volumes within the 

stimulus range of the two estimated Gaussians that make the pRF (Formula 10). The 

averaged data is from all subjects, and the error bars represent 1 standard error of the 

mean. We see a decrease of the suppression index over visual areas V1-V3. In visual areas 

V1 and V2 we see a decrease of the suppression index with eccentricity, where in V3 the 

suppression index increases with eccentricity. 

 

 

Cross-validation 

 

Where the OG-model represents the pRF by a single Gaussian, the pRF of the DoG-

model is made up of the difference of two Gaussians. Adding this extra Gaussian leads to 

an increase of two extra parameters in the model; σ2 and β2. The addition of these extra 

parameters leads to a model with more degrees of freedom, which may result in an 

increase of the variance explained. Because the increase of variance explained is mostly 
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seen in V1-V3 but not in higher visual areas, we do not expect that the gain in variance 

explained is solely caused by the extra parameters. If it would be just the addition of the 

extra parameters causing the gain in variance explained, one would expect to see this gain 

throughout the visual cortex. 

 

 

Nevertheless, we show that the gain in variance explained is a robust finding that is not 

only caused by the addition of extra parameters to the model. We do this by a cross-

validation; in the training stage we fitted the model on a subset of the data and in the 

validation stage we evaluate these model parameters on the complementary part of the 

data. For this we split the data into two independent subsets. The time-series of the even 

scans were averaged for the first subset, and the time-series of the odd scans were averaged 

for the other subset of the data. Models were fitted on both subsets of the data. The 

parameters of these models are evaluated on their complementary dataset; the models that 

were fitted on the averaged time-series of the even scans are evaluated to the averaged 

time-series of the odd scans and vice versa. Figure 8 shows the variance explained for the 

evaluated predictions of both the OG-model and the DoG-model to its complementary 

dataset. The variance explained of the validation stage is comparable to the variance 

explained of the training stage. The averaged data is from the voxels that have a variance 

explained > 30% in both models and eccentricity values between 1.5-6 deg. The data is 

averaged over the subjects after normalization for individual differences. The error bars 

represent the 95% confidence interval. This result indicates that the DoG-model captures 

time-series characteristics that are systematically missed by the OG-model.   
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Figure 8 The variance explained of the model fits in the two stages of the cross-validation 

procedure: training and validation stage. The data was split into two different subsets. The 

data of the training stage gives the variance explained of the models on the data that it was 

fitted to, where for the validation stage we evaluated these model parameters on a different 

subset of the data. The error bars represent the 95% confidence interval. This result 

indicates that the improvement of the DoG-model fit captures systematic time-series 

characteristics missed by the OG-model, and that this improvement is not due to the 

increased number of model parameters. 

 

 

Discussion 

 

We introduce a computational model using fMRI that captures center-surround 

configurations in aggregate receptive fields of the underlying neuronal population. This 

model extends the conventional pRF model (Dumoulin & Wandell, 2008), where only the 

positively responding part of the pRF is estimated using one circular symmetric Gaussian 

(OG). The extension of the pRF model with a center-surround configuration provides a 

more biologically plausible description of the pRF. Whereas the conventional OG-model 

fails to explain parts of the time-series where the signal drops below the baseline, the DoG-

model shows an improvement of the fits. The DoG-model shows a higher variance 

explained compared to the OG-model. This improvement was predominantly present in 
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V1/2/3 and decreased in later visual areas. The method provides new opportunities to 

measure center-surround configurations in the human visual cortex using fMRI and to test 

assumptions that are made on surround suppression. 

 

Negative BOLD 

 

In the cortex, many investigators have reported negative BOLD responses (NBRs) (Harel, Lee, 

Nagaoka, Kim, & Kim, 2002; Shmuel et al., 2006; Shmuel et al., 2002; A. T. Smith et al., 

2004; Tootell, Mendola, Hadjikhani, Liu, & Dale, 1998; Wade & Rowland, 2010). Visual 

stimuli can elicit NBRs, typically adjacent to positively responding regions.  Studies 

combining electrophysiology with fMRI in early visual cortex couple this NBR to a 

decrease in neural activation (Shmuel et al., 2006; Shmuel et al., 2002). Furthermore, the 

NBR shows a similar onset time and time course as compared to the positive BOLD 

response. Consequently, we believe that the negative signals are neuronal in origin. We 

extend these observations by showing that the negative parts of the measured time-series 

can be explained by a center-surround configuration of the pRF. 

 

Center-surround configurations 

 

Suppression – a reduction in response arising from the introduction of a surround to a 

visual target – has been found to decrease fMRI signals when using narrowband stimuli; 

(Beck & Kastner, 2007; McDonald, Seymour, Schira, Spehar, & Clifford, 2009; Wade & 

Rowland, 2010; Williams et al., 2003; Zenger-Landolt & Heeger, 2003), broadband 

stimuli patches (Kastner et al., 2001) and contextual modulations (Dumoulin & Hess, 

2006; Harrison et al., 2007; Murray et al., 2002). Alternatively, fMRI responses elicited by 

viewing differently sized stimuli may also reveal surround suppression (Kastner et al., 

2001; Nurminen et al., 2009; Press et al., 2001). As the stimulus size increases, the fMRI 

responses fail to increase linearly, which is interpreted as evidence for increasing 

suppressive contributions. These suppressive interactions may be local or long-range, also 

referred to as overlay and surround-suppression (Petrov, Carandini, & McKee, 2005; 

Petrov & McKee, 2006). Although our stimulus was not specifically designed to reveal 

suppressive interactions, we do reveal similar long-range suppressive contributions to the 
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pRF consistent with a center-surround configuration. Therefore we propose that our 

DoG-model captures the suppressive surround of the underlying neural population. 

 

We found evidence for center-surround pRF configurations in V1 to V3, but not in later 

visual areas. Why did we not find a similar configuration in later visual areas? There are 

several possible explanations. First, the neuronal populations in later visual areas do not 

show surround suppression, or may show less surround suppression. Yet, many other 

studies suggest surround suppression beyond V3 (for review see (Allman et al., 1985)). To a 

certain extent our inability to reveal center-surround configurations beyond V3 may be a 

consequence of the exact stimulus layout, however, we do not believe this is the dominant 

reason. Second, the stimulus size may be too small. Given the increasing pRF size in later 

visual areas in combination with the maximum size of the stimulus (6.25° radius), this may 

not be enough to reconstruct the surround in later visual areas. Last, we may not be able 

to reconstruct the population center-surround configuration at the resolution of fMRI in 

later visual areas. Simulations (see appendix) indicate that increasing the position scatter of 

individual neuronal receptive fields leads to decreased surround effects at the population 

level. Position scatter is supposed to increase with increasing receptive fields though 

typically proportional to the RF size (Albright & Desimone, 1987; Dow, Snyder, Vautin, & 

Bauer, 1981; Fiorani, Gattass, Rosa, & Sousa, 1989; Gattass & Gross, 1981; Hetherington 

& Swindale, 1999; Hubel & Wiesel, 1974). However, if neuronal position scatter is 

proportional to RF size, this effect would not be seen. Therefore, increasing position 

scatter at later visual areas may cause the neuronal center-surround configuration to be 

lost at the resolution of fMRI. This is a limitation of our population receptive field 

approach, and other techniques may still reveal effects of the surround in later visual areas. 

 

For the suppression index we see a decrease over visual areas V1-V3. Where we see a 

decrease of the suppression index with eccentricity in visual areas V1 and V2, in V3 we see 

an increase of the suppression index with eccentricity. When calculating the suppression 

index, we only take into account the total volume of the two Gaussians that fall inside the 

stimulus range. This might account for the increase of the suppression index over 

eccentricity in V3. When taking the total volumes of the two Gaussians into account 
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without considering the stimulus range, we still see a decrease of the suppression index 

over visual areas V1-V3 and we see a decrease over eccentricity for all visual areas V1-V3. 

On the other hand, taking the entire volume of the Gaussians includes the long tails of the 

Gaussian far beyond the stimulus range leading to unlikely high suppression indexes. 

Thus, as the surround sizes increase relative to the stimulus size, the suppression index 

becomes unstable. 

 

Center-surround size estimates 

 

The pRF is defined as the region of the visual field that elicits an fMRI response 

(Dumoulin & Wandell, 2008). The conventional pRF models only considered positive 

fMRI responses. The DoG-model estimates both the regions of visual space that elicits a 

positive (center) and negative (surround) response. The conventional OG-model and the 

DoG-model yield similar estimates for the center pRF sizes. Since the pRF size estimates 

of the OG-model are comparable to electrophysiological measurements, this observation 

remains valid for the DoG-model (Dumoulin & Wandell, 2008).  

 

In addition, the DoG-model also estimates the size of the visual field that elicits negative 

fMRI responses. Our estimates of the DoG-model give a mean surround size of ~13° in 

V1. The mean surround size measured using electrophysiological approaches is ~5° 

(Angelucci, Levitt, Walton, Hupe, Bullier, & Lund, 2002; Levitt & Lund, 2002). 

Psychophysical methods combining fMRI measured a mean surround size of ~15° 

(Nurminen et al., 2009). Our measured sizes of the surround are most similar to the other 

fMRI study, whereas the electrophysiological studies show smaller surround sizes. This 

may be explained by a difference in the sampling sizes between fMRI and 

electrophysiology. FMRI measures from a larger neuronal population than 

electrophysiology. This leads to more variance in the visual field position, which in turn 

leads to an increase of the pRF size and surround estimates (see appendix).  
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Technical considerations 

 

We found an average improvement of ~7% in variance explained (~14% relative) of the 

DoG compared to the conventional OG-model in V1. We believe that this improvement 

captures biologically relevant signal modulations, and that it is not simply due to the 

increased degrees of freedom. First, the DoG-model shows most improvement in V1, with 

a decreasing difference found in higher visual areas. If the increase in variance explained 

were due to more degrees of freedom of the DoG-model, one would expect to see this gain 

over the whole cortex. Second, testing of the DoG-model on a different subset of the data 

than the model was trained on, gives similar values for the variance explained. This 

suggests that the increase of variance explained for the DoG-model is not solely caused by 

the addition of the extra parameters to the pRF model, which could lead to over-fitting of 

noise in the fMRI signal, but instead has a biological origin. Third, the estimates for both 

the size of the positively responding region as well as the negatively responding region of 

the pRF are comparable to previous studies. Last, when comparing the goodness-of-fit of 

the two models, not only the difference in variance explained is important. Inspection of 

the predictions of the time-series for both models gives a more detailed illustration of the 

performance. The DoG-model explains specific parts of the time-series, which the OG-

model systematically leaves unexplained. The parts of the time-series where the stimulus 

overlaps the surround of the pRF are the parts where the improvement for the DoG- 

model is seen. This might explain a gain of ‘only’ ~7% in variance explained for V1, as 

during a large part of the stimulus presentation preferentially the positive center or neither 

center nor surround get stimulated. In an experimental design where the surround of the 

pRF is stimulated to a greater extent, a larger difference in variance explained is expected 

between the two models of the pRF. These arguments suggest that the improvement in 

variance explained is not solely caused by more degrees-of-freedom of the DoG-model 

compared to the OG-model. The DoG-model gives a representation of the pRF that is 

biologically more plausible than the pRF of the OG-model. 
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Conclusion 

 

The DoG-model makes it possible to measure center-surround configurations in the visual 

cortex using fMRI. This extended model of the pRF uses a biologically more plausible way 

to represent the pRF than the OG-model by taking surround suppression into account. 

During a scanning session of ~1 hour and using standard mapping stimuli we are able to 

estimate the parameters of the DoG-model. Several clinical conditions may alter pRF 

properties, and in particular center-surround properties (e.g. (Butler, Silverstein, & Dakin, 

2008; Dakin & Frith, 2005; Marin, 2012; Yoon et al., 2009)). This method provides us 

with a direct measure on the properties of the pRFs throughout the visual system, which 

could be useful for studying both healthy and clinical populations. 
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Image identification from brain activity using the 

population receptive field model 
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Abstract 

 

A goal of computational models is not only to explain experimental data but also to make 

new predictions. A current focus of computational neuroimaging is to predict features of 

the presented stimulus from measured brain signals. These computational neuroimaging 

approaches may be agnostic about the underlying neural processes or may be biologically 

inspired. Here, we use the biologically inspired population receptive field (pRF) approach 

to identify presented images from fMRI recordings of the visual cortex, using an explicit 

model of the underlying neural response selectivity. The advantage of the pRF-model is its 

simplicity: it is defined by a handful of parameters, which can be estimated from fMRI 

data that was collected within half an hour. Using 7T MRI, we measured responses 

elicited by different visual stimuli: (i) conventional pRF mapping stimuli, (ii) semi-random 

synthetic images and (iii) natural images. The pRF mapping stimuli were used to estimate 

the pRF-properties of each cortical location in early visual cortex. Next, we used these 

pRFs to identify which synthetic or natural images was presented to the subject from the 

fMRI responses. We show that image identification using V1 responses is far above 

chance, both for the synthetic and natural images. Thus, we can identify visual images, 

including natural images, using the most fundamental low-parameter pRF model 

estimated from conventional pRF mapping stimuli. This allows broader application of 

image identification. 
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Introduction 

 

Determining a human’s mental state from their measured brain activity is a great 

challenge of neuroscience. Different decoding techniques have been used to determine 

what the subject was seeing, hearing, remembering or dreaming by analyzing fMRI 

activation patterns (for review see: (Tong & Pratte, 2012). Most of these studies use 

machine-learning techniques, where a classifier is trained on a set of activation patterns 

elicited by known stimuli. The classifier then compares a new activation pattern to this 

trained set of activation patterns to predict the state of an unknown stimulus. For example, 

it is possible to train a classifier using brain activation patterns elicited by sets of house and 

face images (Haxby et al., 2001). That classifier can then distinguish whether a new 

activation pattern was elicited by a house or a face image. However, this approach can 

only make predictions about a state that the classifier was explicitly trained on: a classifier 

trained to distinguish mental states elicited by house and face stimuli cannot distinguish 

between those elicited by, for example, animal and tree stimuli.  

  

A different approach to make predictions about visually presented stimuli uses biologically 

inspired encoding models. These models are based on the brain’s representation of stimuli 

(Dumoulin & Wandell, 2008; Kay, Naselaris, Prenger, & Gallant, 2008; Kriegeskorte, 

2015; Mitchell et al., 2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009; Thirion et 

al., 2006), and reveal not only what stimulus state is represented in the brain but also how 

the stimulus is represented. Kay and colleagues (2008) use a Gabor Wavelet Pyramid 

(GWP) as a biologically inspired encoding model for the early visual system. The model 

uses a training set of known natural images to determine the properties on the GWP. They 

identify presented images outside this training set using brain activation patterns measured 

with fMRI, and the properties of the GWP. The model predicts brain activity based on the 

inherent features of the stimulus. Since the model simulates the computations of the brain, 

it can make predictions for new stimuli. It can therefore identify new images that the 

model was not explicitly trained on. The downside of the GWP is that it uses many free 

parameters to capture the neural responses (2370), and requires long fMRI scan times (five 

hours per subject) for training.   
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Here we ask whether image identification is also possible using a basic biologically inspired 

encoding model that is already used in many conventional vision studies, i.e. the pRF 

model (Dumoulin & Wandell, 2008). The rationale of this study is two-fold. First, the study 

is a validation of the pRF-model on natural images. Using the pRF-model we can make a 

prediction of the measured brain activity to any image based on the contrast information 

of that image. Here we demonstrate that the representation of the image by the pRF-

model corresponds to the actual representation based upon the measured brain activity in 

response to natural images. Second, this study allows a deeper insight into visual 

processing mechanisms operating on natural images. For example, we can evaluate if there 

are image features beyond contrast that are not included in the pRF-model but affect 

responses of visual cortex. So, where on the one hand this study shows us how contrast 

information is represented in V1, it also provides us information about the deviation of the 

representation in V1 from this contrast information.  

  

The model was trained on responses to standard visual field mapping stimuli, which can 

be measured within half an hour of scanning and are already used in many conventional 

vision studies. We used these responses to estimate the pRF-properties of each cortical 

location (Dumoulin & Wandell, 2008). Next, we measured fMRI responses elicited by both 

synthetic stimuli and natural images. Synthetic images are widely used because they are 

more easily controlled. However, responses to synthetic images may not extrapolate to 

natural images (Carandini et al., 2005; David, Vinje, & Gallant, 2004; Kayser, Kording, & 

Konig, 2004; Li, VanRullen, Koch, & Perona, 2002). Therefore, by using both synthetic 

and natural images, we aim to bridge the gap between experimental settings and real-life 

situations. We identified the presented image based on the similarity of the measured 

fMRI signals to the predictions of the pRF-model. Using the voxels of visual field map V1, 

image identification from large image datasets (1000 synthetic stimuli or 200 natural 

images) is far above chance, both for the synthetic and natural images. As such, we show 

that it is possible to identify natural images using a pRF-model with minimal parameters.  
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Methods 

 

Subjects 

 

Two subjects (one female; ages 28-38 years) participated in this study. All subjects had 

normal or corrected-to-normal visual acuity. All studies were performed with the informed 

written consent of the subjects and were approved by the Human Ethics Committee of 

University Medical Center Utrecht. 

 

Stimulus presentation 

 

The visual stimuli were generated in Matlab using the PsychToolbox (Brainard, 1997; 

Pelli, 1997) on a Macintosh Macbook Pro.  The stimuli were back-projected on a display 

inside the MRI bore. The subject viewed the display through mirrors inside the scanner. 

The size of the display was 15.0x7.9 cm with a resolution of 1024x538 pixels. The total 

distance from the subject’s eyes to the display was 41 cm. The stimuli were constrained to 

a circular area with the size of the vertical dimension of the screen. The area outside this 

circle was remained at a constant mean luminance. This gave the stimulus a radius of 5.5° 

visual angle from the subject’s point of view. 

 

Stimuli used to estimate pRF properties  

 

The pRF properties were estimated using conventional contrast-defined moving-bar 

apertures (Figure 1) (Dumoulin & Wandell, 2008). The width of the bar subtended 1/4th of 

the stimulus radius (1.375°). Four bar orientations (0°, 45°, 90° and 135°) and two 

different step directions for each bar were used, giving a total of 8 different bar 

configurations within a given scan. The bar stepped across the stimulus aperture in 20 

steps (each 0.55° and 1.5 seconds) with each pass taking 30 seconds. A period of 30 

seconds mean-luminance (0% contrast) was presented after every horizontally or vertically 

oriented pass. In total there were 4 blocks of mean-luminance during each scan, presented 

at evenly spaced intervals.   
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We used two different sets carrier-images within the moving bar apertures. The bar 

apertures used to train the pRF-model to identify the synthetic images were filled with a 

binarized bandpass filtered noise pattern (fundamental frequency is 1.5 cycles/deg). This 

pattern was presented with three different alternating high-contrast patterns, to obtain a 

full high-contrast response that is not based upon one specific high-contrast pattern. The 

bar apertures used to train the pRF-model to identify the natural images contain natural 

image content (Figure 1). Each bar aperture was presented for one TR (1.5s). For each bar 

aperture three different natural image carriers were used. The natural image content was 

replaced every 500ms. The image was shown for 300ms with a 200ms mean-luminance 

gap.  

The natural image content for the bars came from images of the 'Berkeley 

Segmentation Dataset and Benchmark' database (Martin, Fowlkes, Tal, & Malik, 2001). 

The synthetic and natural images used in these bars did not include those used in the 

image identification test sets. 

The subjects performed a fixation dot task to make sure they fixated at the center 

of the display. A small fixation dot (0.11° radius) was presented in the middle of the 

stimulus. The fixation dot changed its color from red to green at random time intervals 

and subjects were instructed to respond at this change of color using an air pressure button 

(average performance of 93.3%). 

 

 

Figure 1 Examples of the pRF mapping stimuli used to estimate the pRF properties with 

a binarized bandpass filtered noise pattern (A) and natural image content (B). 
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Stimuli used for image identification 

 

For the image identification process we used two different sets of images. We used both 

synthetic images and natural images. The synthetic images were scanned for one subject 

only, as a proof of concept for the image identification process. The images were presented 

in a block design. Each image was presented during a 9-second block. Within this block 

the same image was shown 18 times for a duration of 300ms followed by 200ms mean-

luminance. The block where the image was presented was followed by a 12 second mean-

luminance presentation. The synthetic images were presented with 3 alternating different 

high-contrast patterns, to obtain a full high-contrast response that is not based upon one 

specific high-contrast pattern. A fixation dot was presented at the center of the stimulus in 

both stimulus sets. The same fixation dot task as in the scans of the mapping stimuli was 

used (average performance of 91.5%).   

 

Synthetic images 

The synthetic images were semi-randomly generated patterns consisting of a hexagonal 

grid partially filled with binarized bandpass-filtered noise. The grid contains 60 small 

hexagons (cells), of which a random selection were filled with binarized bandpass filtered 

noise, and the rest filled with mean-luminance gray. This random selection gives 2^60 (>> 

trillion) possible images. We used 3 sets of these images in different scanning runs, with 

each set containing 15 different synthetic images (45 in total) and one full-field binarized 

bandpass-filtered noise stimulus. Figure 2B-C shows an example of the synthetic images 

used in the experiment. We used 5 non-random patterns (Figure 2B) and 40 random 

patterns (Figure 2C), they were combined in the image identification process.   

 

Natural images  

The natural images for the image identification process came from the 'Berkeley 

Segmentation Dataset and Benchmark' database (Martin et al., 2001). The original 

resolution of the images was 321x481 pixels (both landscape and portrait). We selected a 
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squared part of 321x321 pixels from the images and upsampled this to a resolution of 

538x538 pixels, which corresponds to a stimulus of 11x11° diameter of visual angle. The 

images were masked by a circle with a raised cosine faded edge (width of 0.9°), and the 

areas outside this circle were set to mean luminance. The images were gamma-linearized 

and the mean contrast was set to 50%. We used 3 image sets in different scanning runs, 

each containing 15 different natural images (45 in total) and one full-field binarized 

bandpass-filtered noise stimulus. Figure 2D shows an example of the natural images.  

 

 

 

 

Figure 2 Image identification stimuli. (A) The synthetic stimuli were made using a grid of 

60 hexagons (cells) that could be filled with either binarized bandpass-filtered noise or 

mean-luminance gray. Examples of the stimuli used in the experiment; (B) a non-random 

synthetic stimulus, (C) random synthetic stimuli and (D) natural images.  

 

 

Functional imaging and processing  

 

The MRI data was acquired with a Philips 7T scanner using a 32-channel head-coil. We 

scanned the participants with a 2d-echo-planar-imaging sequence with 26 slices oriented 

perpendicular to the Calcarine sulcus with no gap. The following parameters were used; 

repetition time (TR) = 1500 ms, echo time (TE) = 25 ms and a flip angle of 80°. The functional 
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resolution was 2x2x2 mm and the field of view (FOV) was 190x190x52 mm.  

We used foam padding to minimize head movement. The functional images were 

corrected for head movement between and within the scans (Nestares & Heeger, 2000). 

For computation of the head movement between scans, the first functional volumes for 

each scan were aligned. Within scan motion correction was then computed by aligning the 

frames of a scan to the first frame. 

The duration of the pRF mapping scans was 372 seconds (248 time-frames), of 

which the first 12 seconds (8 time-frames) were discarded due to start-up magnetization 

transients. During the three sessions for the synthetic images we acquired 10 pRF mapping 

scans in total. For the natural image sessions we scanned 2 subjects and acquired during 

the three scanning sessions 6 or 7 pRF mapping scans in total per subject. To obtain a 

high signal-to-noise ratio, we averaged the repeated scans. The duration of the image 

identification scan (both synthetic and natural) was 432 seconds (288 time-frames). The 

first 12 seconds (8 time-frames) were discarded due to start-up magnetization transients.  

During the three sessions for the synthetic images we acquired three scans for each 

of the three different image sets. During the three sessions for the natural images we 

acquired two scans each for the three natural image sets.  

 

Anatomical imaging and processing 

 

The T1-weighted MRI images were acquired in a separate session using an 8-channel 

SENSE head-coil. The following parameters were used: TR/TE/flip angle = 

9.88/4.59/8. The scans were acquired at a resolution of 0.79x0.80x0.80 mm and were 

resampled to a resolution of 1mm3 isotropic. The functional MRI scans were aligned with 

the anatomical MRI using an automatic alignment technique (Nestares & Heeger, 2000). 

From the anatomical MRI, white matter was automatically segmented using the FMRIB's 

Software Library (FSL) (S. M. Smith et al., 2004). After the automatic segmentation it was 

hand-edited to minimize segmentation errors (Yushkevich et al., 2006). The gray matter 

was grown from the white matter to form a 4 mm layer surrounding the white matter. A 

smoothed 3D cortical surface can be rendered by reconstruction of the cortical surface at 

the border of the white and gray matter (Wandell, Chial, & Backus, 2000). 
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pRF model-based analysis 

 

The first step for image identification is the estimation of the pRF-model from the 

measured fMRI signal that was elicited by the pRF mapping bar stimuli (Figure 3A). The 

model estimates a pRF for every cortical location using a method previously described 

(Dumoulin & Wandell, 2008). For technical and implementation details see (Dumoulin & 

Wandell, 2008) but in short, the method estimates the pRF by combining the measured 

fMRI time-series with the position time course of the visual stimulus. A prediction of the 

time-series is made by calculating the overlap of the pRF and the stimulus energy for each 

time frame convolved with the haemodynamic response function (HRF). We estimated the 

parameters of the HRF that best describes the data of the whole acquired fMRI volume 

(Harvey & Dumoulin, 2011). The optimal parameters of the pRF-model are chosen by 

minimizing the residual sum of squares between the predicted and the measured time-

series. We used the simplest pRF-model which consists of a circular symmetric Gaussian.  

This model has four parameters: position (x0,y0), size (σ1), and amplitude (β1).  

 

Using the pRF-method, we estimated position parameters x0, and y0 of the pRF per voxel. 

From these values, the polar angle (atan(y0/ x0)) and eccentricity (√(x02 + y02)) values can 

be calculated. We drew the borders of the visual areas on the basis of their location in the 

visual field (DeYoe et al., 1996; Engel, Glover, & Wandell, 1997; Sereno et al., 1995; 

Wandell, Dumoulin, & Brewer, 2007) by rendering these polar angle and eccentricity 

maps onto the inflated cortical surface (Wandell et al., 2000). We defined visual area V1, 

V2 and V3 as our region of interest (ROI).  

 

Image identification 

 

Analysis of signal responses elicited by viewing synthetic and natural images 

We measured fMRI responses to 45 synthetic images and to 45 natural images. We first 

determined the distribution of the responses at each recording site (voxel) elicited by each 

of these images. To estimate the responses we used standard GLM-analysis (Friston et al., 

1998; Friston et al., 1995). Briefly, we fitted a block-design to the stimulus presentation 
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convolved with the HRF. We summarized every voxel’s response by its t-value, which 

reflects the goodness of fit between the predicted time series and the measured data for 

each cortical location for that image. For image identification, we only used voxels with 

positive t-values, pRF eccentricity values from 0.5-4.5° and pRF variance explained above 

55%.  

 

Prediction response profiles for synthetic and natural images using the pRF model 

In the identification process, we had a large candidate set of images from which to choose 

the image that was presented. To do this, we compared the measured response profiles 

against the response profiles predicted by the pRF-model. We determined these predicted 

response profiles from the pRF-model as follows (Figure 3B).  

We converted the synthetic images to binary images where cells filled with 

bandpass-filtered noise were set to a binary value of 1 and cells filled with mean-luminance 

gray were set to 0. The prediction response profile is calculated by the summed overlap of 

the stimulus with the pRF of each cortical location and is normalized by the total volume 

of the pRF: 

 

voxelprediction_ to_ synthetic_ image =
wi !Sii=1

N"
wii=1

M"
               (1) 

 

Where N is the number of pixels in the spatial window of the pRF and M is the total 

number of pixels in the stimulus area. S is the binary stimulus, where Si is the binary value 

of whether the pixel of the stimulus was on (1) or off (0). The pRF weighting function is 

defined by wi:  

 

       
          

(2) 

 

 

Where xc and yc define the location of the center of the pRF in the visual field, σ is the size 

wi = exp!
(xi ! xc )

2 + (yi ! yc )
2

2(! )2
"
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of the pRF and xi and yi define the location of the ith pixel.  

 

For the natural image we followed a slightly different approach as the stimulus cannot be 

binarized in the same way as the synthetic images. We predicted each voxel’s response to 

each candidate natural image by calculating the Root-Mean-Squared (RMS) contrast (Bex 

& Makous, 2002; Pelli, 1997) weighted by the corresponding pRF. RMS contrast is 

defined as the standard deviation of the luminance intensities relative to the mean. The 

RMS-contrast is weighted by the pRF-function to obtain the local contrast-energy value 

per pixel:  

 

                (3) 

 

Where N is the number of pixels in the spatial window of the pRF. L is the mean 

luminance from the pixels inside the spatial window, and Li is the luminance of the ith 

pixel.  

The predicted response profile for each candidate image consisted of the predicted 

response amplitudes of all voxels within a given visual area. These response amplitudes are 

not further convolved with the HRF, as this would yield a linear amplitude transformation 

that leaves relative response amplitudes within the overall response profile intact. 

 

Correlating predicted with measured responses profiles 

To identify the image that was shown to the subject we compared the measured response 

profiles elicited by the presented image (Imi) to the predicted response profiles for each 

candidate image {Im1, Im2, Im3,..., Imn}. The presented image was identified by choosing 

the candidate image that gives the highest correlation (Pearson’s r) between its predicted 

and the measured response profile (Figure 3C).  

We calculated the percentage of correct image identifications within each set of 15 

images. We also increased the set size of candidate images by including images that we 

never showed. We increased the set of candidate images to 1000 for synthetic images, and 

local _ contrast _ energy = 1
wii=1

N!
wi

Li " L( )2
L2i=1

N

!
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to 200 for natural images. This makes correct image identification by chance less likely. 

We bootstrapped this analysis for each set size, by making 1000 different combinations of 

different candidate images. From resulting proportions of correct image identifications 

among these candidate image sets, we computed the mean image identification 

performance and the 95% confidence interval of this mean.  
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Figure 3 Schematic diagram of the image identification pipeline. A: First, we estimated 

the parameters of the pRF for every voxel based on the pRF bar stimuli. The pRF is 

modeled as a circular symmetric Gaussian function of which we use the parameters for 

position and size. B: Second, we predicted the response profiles for a large set of candidate 

images by either summing the overlap of the stimulus with each voxel’s pRF (for the 

synthetic images), or by calculating the RMS-contrast inside each voxel’s pRF (for the 

natural images). C: Finally, we predicted which candidate image elicited a measured 

response profile by finding which candidate image’s predicted response profile was most 

strongly correlated to this measured response profile (i.e. which had the highest Pearson’s 

r). 

 

 

Results 

 

Successful image identification for the synthetic images 

 

To demonstrate that images could be identified using pRF-models, we first performed a 

proof of concept experiment using synthetic, high contrast images in a single subject. We 

identified the synthetic images using the pRF-model that summarized responses to bar 

apertures that revealed binarized bandpass filtered noise (Figure 1A). We used this model 

to predict the response profiles for a set of possible candidate images. We then generated a 

correlation matrix by correlating the predicted response profiles for every image to the 

measured response profiles. Figure 4 shows the correlation matrix for the voxels of primary 

visual cortex (V1) for one of the stimulus sets. The y-axis gives the correlation values of the 

stimulus set’s measured response profiles to the predicted response profiles (on the x-axis). 

The black outlines show the candidate image whose predicted response profile was most 

highly correlated to the measured response profile, which we predicted was the presented 

image. The prediction accuracy for this subject was 93.3% (14 out of 15). 

The correlation matrix shows the prediction accuracy using only the predicted 

response profiles for images within the presented set, giving the image identification 

performance a chance level of 1/15 images (chance level = 6.7%). Using the pRF-model, 
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we can make predicted response profiles for any image, including those that were never 

presented. This makes correct image identification less likely, and more accurately 

quantifies the likelihood of identifying the correct image by chance. Figure 5A shows the 

performance when we make predicted response profiles for up to 1000 different randomly 

generated synthetic stimuli. This reduces the chance level to 1/1000 (chance level = 

0.1%). Nevertheless, the correct image was still identified correctly from 1000 candidate 

images for 89.0% of the presented images for visual area V1. The performance drops for 

later visual areas V2 (~56%) and V3 (~18%), but still remains high above chance. The 

thickness of the line includes the 95% confidence intervals, determined by bootstrapping 

the mean. 

 

 

 

 

Figure 4 The correlation matrix shows the prediction accuracy using the voxels of V1 

from the image identification process for an example set of the synthetic images. The 

colors represent the correlation (Pearson’s r) of the measured response profiles from all the 

images with their predicted response profile (from the pRF-model). For this image set, 14 

out of 15 images were identified correctly, giving a prediction accuracy of 93.3%.   
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Successful image identification for natural images 

 

Next, we extended this approach to natural images. To predict response profiles for the 

natural images, we used the pRF-model that summarized responses to bar apertures 

containing natural image content (Figure 1B). The natural image content in these bars was 

independent from the natural images used for the image identification process. We 

scanned 45 different natural images for two subjects. For the 45 images the performance is 

33% (15 out of 45 images) both for subject 1 and 2, the performance for a random 

selection of 45 images is ±38%. Both are very different from chance (2.2%). We choose to 

show the correlation with a larger set-size because idiosyncrasies of the chosen set size of 

45 images are removed and results are more generalizable.  

 

Figure 5B shows the identification performance for the natural images for both subjects 

(closed and dashed colored lines) as a function of candidate image set size, up to 200 

candidate natural images. The thickness of the lines includes the 95% confidence intervals, 

determined by bootstrapping the mean. In each subject, image identification performance 

was far above chance, with approximately 29% correct image identification performance 

with 200 candidate images (chance level = 0.5%). The identification performance for 

visual areas V2 (~14%) and V3 (~12%) is lower compared to V1, but remains far above 

chance.   

 

Besides the pRF-model that was estimated using bars with natural image content, we also 

used a pRF-model that was estimated on the standard pRF mapping stimulus consisting of 

contrast-defined bar apertures containing moving checkerboards (Figure 5C) (Dumoulin & 

Wandell, 2008). The latter stimulus is widely used to model pRF properties (Anderson et 

al., 2017; Baseler et al., 2011; Brewer & Barton, 2014; DeSimone, Viviano, & Schneider, 

2015a, 2015b; Dumoulin & Wandell, 2008; He, Mo, Wang, & Fang, 2015; Hoffmann et 

al., 2012; Hummer et al., 2016; Kok, Bains, van Mourik, Norris, & de Lange, 2016; 

Papanikolaou et al., 2014a, 2014b; Schwarzkopf, Anderson, de Haas, White, & Rees, 

2014a, 2014b; Thomas et al., 2015; Winawer, Horiguchi, Sayres, Amano, & Wandell, 

2010; Zuiderbaan, Harvey, & Dumoulin, 2012). In addition, the pRF estimates were 

acquired on different days as the natural image data-set, as many researchers already have 
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such pRF models. In these circumstances, we still find that it is possible to identify natural 

images above chance level (~15%).   

 

  

 

 

Figure 5 Image identification performance both for synthetic (A) and natural image 

stimuli (B, C). The pRFs were estimated in a separate scan where the bars were filled with 

synthetic (A, C) and natural (B) stimuli either in the same session (A,B) or in different 

sessions on different days (C). The blue, red and green lines show the performance for 

visual field maps V1, V2 and V3 respectively, for 2 subjects (closed and dashed colored 

lines). The thickness of the lines includes the 95% confidence intervals. For the synthetic 

image stimuli we increased the set size up to 1000 different images, for the natural images 

we increased the set size up to 200 different images. The black dashed line indicates the 

chance level. The high-contrast synthetic images were most accurately identified (A), and 

the natural images were also identified far above chance for all candidate image set sizes 

(B). Furthermore, the identification of the natural images is also possible with the pRF-

model that was estimated using standard bar stimuli containing moving checkerboards, 

and estimated from a separate scanning session on a separate day (C).  

 

Image identification accuracy depends on image content 

 

We examined image identification accuracy for individual natural images. This reveals 

which images are most and least accurately identified. Figure 6 shows identification 

confidence for each image, based upon the mean difference of the correlation score of the 

presented image and all other candidate images.  
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confidence_ scorei =
! corr(im , jp )! corr(im ,ip )j=1

N"
N

               (4) 

 

Where i is the image to calculate the score for, corr(im,jp) is the correlation score (pearson’s 

r) of the measured (m) response profile of the ith image and the predicted (p) response 

profile of the jth image. corr(im,ip) is the correlation score of the measured and predicted 

response profiles of the presented image and N are the number of images in the set. The 

confidence score represents how hard it is to distinguish the presented image from other 

candidate images. A high difference in correlation scores will give a high confidence score. 

Here we see that for both subjects the same images are harder to identify than other 

images. We find a significant correlation (Pearson’s r) of r(43)=0.58, p<<0.001. 

Images could be harder to identify because they are more similar to other images 

or the visual representation deviates more from their contrast-energy content. To 

distinguish these possibilities, we checked the images for image similarity in contrast-

energy using the predicted response profiles of the pRF-model. We found a significant 

effect for similarity in contrast between the images and how well we were able to predict 

the presented image. Thus images that were more similar in contrast-energy information 

as the other images in the candidate set of images to choose from were harder to identify. 

Nevertheless, after removing the relation with contrast (using GLM-analysis), we still found 

the effect across subjects that the same images were harder to identify than other images (r 

= 0.53 p << 0.001). This suggests that image performance for certain images is 

deteriorated because both (i) certain images are more in terms of contrast information and 

(ii) the measured responses of certain images hold information about image features that 

are not captured by the pRF-model. 
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Figure 6 The identification confidence per natural image for our two subjects. Every dot 

represents an individual image. We see similar confidence of the individual natural images 

across the two subjects. Some images are identified less accurately using the pRF-model 

than others. This is explained by two factors: (i) certain images are more similar in terms of 

their contrast-energy content and (ii) responses to these images depend more on features 

that are not captured by the contrast-energy pRF-model predictions.  

 

 

Discussion 

 

We describe an effective method to identify presented natural images from the fMRI 

responses of V1 voxels using pRF-models. We used this method to identify both synthetic 

and natural images with accuracy far above chance. The synthetic images were easier to 

identify than the natural images, suggesting that image identification performance is 

affected by the spatial distribution of contrast within the identified images. The pRF model 

we employed had minimal parameters (3) and was estimated with very different stimuli. 

Even when using a pRF-model derived from a different scanning session and using the 

standard moving checkerboard stimuli, it is possible to identify natural images. This allows 

the image identification method to be more broadly applied. 
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We believe that this method is generally applicable despite our small sample size. First, 

previous papers have demonstrated image identification using similar approaches tested 

over small sample sizes. For example Kay et al. also use 2 subjects ((Kay et al., 2008; 

Thirion et al., 2006). Second, we have shown successful image identification in each 

subject with very high statistical confidence. Data from further subjects may show better or 

worse on image identification performance, but we believe this will reflect differences in 

data acquisition quality rather than reflecting any methodological limitation. Third, while 

conventional fMRI studies average data across large subject numbers, most collect less 

data from each subject. Our approach is to collect a large dataset for a small number of 

subjects and to analyze our data per subject in a voxel-wise modeling approach. The 

advantage of this approach is that detailed spatial information and individual variability is 

retained. This information is lost in the conventional fMRI studies by averaging of the 

data across subjects. 

  

Image identification was possible for both the synthetic and natural images. In both cases, 

identification accuracy was far above the chance level. However, the identification 

accuracy was higher for synthetic than natural images. There are several possible reasons 

for these differences. The synthetic images were simple binary patterns of high contrast, 

designed to elicit a strong fMRI responses. Natural images have a broader spectrum of 

lower contrasts, and so elicit lower amplitude fMRI responses, with a lower signal to noise 

ratio (t-test on %BOLD signal change of the natural vs. synthetic images: t(85379) = 

26.73, p<<0.01).  

  

Furthermore, pRF-models as employed here only represents contrast energy. Early visual 

cortex is known to respond very strongly to differences in contrast (Boynton, Demb, 

Glover, & Heeger, 1999; De Valois & De Valois, 1988; Dumoulin, Dakin, & Hess, 2008; 

Mante & Carandini, 2005; Olman, Ugurbil, Schrater, & Kersten, 2004). The synthetic 

images are dominated by their contrast content, so responses to synthetic images are better 

captured by the pRF model than responses to natural images. While the synthetic images 

contained all orientations and spatial frequencies within any local area, natural images had 

highly variable spatial distributions of both orientation and spatial frequency. Orientation 
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content is known to affect the responses of each voxel (Freeman, Brouwer, Heeger, & 

Merriam, 2011; Haynes & Rees, 2005; Kamitani & Tong, 2005; Kay et al., 2008), and 

spatial frequency content is also likely to affect voxel responses (Henriksson, Nurminen, 

Hyvarinen, & Vanni, 2008; Kay et al., 2008; Olman et al., 2004; Singh, Smith, & 

Greenlee, 2000). Our pRF models do not account for these factors. Furthermore, 

responses to natural images are also likely to be affected by high-level image features and 

global image context (Petro, Vizioli, & Muckli, 2014), which are also not captured by the 

pRF-model.  

  

Also, where image identification was possible using the voxels of visual areas V1, V2 and 

V3, we see that the accuracy drops for the later visual areas V2 and V3. The reason for 

this drop in accuracy can have several reasons. First, pRF sizes get bigger in higher visual 

areas (Dumoulin & Wandell, 2008; A. T. Smith, Singh, Williams, & Greenlee, 2001). This 

increase in receptive field sizes might decrease the resolution necessary for image 

identification. Second, the visual field maps get smaller for later visual areas (Dougherty et 

al., 2003), giving less measurement sites to perform the analysis. Third, the pRF-model 

only captures the contrast energy. As described above, other features of the images can be 

captured in the measured responses that are not represented by the responses predicted 

using the pRF-model. This effect can be bigger for later visual areas that are proposed to 

respond to more complex features (Felleman & Van Essen, 1991; Hubel, 1982).  

 

Figure 6 shows the identification confidence of the individual natural images for both 

subjects for visual area V1. We see that some images are identified with less confidence 

than others and that these images are similar across subjects. We propose that this is due to 

two reasons. First, images that are more similar in terms of their content in contrast-energy 

are harder to distinguish. Second, responses to images that are harder to identify depend 

more on image content that is not captured by the pRF model, as discussed above. 

Differences in identification confidence can also indicate differences in the perception of 

images across subjects. This method can potentially be used to investigate these 

differences.  
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The pRF model we employ represents the most basic encoding model. Encoding models 

give information about how the information is represented in the voxels (Brouwer & 

Heeger, 2009; Dumoulin & Wandell, 2008; Kay et al., 2008; Kok & de Lange, 2014; 

Kriegeskorte, 2015; Mitchell et al., 2008; Naselaris et al., 2009; Thirion et al., 2006). 

These models use biologically inspired computations that make a translation between the 

stimulus and the response. The pRF model uses two parameters for visual field position (x 

and y) and a third for pRF size. PRF position and size are inherently necessary here, since 

we calculate the contrast within a specified area of the image to predict the response of 

each recording site. This area must have a size because a single image location (pixel) has 

no contrast. Since encoding models predict the activation pattern in response to a certain 

stimulus, these models can be inverted to decode and hence can be used for the purpose of 

image identification.  

 

Alternatively, decoding methods define a categorical relationship between the activation 

patterns and the stimulus, and can be used to indicate whether a voxel contains 

information about a certain property of a (visually) presented stimulus (Cox & Savoy, 

2003; Haxby et al., 2001; Haynes & Rees, 2005; Kamitani & Tong, 2005; Mitchell et al., 

2004; Tong & Pratte, 2012). However, since they do not give a further description of how 

this information is represented in the voxels, these models are only able to make a 

prediction about the predefined categories that the model was explicitly trained on. It is 

not possible to make a prediction about any other property of the stimulus. This makes 

these models unsuitable for image identification, where every possible image should be 

able to be identified.  

  

Last, both decoding and encoding models can reconstruct the image from the fMRI signal. 

The goal of image reconstruction is to reproduce the presented image. Reconstructions 

have been made for simple high contrast patterns (Miyawaki et al., 2008; Thirion et al., 

2006), imagined (Thirion et al., 2006) and illusory contours (Kok & de Lange, 2014), 

dreams (Horikawa, Tamaki, Miyawaki, & Kamitani, 2013) as well as natural images 

(Naselaris et al., 2009). The studies of Thirion et al., 2006 and Miyawaki et al., 2008 also 

used the reconstructions to perform synthetic image identification by comparing the 
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reconstructed image with a set of candidate images. The study of Naselaris et al., 2009 

used their image reconstructions to select images that were most similar to the presented 

image in terms of image structure and semantic content. 

In the study of Kay et al., 2008, they use an encoding model of the visual system to 

identify natural images. They model the internal representation of the visual cortex using a 

Gabor-Wavelet-Pyramid (GWP). The GWP has parameters for position, orientation and 

spatial frequency. The Gabor filters of the model are applied to an image, and the 

combined outputs of the filters make the response prediction for that image. The main 

advantage of this approach (and for the pRF-model) is that it can predict the activation 

pattern for any image.  

Using the GWP for image identification instead of the pRF-model leads to a better 

identification performance (Kay et al., 2008). Several differences between these studies 

may account for performance differences. First, Kay et al presented images for 1 second at 

a time, while we presented the images for 9 seconds. Longer presentations might lead 

responses to reflect more influences from higher-level image representations, which neither 

model represent. Second, Kay et al. used larger images (20x20° of visual angle) than we 

did (11x11°). Larger images would cause responses in a larger extend of visual cortex, 

which provides more data for identification. Third, the models differed greatly in their 

complexity. Where the standard pRF model uses only 3 free parameters to capture each 

recording site’s response, the GWP uses up to 2,370. Kay et al. also included a retinotopic-

only (RO)-model for image identification. In this model they removed the parameters for 

orientation and spatial frequency. Therefore, this model has fewer parameters compared 

to the original GWP. This model is conceptually similar to the pRF-model we use, but 

there are important differences. First, our pRF-model describes the pRF using one single 

circular Gaussian, while the RO-model is free in the shape of the responsive area. Second, 

the RO-model therefore has more free parameters than our pRF model. More parameters 

in the model will allow more accurate representation of voxels responses, but the drawback 

of using a model with a large amount of free parameters is that a large dataset has to be 

used to train the model. The estimation process of the model uses the fMRI data elicited 

by the example images of the training set. This means that for using models with more free 

parameters, more scanning time is needed as well. The GWP was estimated using a set of 
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1,750 different natural images. To obtain the data for estimating the GWP takes about 5 

hours. To compare this with the pRF-model, this was estimated using standard mapping 

stimuli with 81 differential images, which only take about half an hour of scanning. 

 

Conclusion 

 

The pRF-method is a fast and simple biologically inspired model. We show that, even 

when training it on conventional pRF mapping stimuli, it can be used for the identification 

of visual images, including natural images. The advantage of using the pRF-method for 

image identification is that the model has a minimal amount of free parameters. Collecting 

the fMRI data for the estimation of the pRF-model can be done within half an hour of 

scanning using standard mapping stimuli. This makes the pRF-model a convenient 

method to be used for the identification of untrained images, including natural images. 
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Enhanced responses in early visual cortex to subjectively 

important aspects of natural scenes 
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Abstract 

 

Our visual percept is not solely based on the sensory information that we receive from the 

light falling on our retina, but is also influenced by our knowledge of the world. The 

interaction between sensory information and our world knowledge is the basis of 

perception, yet there is no consensus about how this interaction influences the neural 

signal in early visual areas. Current theories implement this knowledge of the world as a 

perceptual hypothesis that is compared with the sensory input. According to different 

inference theories, the perceptual hypothesis can either be suppressing or boosting the 

sensory information represented by early visual areas. In our study we investigated the 

effect that the knowledge-based perceptual hypothesis has on the neural signal in early 

visual cortex and how this interacts with the responses to the sensory-driven image feature 

contrast. 

We used 7T MRI to measure responses to different type of stimuli. First, we 

measured the responses elicited by conventional pRF mapping stimuli. From the responses 

to the pRF mapping stimuli we estimated the pRF-properties in the early visual areas. The 

pRF-model estimates for every cortical location the region of the visual field it responds to. 

Second, we measured the responses elicited by natural images. We used the pRFs to 

quantify both the amount of RMS-contrast (sensory-driven) and the amount of subjective 

importance (knowledge-based) in the pRF. Based on the inherent variations of contrast in 

the natural images we show that we can derive the contrast response function (CRF). 

Furthermore, we show how the CRF is modulated by the perceptual hypothesis as we 

defined it by subjective importance. We see that the CRF was boosted in visual areas V1-

V2-V3 when the responses were elicited by parts of the image of high subjective 

importance. Thus, the sensory-driven image representation of a scene in early visual areas 

is boosted by the knowledge-based perceptual hypothesis.  
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Introduction 

 

Our visual percept comes from the inference that the visual system makes from the sensory 

information it gets of the retina. The visual system infers the percept of our visual 

environment based on the sensory information and our knowledge of the world. Different 

computational and statistical theories link the percept to the neural representation. These 

theories propose that higher-order areas modulate the responses of early visual areas 

according to the perceptual hypothesis. This modulation is achieved through feedback 

from the higher-order areas to earlier visual areas. The difference of the theories lies in the 

effect that the feedback has on the neural representation of the earlier visual areas; it can 

be either suppressive or boosting. 

 

Figure 1 illustrates two different theories. The predictive coding theory states that the 

feedback of higher-order areas subtracts the perceptual hypothesis from the neural 

representation of earlier visual areas (K. Friston, 2002; Mumford, 1992; Rao & Ballard, 

1999). This causes the earlier visual areas to signal only the unpredicted signals; the 

residuals. In this case, the perceptual hypothesis has a suppressive effect on the neural 

representation of early visual areas (Fig 1A). On the other hand, the efficient coding theory 

(Barlow, 2001; K. Friston, 2002; Rao, 2005; Series, Lorenceau, & Fregnac, 2003; 

Simoncelli & Olshausen, 2001) proposes that higher-level areas will not subtract, but 

instead will increase the responses according to the perceptual hypothesis of the scene (Fig 

1B). Opposite effects on the neural representation in early visual areas have been found for 

the predictability and task-relevance of a stimulus (for a review, see: (Rauss, Schwartz, & 

Pourtois, 2011). In short, there is no decisive answer to how the neural representation is 

influenced by the perceptual hypothesis and how this interacts with the responses to 

sensory-driven information. Furthermore, these effects are typically measured using 

synthetic images that are systematically manipulated. Ultimately, these measures are 

assumed to extrapolate to natural images. 

 

In this study we investigated how the sensory-driven and knowledge-based information 

influence the neural representation in visual cortex using natural images. We measured the 
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responses using 7T fMRI to different sets of stimuli: standard mapping stimuli, 45 natural 

images and a full-field stimulus (100% contrast). The mapping stimuli were used to 

estimate for every cortical location the region of visual space it responds to: the population 

receptive field (Dumoulin & Wandell, 2008). For every cortical location we estimated the 

properties of its pRF (location and size). The pRF-model gives us the opportunity to select 

voxels that respond to certain parts of the image. Therefore, we can make use of the 

inherent variations of the sensory-driven and knowledge-based information of the natural 

images to investigate how both aspects influence the neural response.   

 

First, we show how the neural responses are modulated by the sensory-driven image 

feature contrast. Neural responses in early visual cortex are known to be strongly 

modulated by contrast (Boynton, Demb, Glover, & Heeger, 1999; De Valois & De Valois, 

1988; Dumoulin, Dakin, & Hess, 2008; Mante & Carandini, 2005; Olman, Ugurbil, 

Schrater, & Kersten, 2004). These neural responses do not sum linearly to an increase in 

contrast, but saturate at levels of high contrast (Albrecht & Hamilton, 1982). Here, we 

used the inherent variation in contrast of natural images to derive the contrast response 

function (CRF) from the measured fMRI responses to natural images. Second, we 

investigated the role of the perceptual hypothesis on the sensory-driven representation of 

the early visual areas. We used images from the Berkeley Segmentation Dataset and 

Benchmark database (D. Martin, Fowlkes, Tal, & Malik, 2001). In this dataset, Martin and 

colleagues asked human observers to identify the most important aspects of the image (Fig. 

2C and Supplementary Fig. 1). We used these manually labeled aspects of the scene that 

represent the subjective importance of the parts of the image to define and quantify our 

measure for the perceptual hypothesis in the pRF. 

 

We investigated how the perceptual hypothesis influences the sensory-driven 

representation of the early visual areas. For this, we show how the CRF is modulated by 

the subjective importance. The predictive coding theory would expect to find a suppressed 

CRF (Fig. 1C) for parts of the image of high subjective importance (purple) compared to 

the CRF elicited by parts of the image of low subjective importance (green). On the other 

hand, the efficient coding theory would expect the opposite; a boosted CRF (Fig. 1D) for 
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high subjective importance (purple) compared to the CRF of low subjective importance 

(green). 

 

We see that the CRF is modulated by the amount of subjective importance. The CRFs of 

high subjective importance are boosted with respect to the CRF of low subjective 

importance. This result is in support of the efficient coding theory that states that the 

perceptual hypothesis boosts the sensory-driven image representation in early visual areas. 
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Figure 1 How does the knowledge-based perceptual hypothesis interact with the sensory-

driven image representation in early visual areas? This figure illustrates two different 

theories about inference. The predictive coding theory states that the early visual areas 

signal the residuals; the difference between the sensory-driven image representation and 

the knowledge-based perceptual hypothesis. The perceptual hypothesis has a suppressive 

effect on the sensory-driven image representation (A). On the other hand, the efficient 

coding states that the perceptual hypothesis boosts the sensory-driven representation 

according to the perceptual hypothesis (B). Both theories predict a different effect on the 

contrast response function (CRF). The predictive coding theory predicts a suppressed CRF 

(C) for responses to parts of the image of high subjective importance (purple) compared to 

CRF made from responses to parts of the image of low subjective importance (green). The 

efficient coding theory predicts the opposite. This theory predicts a boosted CRF (D) for 

responses to parts of the image of high subjective importance (purple) compared to CRF 

made from responses to parts of the image of low subjective importance (green). We 

investigated how the neural representation in early visual areas is affected by both the 

sensory-driven and the knowledge based image information. 
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Methods 

 

Subjects 

 

Four subjects (male; ages 29-41 years) participated in this study. All subjects had normal or 

corrected-to-normal visual acuity. All studies were performed with the informed written 

consent of the subjects and were approved by the Human Ethics Committee of University 

Medical Center Utrecht. 

 

Stimulus presentation 

 

The visual stimuli were generated in Matlab using the PsychToolbox (Brainard, 1997; 

Pelli, 1997) on a Macintosh Macbook Pro.  The stimuli were back-projected on a display 

inside the MRI bore. The subject viewed the display through mirrors inside the scanner. 

The size of the display was 15.0x7.9 cm with a resolution of 1024x538 pixels. The total 

distance from the subject’s eyes to the display was 41 cm. The stimuli were constrained to 

a circular area with the size of the vertical dimension of the screen. The area outside this 

circle was maintained at a constant mean luminance. This gave the stimulus a radius of 

5.5° visual angle from the subject’s point of view. 

 

Stimuli 

  

pRF mapping stimulus  

For the pRF mapping stimuli, we used bar apertures to train the pRF-model, these 

apertures were filled with natural image content (Fig. 2A). The natural image content for 

the bars came from images of the 'Berkeley Segmentation Dataset and Benchmark' 

database (D. Martin et al., 2001).  

The width of the bar subtended 1/4th of the stimulus radius (1.375°). Four bar 

orientations (0°, 45°, 90° and 135°) and two different step directions for each bar were 

used, giving a total of 8 different bar configurations within a given scan. The bar stepped 

across the stimulus aperture in 20 steps (each 0.55° and 1.5 seconds) with each pass taking 
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30 seconds. A period of 30 seconds mean-luminance (0% contrast) was presented after 

every horizontally or vertically oriented pass. In total there were 4 blocks of mean-

luminance during each scan, presented at evenly spaced intervals.   

The subjects performed a fixation dot task to make sure they fixated at the center 

of the display. A small fixation dot (0.11° radius) was presented in the middle of the 

stimulus. The fixation dot changed its color from red to green at random time intervals 

and subjects were instructed to respond at this change of color using an air pressure 

button. 

 

Natural images  

The natural images came from the 'Berkeley Segmentation Dataset and Benchmark' 

database (D. Martin et al., 2001). The original resolution of the images was 321x481 pixels 

(both landscape and portrait). We selected a squared part of 321x321 pixels from the 

images and upsampled this to a resolution of 516x516 pixels, which corresponds to a 

stimulus of 11x11° diameter of visual angle. The images were masked by a circle with a 

raised cosine faded edge (width of 0.9°), and the areas outside this circle were set to mean 

luminance. The images were gamma-linearized and the mean contrast was set to 50%. 

We used 3 image sets in different scanning runs, each containing 15 different natural 

images (45 in total) and one full-field binarized bandpass-filtered noise stimulus (Fig. 2B). 

Figure 2C shows an example of the natural images. A fixation dot was presented at the 

center of the stimulus. The same fixation dot task as in the scans of the mapping stimuli 

was used.   
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Figure 2 We used different stimuli in our study. A: The pRF mapping stimulus consists of 

a bar sweeping through the visual field in 8 different moving directions. B: We used the 

response to the full-field stimulus (100% contrast) to normalize the voxel’s responses. C: 

We derived the CRFs from the responses to natural images. D: From the natural images 

we calculated the amount of local contrast. E: We quantified subjective importance by the 

manual labeling of the natural images. The images came from a database (D. Martin et 

al., 2001) in which observers drew lines on the image to highlight the parts of the image 

they considered to be important for the representation of the scene.  

       

Functional imaging and processing  

The MRI data was acquired with a Philips 7T scanner using a 32-channel head-coil. We 

scanned the participants with a 2d-echo-planar-imaging sequence with 25 slices oriented 

perpendicular to the Calcarine sulcus with no gap. The following parameters were used; 
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repetition time (TR) = 1500 ms, echo time (TE) = 25 ms and a flip angle of 80°. The functional 

resolution was 2x2x2 mm and the field of view (FOV) was 190x190x50 mm.  

We used foam padding to minimize head movement. The functional images were 

corrected for head movement between and within the scans (Nestares & Heeger, 2000). 

For computation of the head movement between scans, the first functional volumes for 

each scan were aligned. Within scan motion correction was then computed by aligning the 

frames of a scan to the first frame. 

The duration of the pRF mapping scans was 372 seconds (248 time-frames), of 

which the first 12 seconds (8 time-frames) were discarded due to start-up magnetization 

transients. During the three sessions we acquired 6-8 pRF mapping scans in total per 

subject. To obtain a high signal-to-noise ratio, we averaged the repeated scans. During the 

three sessions for the natural images we acquired 6-7 scans each for the three natural 

image sets.  

The duration of the scans with the natural images was 432 seconds (288 time-

frames). The first 12 seconds (8 time-frames) were discarded due to start-up magnetization 

transients. The images were presented in a block design. Each image was presented during 

a 9-second block. Within this block the same image was shown 18 times for a duration of 

300ms followed by 200ms mean-luminance. The full-field stimuli were presented with 3 

alternating different high-contrast patterns, to obtain a full high-contrast response that is 

not based upon one specific high-contrast pattern. The block in which the stimulus was 

presented was followed by a 12 second mean-luminance presentation. Four longer blank 

periods were inserted during the scan, each of 33 seconds.  

 

Anatomical imaging and processing 

 

The T1-weighted MRI images were acquired in a separate session using an 8-channel 

SENSE head-coil. The following parameters were used: TR/TE/flip angle = 

9.88/4.59/8. The scans were acquired at a resolution of 0.79x0.80x0.80 mm and were 

resampled to a resolution of 1mm3 isotropic. The functional MRI scans were aligned with 

the anatomical MRI using an automatic alignment technique (Nestares & Heeger, 2000). 

From the anatomical MRI, white matter was automatically segmented using the FMRIB's 

Software Library (FSL) (Smith et al., 2004). After the automatic segmentation it was hand-
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edited to minimize segmentation errors (Yushkevich et al., 2006). The gray matter was 

grown from the white matter to form a 4 mm layer surrounding the white matter. A 

smoothed 3D cortical surface can be rendered by reconstruction of the cortical surface at 

the border of the white and gray matter (Wandell, Chial, & Backus, 2000). 

 

pRF model-based analysis 

 

The first step for image identification is the estimation of the pRF-model from the 

measured fMRI signal that was elicited by the pRF mapping bar stimuli (Fig 2A). The 

model estimates a pRF for every cortical location using a method previously described 

(Dumoulin & Wandell, 2008). In short, the method estimates the pRF by combining the 

measured fMRI time-series with the position time course of the visual stimulus. A 

prediction of the time-series is made by calculating the overlap of the pRF and the 

stimulus energy convolved with the haemodynamic response function (HRF). We 

estimated the parameters of the HRF that best describes the data of the whole acquired 

fMRI volume (Harvey & Dumoulin, 2011). The optimal parameters of the pRF-model are 

chosen by minimizing the residual sum of squares between the predicted and the 

measured time-series. We used the simplest pRF-model which consists of a circular 

symmetric Gaussian.  This model has four parameters: position (x0,y0), size (σ1), and 

amplitude (β1). For further technical and implementation details see (Dumoulin & 

Wandell, 2008). 

 

Region of interest  

 

Using the pRF-method, we estimated position parameters x0, and y0 of the pRF per voxel. 

From these values, the polar angle (atan(y0/ x0)) and eccentricity (√(x02 + y02)) values can 

be calculated. We drew the borders of the visual areas on the basis of their location in the 

visual field (DeYoe et al., 1996; Engel, Glover, & Wandell, 1997; Sereno et al., 1995; 

Wandell, Dumoulin, & Brewer, 2007) by rendering these polar angle and eccentricity 

maps onto the inflated cortical surface (Wandell et al., 2000). We defined visual areas V1-

V2-V3 as our regions of interest (ROI).  
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Deriving the contrast response function 

 

Analysis of voxel responses to the natural images 

We measured fMRI responses to 45 natural images and 1 full-field stimulus (100% 

contrast). We first determined the voxel response amplitudes in %BOLD signal change as 

they were elicited by each of these images. The voxel responses were calculated using a 

general linear model (GLM) (K. J. Friston et al., 1998; K. J. Friston et al., 1995).  

To reduce the noise from the individual voxel differences in response amplitudes, 

we normalized the responses according the voxel’s response to the full-field (100% 

contrast) stimulus. Therefore, we divided the voxel’s responses of the natural images (in 

%BOLD signal change) by the voxel’s response to the full-field stimulus.  

 

Voxel selection 

To make the CRFs, we only used the voxels that showed an overall significant response (t-

values>4.0), pRF eccentricity values from 0.5-4° and pRF variance explained above 40%. 

Furthermore we used a threshold for the sizes of the pRF, dependent on the visual area 

(V1 sigma: 0.25-0.8 V2 sigma: 0.25-1.1 V3 sigma: 0.25-1.75).  

 

Contrast values 

To derive the CRF, we computed the amount of contrast of every natural image within 

each pRF (Fig. 3B). We determined these contrast values from the pRF-model as follows. 

The pRF is modeled as a circular symmetric Gaussian function, described by parameters 

for position (x0,y0) and size (σ).  
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The Gaussian weighting function of the pRF is defined by wi:  

 

       
                      

(2) 

 

 

Where xc and yc define the location of the center of the pRF in the visual field, σ is the size 

of the pRF and xi and yi define the location of the ith pixel.  

 

We computed each voxel’s contrast value to each natural image by calculating the Root-

Mean-Squared (RMS) contrast (Bex & Makous, 2002; Pelli, 1997) of the part of the image 

inside the voxel’s pRF. RMS contrast is defined as the standard deviation of the luminance 

intensities relative to the mean. The RMS-contrast is weighted by the pRF Gaussian 

function to obtain the local contrast-energy value per pixel:  

 

local _ contrast _ energy = 1
wii=1

N!
wi

Li " L( )2
L2i=1

N

!               (3) 

 

Where N is the number of pixels in the stimulus window. L is the mean luminance from 

the pixels inside the spatial window, and Li is the luminance of the ith pixel.  

 

Plotting of the CRF 

The CRFs were made by plotting the fMRI responses as a function of the amount of 

contrast inside the pRF of the according voxels. The voxel’s responses were binned based 

on the amount of contrast inside the pRF. This binning is per percentile such that every 

bin contains 12.5% of the total amount of voxels. We plotted the CRFs using the voxels of 

visual area V1, V2 and V3.  
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We fitted CRFs using the following equation (modified from(Boynton et al., 1999)):  

 

R(C) = a Cq

Cq +Qq
 

                 (4) 

 

Where R is the fMRI response and C is the amount of RMS-contrast inside the pRF. The 

variables for q and Q define the shape of the CRF. The parameters of this function were fit 

to give the highest variance explained to the fMRI data.  

 

These CRFs can be modulated by different mechanisms (Carandini & Heeger, 2011). 

Here we investigated the role of the knowledge-based perceptual hypothesis on the CRF.  

 

Quantifying the knowledge-based perceptual hypothesis 

The natural images came from the Berkeley Segmentation Dataset and Benchmark 

database (D. Martin et al., 2001). In this dataset, Martin and colleagues asked human 

observers to identify the most important aspects of the image (Fig. 2C). In each manually 

labeled image, a human observer drew lines on the image to highlight the parts of the 

image they considered to be important for the representation of the scene. We use these 

measurements of the subjective important aspects of the scene to define and quantify the 

knowledge-based perceptual hypothesis of the image. We took the average of 5 manually 

labeled images as our definition of the perceptual hypothesis. 

Along with the contrast of the image in the pRF (Fig 2B), we also calculated the 

amount of subjective importance in the pRF (Fig 2C). The pixels of the manually labeled 

images have values between 0 (not labeled) and 1 (pixel labeled by all 5 observers). The 

amount of subjective importance in the pRF is calculated by a weighted sum of the pixels 

in the averaged manually labeled images and the pRF. This weighted sum was normalized 

by the total volume of the pRF: 

   

subjective_ importance =
wi iSii=1

N!
wii=1

N!
                (5) 
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Where N is the total number of pixels in the stimulus area. S is the manually labeled 

image, where Si is the value that specifies how many observers labeled the pixel of the 

image as important for the visual percept. A value of 0 indicates that none of the observers 

labeled the pixel as important for the visual percept of the scene. With increments of 0.2 

for every observer labeling the pixel to a maximum of 1 where every observer labeled the 

pixel of the image. The variable wi is the Gaussian weighting function of the pRF defined 

by formula 2.  

 

Based on the amount of subjective importance inside the pRFs we split the voxel’s 

responses. We made two CRFs; based on responses that were elicited by voxels that were 

either ‘low’ or ‘high’ in the amount of subjective importance. The definition of ‘low’ and 

‘high’ was based on the 50th percentile of the values for the amount of subjective 

importance inside the pRF. We took the first 50th percentile of the changes for the 

condition ‘low’ and the second 50th percentile for the condition ‘high’. We did not observe 

any differences either for sigma, eccentricity and the fMRI responses to the full-field 

stimulus between the voxels of ‘low’ and ‘high’ subjective importance at all reported 

contrast bins.  

 

Statistics  

 

The CRFs were compared for the difference in the amount of subjective importance. To 

see whether the CRF obtained from the ‘low’ subjective important responses was 

statistically different than the one obtained with ‘high’ subjective important responses. We 

bootstrapped the area under the fitted curve of the CRFs to obtain the 95% confidence 

interval and the p-values to test for a statistical difference in the CRFs. We tested the 

CRFs of visual areas V1-V2-V3 for statistical differences caused by the amount of 

subjective importance.  
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Results 

 

CRF can be derived from the inherent contrast of natural images 

 

We plotted the fMRI responses according to the amount of RMS-contrast inside the 

pRFs. This shows how the fMRI response changes with increasing contrast; the CRF. 

Figure 2B shows the CRF made from the responses of the voxels in visual area V1.  The 

individual points represent the mean normalized fMRI response from the data of all our 

subjects, and the errorbars represent the standard error of the mean. The line was fit from 

the data by the CRF-function described in formula 4. The variance explained for the line 

to the data was > 87%. The CRFs show a non-monotonic increase for the response 

amplitudes elicited by high-contrast regions of the image as it is known to occur based on 

synthetic stimuli (Albrecht & Hamilton, 1982; Boynton et al., 1999; Kay, Winawer, 

Rokem, Mezer, & Wandell, 2013; Legge, 1981; Ohzawa, Sclar, & Freeman, 1985; Sclar, 

Maunsell, & Lennie, 1990).  

 

Enhanced responses for subjective importance in visual area V1 

 

To investigate the effect of the knowledge-based perceptual hypothesis on the CRF, we 

calculated besides the amount of contrast inside the pRF (Fig. 2B), also the amount of 

reported subjective importance inside the pRF (Fig. 2D). In Fig. 2A four example pRFs 

are shown; the green pRFs are (in this image) at a location of low subjective importance 

and the pink pRFs are at a location of high subjective importance. The pRFs with the 

closed black line around it are at a location of low contrast, and the pRFs with the striped 

black line are at a location of high contrast. These four pRFs represent the combination of 

the different levels (low vs. high) of both the sensory-driven aspect and the knowledge-

based aspects. 

Fig. 2E shows the CRFs in visual area V1 split for the amount of subjective 

importance inside the pRFs. The green line represents the CRF for the responses to parts 

of the image that were of low subjective importance, and the pink line represents the CRF 

elicited by responses to parts of the image with high subjective importance. Again, the 
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individual points represent the mean (normalized) fMRI response from the data of all our 

subjects and the errorbars represent the standard error of the mean. The line was fit from 

the data by the CRF-function described in formula 4. The variance explained for the lines 

to the data was >85%.  

We see that the CRF is modulated by the amount of subjective importance of the 

parts of the images (falling inside the pRF). Both the CRF of low- and high-subjective 

importance show a saturating effect with an increase of contrast-energy. Furthermore, the 

CRF is boosted when it is elicited by voxels that respond to a part of the image that is 

labeled as highly subjective important. Thus, high levels of subjective importance increase 

the neural response at all contrast levels. 
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Figure 3 In this study we investigated how the sensory-driven and knowledge-based 

image information influence the neural representation. We calculated the amount of 

RMS-contrast inside the pRF (B) and plotted the fMRI response (normalized for the 

response elicited by the full-field stimulus) according to the amount of contrast inside the 

voxel’s pRF; the CRF (C). The individual points represent the mean (normalized) fMRI 

response and the errorbars represent the standard error of the mean. The line was fit from 

the data by the CRF-function described in formula 4. Besides the amount of contrast-

energy, we also calculated the amount of the subjective importance inside the pRF (D). 

Four example pRFs from visual area V1 are shown on the image, with the according 

responses in the graphs of the CRFs of visual area V1. The green pRFs are located on an 

area of low subjective importance, where the pink pRFs are located on an area of high 

subjective importance. Furthermore, the closed black line indicates that the pRF is on a 

location of the image of low contrast, where the striped black line indicates that the pRF is 

on a location of high contrast. We made two CRFs (E); one for the values with low 

subjective importance (green) and one for the high subjective importance (pink). We see 

that the CRFs are boosted for the responses to areas of high subjective important.  
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Enhanced responses for subjective importance in visual area V1-V2-V3 

 

Figure 3 shows the CRFs in visual area V1, V2 and V3 split for the amount of subjective 

importance inside the pRFs. We do not only see the saturating effect of the fMRI response 

with increasing contrast in V1, but also in V2 and V3. Furthermore, we see the same effect 

for subjective importance on the CRF in V2 and V3 as we see it in V1. The CRF is 

boosted for high subjective importance in V1, V2 and V3. Again, the green line represents 

the CRF for low subjective importance and the purple line represents the CRF for high 

subjective importance. The individual points represent the mean normalized fMRI 

response for all our subjects and the errorbars represent the standard error of the mean. 

The variance explained for the fitted lines to the data was >80%. 

These results cannot be explained by differences between the selected voxels of 

‘low’ and ‘high’ subjective importance in voxel response (we checked for response to the 

full-field stimulus), sigma or eccentricity. To quantify the differences in the CRF according 

to the low and high amount of subjective importance, we used a bootstrapping procedure. 

We bootstrapped the distributions of the area under the fitted CRF of low- and high 

subjective importance. We found for visual area V1, V2 and V3 a statistical significant 

difference of the CRF for the high subjective importance vs. the low subjective importance 

(p<0.001). We interpret this as an increase of the CRF according to subjective importance.  
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Figure 3 The CRFs for visual areas V1, V2 and V3 split for the amount of the perceptual 

hypothesis defined by subjective importance. We made two CRFs per visual area; one for 

the values with low subjective importance (green) and one for the high subjective 

importance (pink). We see that the CRFs are boosted for the responses to areas of high 

subjective important in visual areas V1, V2 and V3.  

 

 

Discussion 

 

In our study we show that we can derive the CRFs based on the inherent contrast of the 

images. Furthermore, we show that the CRF is boosted in visual areas V1-V2-V3 when it 

is elicited by responses to regions of high subjective importance. We suggest that this is 

evidence for the efficient coding theory, which proposes that the sensory-driven image 

representation in early visual areas is boosted according to the knowledge-based 

perceptual hypothesis.  

 

Effects of local image contrast on the neural response 

 

First, we analyzed the neural responses according to the (inherent) amount of contrast in 

the natural images. Plotting the amount of contrast in the pRF according to the 

normalized fMRI responses, we see that the responses rise with increasing contrast in the 

pRF for visual areas V1, V2 and V3. However, the responses do not rise linearly with 

increasing contrast, but saturate at high contrast. This non-monotonic increase in response 

amplitudes with contrast is a characteristic shape of the CRF. The CRFs as we measured 
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them using the natural images and the pRF method show a typical shape of the CRF as 

they are measured using earlier fMRI studies (Boynton et al., 1999; Kay et al., 2013; 

Olman et al., 2004), psychophysics (Boynton et al., 1999; Legge, 1981; Olman et al., 2004) 

as well as electrophysiological studies (Albrecht & Hamilton, 1982; Ohzawa et al., 1985; 

Sclar et al., 1990). CRFs are typically measured using synthetic images; we show that these 

results can be extrapolated to natural images. 

 

Modulation of neural responses by subjective importance  

 

After deriving the CRF according to the sensory-driven image feature contrast, we 

investigated how the neural responses in early visual areas (based upon the CRF) are 

modulated by the knowledge-based perceptual hypothesis. We quantified the knowledge-

based perceptual hypothesis by the subjective importance within the image. Besides 

calculating the amount of contrast energy inside the pRF, we also calculated the amount 

of subjective importance inside the pRF.  

Here we show for visual areas V1, V2 and V3 that when the CRF is derived from 

responses elicited by regions of high subjective importance, the CRF is boosted compared 

to the CRF of low subjective importance. This result is in support of statistical theories of 

inference where feedback connections have an excitatory role and boost responses in early 

visual cortex (Barlow, 2001; K. Friston, 2002; Rao, 2005; Series et al., 2003; Simoncelli & 

Olshausen, 2001).  

 

Efficient versus predictive coding 

 

The theories of efficient coding and predictive coding predict a different effect of the 

subjective importance on the CRF. In both theories, higher visual areas form a hypothesis 

on the cause of the sensory data. This hypothesis is sent back to lower visual areas via 

feedback to compare this hypothesis with the bottom-up representation. The theories 

differ in the effects that the top-down mechanisms have on the bottom-up processes. In the 

efficient coding theory the feedback is boosting, whereas in the predictive coding theory 

the feedback has a subtractive effect on the sensory-driven representation. In our study, we 

find a boosting effect on the CRF for subjective importance. Where our result is in line 
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with the efficient coding theory, the predictive coding theory predicts a suppressive effect 

on the CRF for subjective importance. According to the predictive coding theory, top-

down responses cause the early visual areas to silence the expected and signal the 

unexpected. This is supported by neuroimaging studies that find suppressed responses in 

early visual areas when the stimulus matches the expectation (Alink, Schwiedrzik, Kohler, 

Singer, & Muckli, 2010; den Ouden, Friston, Daw, McIntosh, & Stephan, 2009; Kok, 

Jehee, & de Lange, 2012; Kok, Rahnev, Jehee, Lau, & de Lange, 2012; Summerfield, 

Trittschuh, Monti, Mesulam, & Egner, 2008). Increased responses are found to regions 

inducing an illusory contour (no sensory information), together with decreased responses 

to regions receiving sensory information (Kok & de Lange, 2014). Furthermore, Murray et 

al. find increased fMRI activity in object sensitive area LOC together with a reduced 

activity in visual area V1 when presenting coherent shapes (Murray, Kersten, Olshausen, 

Schrater, & Woods, 2002). This is in agreement with the idea of predictive coding that 

higher visual areas subtract their hypothesis through feedback from the bottom-up 

representation in lower areas. Several neuroimaging studies have found suppressed 

responses in early visual areas for top-down influences.  

 

Why do we not find this suppressive effect? There can be different reasons. There are 

important differences between our study and other studies that find suppressive effects in 

early visual areas for top-down influences; they are related to the definition of the 

knowledge-based perceptual hypothesis, attention, local image statistics and figure-ground 

segmentation. We will discuss each influence in turn below. 

 

Definition of the knowledge-based perceptual hypothesis 

Most studies that find supporting evidence for the predictive coding theory see ‘expected’ 

as their definition for the perceptual hypothesis and use this as a learned stimulus property 

specific for the experiment. This learned property can be either the frequency of the 

presented stimulus (Summerfield et al., 2008), or priming of the stimulus for location (Kok, 

Rahnev, et al., 2012), orientation (Kok, Jehee, et al., 2012) or presence of the stimulus (den 

Ouden et al., 2009). In these studies, the top-down effects contain information about a 

property of the stimulus that was explicitly learned for the experiment. What is different in 
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our study is that we quantify the influence of top-down effects using subjective importance 

in natural images. Whereas previous studies use synthetic images, these will lack the 

amount of knowledge-based information that is inherently available in natural images. 

Natural images differ along many dimensions, which may explain the different results. For 

example, attention, local image statistics and image content. 

 

Attention 

Deviating results have been found for the effect of predictability on the neural response. 

These deviating results are arguably explained by the task-relevance of the stimulus (Rauss 

et al., 2011) or in terms of attention (Kok, Rahnev, et al., 2012; Summerfield & Egner, 

2009). A task-relevant stimulus enhances, rather than reduces the neural response of a 

predictable stimulus (Rauss et al., 2011). Kok et al. propose that this can be explained by 

attention (Kok, Rahnev, et al., 2012; Summerfield et al., 2008). Attention is known to 

increase the neural response in visual cortex (Kastner, Pinsk, De Weerd, Desimone, & 

Ungerleider, 1999). When predictability is combined with attention, attention seems to 

reverse the suppressive effect of predictability (Kok, Rahnev, et al., 2012; Summerfield et 

al., 2008). In the study of Kok et al., predictability is a task-irrelevant cue and codes for the 

likelihood of a stimulus to appear, where attention is coded by a task-relevant cue. Recent 

models of predictive coding have been adapted to account for increasing effects of 

attention (Feldman & Friston, 2010; Spratling, 2008).   

The difference with our study is that our subjects performed a fixation dot task that was 

irrelevant for the stimulus. We can therefore not explain our results using attention with 

the definition of task-relevance as it is used in previous studies.  

 

Local image statistics 

The manual labels that we use to define subjective importance can be made by using 

different cues, from low-level and mid-level to high-level knowledge based cues. Besides 

the sensory-driven property contrast, they can contain different statistical properties that 

can affect the responses in visual cortex such as orientation (Freeman, Brouwer, Heeger, & 

Merriam, 2011; Haynes & Rees, 2005; Kamitani & Tong, 2005; Kay, Naselaris, Prenger, 

& Gallant, 2008) and spatial frequency (Henriksson, Nurminen, Hyvarinen, & Vanni, 
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2008; Kay et al., 2008; Olman et al., 2004; Singh, Smith, & Greenlee, 2000). These 

statistical properties are shown to be confounded with results of shape-perception 

(Dumoulin & Hess, 2006). Potentially any of these can contribute to the enhanced 

responses. This is a limitation of using natural images, where all possible interactions take 

place. On the other hand, our analysis can take this into account, though the possibilities 

in natural images are ultimately unlimited.  

For the dataset of images used in the experiment, Martin et al. have compared the 

manual labels with the performance of local boundary detector algorithms. Where the 

algorithms detect parts of the manual labels, a significant portion was not detected (D. R. 

Martin, Fowlkes, & Malik, 2004). This suggests that the manual labels were not only based 

on local image properties, but also on global image context and higher-level prior 

knowledge.  

 

Image content 

The manual labels may represent (for instance) shape information or arguable, figure-

ground representations. The inactivation of higher extra-striate visual area V5 can 

decrease responses in early visual areas (V1, V2 and V3) and impair figure-ground 

representations (Hupe et al., 1998). Also, figure-ground representations can increase the 

neural response in early visual areas (Lamme, 1995; Lee, Mumford, Romero, & Lamme, 

1998). This is in line with our results that support the efficient coding theory in which 

responses in early visual areas are increased according to the perceptual hypothesis of later 

visual areas.  

Supporting evidence for the predictive coding theory has been found for the perception of 

contours and shape. Murray et al. find increased fMRI activity in object sensitive area 

LOC together with a reduced activity in visual area V1 when presenting coherent shapes 

(Murray et al., 2002). However, they looked at an overall activity reduction of all the 

recording sites in V1. Possibly, there is an increase for recording sites responding to 

locations coding for the shape, but a reduced net activity in V1.  

Furthermore, suppressed responses in V1 are found for contours matching the perceptual 

hypothesis. Responses to regions where the sensory information matched the percept were 

decreased, whereas the responses to regions that induced the illusion (no matching sensory 
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information) were increased (Kok & de Lange, 2014). Where both previous studies used 

synthetic images, we used natural images.  

 

From synthetic to natural images 

 

Commonly, the effects of different image features on the neural response are measured 

using synthetic stimuli that can be easily manipulated. However, results from studies using 

synthetic images do not always extrapolate to natural environments (Carandini et al., 

2005; David, Vinje, & Gallant, 2004; Kayser, Kording, & Konig, 2004; Li, VanRullen, 

Koch, & Perona, 2002). Synthetic images do not contain the same knowledge-based 

information as we encounter it in the real world. Therefore, there is a need to use more 

naturalistic stimuli in experiments.  

Here, we use the inherent variation of image properties in natural images to analyze how 

these modulate the fMRI responses. The strength of the pRF-model is that it allows the 

selection of voxels to specific parts of the image. By selecting voxels that respond to certain 

image properties we can analyze how these properties modulate the fMRI response. 

Future studies can disentangle the effects of other image properties. This analysis 

technique gives us the chance to extrapolate results from synthetic images to natural 

images.  
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Conclusion 

 

We measured the interactive effects that the sensory-driven image property contrast and 

the knowledge-based perceptual hypothesis have on the neural response. Using the pRF 

method, we are able to quantify different image properties in the pRF. We show that by 

using the inherent contrast in the natural images we are able to derive the CRF. 

Furthermore, we show that the responses to parts of the images of high subjective 

importance are boosted with respect to the responses to parts of the images that observers 

consider being less important for the representation of that scene. Where these effects are 

commonly measured using synthetic stimuli, we show how these results extrapolate to the 

use of natural images.  
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The aim of this thesis was to gain more insight in how the sensory-driven information and 

knowledge-based information influence visual perception. We describe a number of 

studies where we investigate how these information sources affect the neural signal 

(Chapter 3, 4 and 5) and our behavior (Chapter 2). We used a combination of behavioral 

methods with computational neuroimaging techniques. In our experiments we used both 

synthetic and natural images. Where the synthetic images contained mainly sensory-driven 

information, the natural images contained both sensory-driven and knowledge-based 

information. In this thesis, we present three new analysis techniques that extend the 

analysis of the pRF-method (Dumoulin & Wandell, 2008) to measure contextual influences 

of both sensory-driven and knowledge-based information in visual cortex (Chapter 3, 4 

and 5). Furthermore, we investigated the interaction of the sensory-driven and knowledge-

based information of a scene on our behavior in a change detection task (Chapter 2). The 

experiments in this thesis provide a quantitative link between physical sensory stimulation 

and our subjective perceptual experience on the neural signal and our behavior.  

 

 

The effect of sensory-driven information on the neural response  

 

Sensory-driven contextual influences are measurable using the pRF-method  

In Chapter 3 we show that we are able to measure sensory-driven contextual influences of 

surround suppression using the pRF-method. Where the original pRF-model describes the 

pRF with only a positive responding region, we see that negative responses remain 

unexplained by the model. We extended the original pRF-model by incorporating a 

suppressive surround in the description of the pRF. The pRF is now modeled as a 

Difference of Gaussians (DoG) function (Angelucci & Bressloff, 2006; DeAngelis, Freeman, 

& Ohzawa, 1994; Rodieck, 1965; Sceniak, Ringach, Hawken, & Shapley, 1999). The 

DoG-model captures a center-surround organization and can modulate its prediction 

according to information outside the classical receptive field. We show that the DoG-

model can explain negative fMRI responses and explains the measured responses better in 

early visual areas (Zuiderbaan, Harvey, & Dumoulin, 2012).  
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A strength of the pRF-model is that the parameters of the model can be compared. 

This allows us to study different properties of the underlying neuronal population. Where 

electrophysiology is an invasive method that is mainly used to study neural properties in 

animals, fMRI is a non-invasive method that can be used to study neural properties in 

human subjects. Using the pRF-method, results from electrophysiology can now be 

extrapolated to pRF measurements from human subjects. Also, clinical populations show 

abnormal perceptual functioning, presumably caused by altered center-surround 

properties (e.g. (Butler, Silverstein, & Dakin, 2008; Dakin & Frith, 2005; Marin, 2012; 

Yoon et al., 2009)). This method provides a direct measure to compare properties of the 

pRFs in both healthy and clinical populations. A nice example that shows the clinical 

relevance of our method is the study of Anderson et al., where they showed reduced 

surround suppression in people with schizophrenia (Anderson et al., 2017).  

 

Deriving contrast response functions from the inherent contrast of natural images  

In Chapter 5 we present a new analysis technique to derive contrast response functions 

(CRFs) from the inherent contrast of natural images using the pRF-method. Where CRFs 

are typically measured using synthetic images of different contrast levels (Albrecht & 

Hamilton, 1982; Boynton, Demb, Glover, & Heeger, 1999; Kay, Winawer, Rokem, 

Mezer, & Wandell, 2013; Legge, 1981; Ohzawa, Sclar, & Freeman, 1985; Sclar, Maunsell, 

& Lennie, 1990), we present a technique that can derive the CRF from natural images. 

Natural images contain different levels of contrast depending on the region of the image. 

Using the pRF-method, we can select responses caused by different levels of contrast in the 

natural images. Where CRFs are typically measured using synthetic images, we show that 

these results can be extrapolated to natural images. We derived the CRFs using the 

responses to 45 different images, but in theory, given that any natural image will contain 

different levels of inherent contrast, it is possible to derive the CRF from a single image 

presentation. CRFs can be modulated by several mechanisms (Carandini & Heeger, 2011). 

Using this method we are now able to measure modulations of the CRFs in natural 

images. In Chapter 6 we showed how the CRF is modulated by the subjective importance.  
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Predicting the presented stimulus from the measured fMRI signal 

In Chapter 4 we present a new analysis technique to predict the visually presented 

stimulus from the measured fMRI signal using the most basic pRF-model. We show that 

the model can be used to identify images that the model was not explicitly trained on. 

Image identification has been demonstrated before (Kay, Naselaris, Prenger, & Gallant, 

2008; Miyawaki et al., 2008; Thirion et al., 2006), but not using the pRF model. The 

advantage of using the pRF-model for image identification is its simplicity: the model is 

defined by a handful of parameters and can be estimated using standard mapping stimuli. 

Despite the synthetic nature of the mapping stimuli, we show that our results also transfer 

to the identification of natural images. We identified both synthetic and natural images 

based on the contrast information in the images. Where the identification accuracy was far 

above chance for both the synthetic and the natural images, the performance was lower 

for the natural images.  

 Interestingly, we see that (using the voxels of V1) some images are harder to identify 

than other images, and that this pattern is similar across subjects. We propose this is due to 

different reasons. The predictions of the pRF-model are made using only the local 

contrast-energy of the images. We show that images that are more similar in the 

information of contrast-energy were identified less accurately. However, after removing 

the relationship to image similarity defined by contrast-energy, we still see an image-

specific correlation of identification accuracy across subjects. We suggest this is caused by 

the knowledge-based information present in natural images. Natural images are likely to 

be affected by complex image features and global image context (Petro, Vizioli, & Muckli, 

2014). These properties are not captured by the pRF-model, which only captures the 

image contrast. We suggest that knowledge-based information of the scene is already 

present in the internal representation of V1. In Chapter 6 we investigated the effects of 

subjective importance on the internal representation in early visual areas.  
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Interaction of sensory-driven and knowledge-based information on the 

neural signal and behavior 

 

Enhanced neural signal for the knowledge-based information 

In Chapter 6 we show how the internal representation of early visual areas is encoded by 

both the sensory-driven and knowledge-based information. We first derived the sensory-

driven representation by the fMRI responses to the local contrast-energy in the images. 

For this, we derived the CRF that shows how the neural response is affected by the local 

contrast-energy in the pRF. We investigated how the CRF is modulated by the 

knowledge-based image information as we defined it by subjective importance. We see 

that the CRF in early visual areas V1, V2 and V3 is boosted for parts of the image that are 

of high subjective importance. Thus, the internal representation of early visual areas not 

only encodes sensory-driven information, but also knowledge-based information.  

This supports our view that in Chapter 5 some images were harder to identify since 

the neural responses to these images can be affected more by top-down contextual 

influences. For the identification process in Chapter 5, the predictions of the images were 

made using only the information of local contrast-energy of the images. When the internal 

representation of V1 also contains knowledge-based information, this will lead to an 

incomplete neural representation for the prediction of the pRF-model, since knowledge-

based information is not taken into account in making the predictions using the pRF-

model.  

The study of Chapter 6 shows that the interaction of sensory-driven and 

knowledge-based information already takes place in early visual areas. Where previous 

studies use synthetic images, we now extrapolate these results to natural images.  

 

In the Chapters 3, 4 and 5 we provide more insight in the information that is encoded in 

the internal representation of early visual areas. We see an interaction of sensory-driven 

and knowledge-based information in the neural signal of early visual areas. In Chapter 2 

we investigated if this interaction is also reflected in our behavior. 
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Both the sensory-driven and knowledge-based information of a scene are important in change detection 

In Chapter 2 we directly compare the role of sensory-driven and knowledge-based 

information on our ability to detect changes in a visual scene. We find that it is not only 

the knowledge-based image interpretation that facilitates change detection, as is suggested 

by previous literature (O'Regan, Rensink, & Clark, 1999; Rensink, ORegan, & Clark, 

1997; Sampanes, Tseng, & Bridgeman, 2008; Shore & Klein, 2000; Stirk & Underwood, 

2007). Sensory-driven information such as contrast-energy also influences our ability to 

detect changes. Most important, we find that the knowledge-based and sensory-driven 

information interacts, which suggests that these sources of information are not 

independently represented in the visual system.  

 This is supported by our results of Chapter 4 and 5. In Chapter 4 we show that 

similar images were harder to identify than other images using the fMRI responses of 

visual area V1. We suggested that this is caused by the internal representation of V1 not 

only capturing sensory-driven information, but also knowledge-based information. This is 

affirmed by the study in Chapter 5 where we show that the sensory-driven information 

(defined by the CRF) of early visual areas is enhanced according to the knowledge-based 

information (defined by subjective importance).  

 We can relate our results of the interaction found in early visual areas with our 

results of change detection. We show that the internal representation of V1 is modulated 

by the interaction of sensory-driven and knowledge-based information. This interaction is 

also reflected in our perceptual functioning, and more specifically in our ability to detect 

changes in a visual scene.  

 

Neural and behavior interactions 

Our result of the enhanced CRFs for high subjective importance is in line with the theory 

of efficient coding that proposes an enhancing role for feedback according to the 

perceptual hypothesis (Barlow, 2001; Friston, 2002; Rao, 2005; Series, Lorenceau, & 

Fregnac, 2003; Simoncelli & Olshausen, 2001). What would be the functional role of this 

feedback from higher visual areas? What is the purpose of increased responses in early 

visual areas to subjectively important information?  
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The efficient coding mechanism makes predictions about the external sources by 

disambiguating the neural signals. By making these predictions, the visual system can 

extract the behaviorally relevant information from the neural signal; the irrelevant activity 

is reduced, while the responses that are relevant for the visual percept are enhanced. This 

process is hypothesized to cause the information to be encoded in a sparser way, and this 

compression of information in the neural signal can be a way for the brain to deal with its 

capacity limits. 

We find a similar interaction for contrast-energy and subjective importance 

reflected in the neural signal as we do in the performance of change detection. Both an 

enhanced neural signal and faster reaction times in change detection are found for high 

levels of contrast-energy and subjective importance. 

The enhanced performance for the detection of changes that are high in contrast 

and/or high in subjective importance can be explained as an epiphenomenon of the 

enhanced neural signals in early visual areas for similar image features, and serve no 

further functional role.  

However, the similarity of the effects that we find in the enhanced neural signals 

and enhanced detection performance for resembling image information can also be 

related to the view of V1 as a ‘multiscale cognitive blackboard’ (Roelfsema & de Lange, 

2016). This view hypothesizes that the enhanced responses found in V1 are related to 

cognitive processes such as attention, where attention is directed to those parts of a scene 

that are encoded by an enhanced response in early visual areas. This view can explain why 

the changes of high contrast and/or high subjective importance were detected faster. We 

see an enhanced neural response to high levels of contrast and subjective importance of a 

scene. When an enhanced neural signal causes attention to be driven towards those parts 

of the scene that elicit this enhanced response, this might lead to a faster detection of 

changes that are high in contrast and/or high subjective importance.  

Where Roelfsema & de Lange base their view on results from studies using 

synthetic stimuli and relate this to the performance of attention-based tasks, we now 

extrapolate this view to the use of natural images. Furthermore, the enhanced neural 

responses to contrast and subjective importance were found in the responses of subjects 

viewing natural images without a stimulus-related task.  
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We interpret the enhanced responses to subjective importance as the result of 

interactions between early and later visual areas. Possibly, the interaction between early 

and later visual areas is a mechanism to drive attention to potentially important parts of a 

scene. I suggest that feedback from later visual areas enhances the sensitivity for parts of 

the image of high subjective importance by modulating the responses in early visual areas. 

This boosts the CRF in early visual areas according to subjective importance, which 

causes smaller contrast changes to be necessary to detect differences in the scene for these 

regions of the image.  

 

Synthetic versus natural images  

 

In this thesis, we studied both stimulus-driven and knowledge-based contextual influences 

in the visual system. For this, we used both synthetic and natural images. The use of 

synthetic stimuli is very common when studying vision in the laboratory. The reason for 

this is that they are easily controlled. The drawback of using natural images is that they are 

difficult to control and they might contain an unlimited range of image properties. 

Although synthetic stimuli are easy to control, the drawback of using synthetic stimuli is 

that the responses to these stimuli do not always extrapolate to natural scenes (Carandini 

et al., 2005; David, Vinje, & Gallant, 2004; Kayser, Kording, & Konig, 2004; Li, 

VanRullen, Koch, & Perona, 2002). The synthetic images lack an important amount of 

knowledge-based contextual information as we encounter this in real life. The functioning 

of the visual system is mainly to solve contextual ambiguities of natural scenes. The use of 

natural images possibly drives a different population of neurons with neuronal properties 

that are necessary to disambiguate natural scenes. Therefore, there is a need to use more 

naturalistic stimuli in experiments.  

A strength of the pRF-model is that it allows the selection of voxels that are 

stimulated by different parts of the stimulus. Where conventional fMRI studies ignore the 

possibility that different properties of the stimulus have deviating effects on the neural 

signal, we can investigate these effects with the pRF-model. This is especially useful for 

studying the neural responses to natural images. The pRF-model allows us to investigate 

the effects that different image properties have on the neural signal; these effects will be 
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different depending on the part of the image. Using the pRF-model we can select voxels 

responding to a certain part of the image and therefore select voxels that respond to 

specific image properties.  

Where we investigated how the neural signal is affected by contrast-energy and 

subjective importance, future studies can disentangle the effects of other image properties 

using the presented methods. Using the newly developed analysis techniques we can study 

both synthetic and natural images. This approach introduces a new opportunity to 

extrapolate results from synthetic to natural stimuli. 
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Supplementary material                   

Neuronal position scatter 

With fMRI we cannot measure the activation of single neurons, instead activation of a 

population of neurons is measured. The size of the neuronal sampling population is 

dependent on the voxel size, and thus dependent on the resolution of fMRI. 

 

The pRF is estimated from the total neuronal population, so eventually the properties 

of all the individual neurons influence the estimated pRF. In such a neuronal 

population, the position scatter of the individual neurons can vary (Hubel & Wiesel, 

1974). The size of the estimated pRF has been reported to vary for both this neuronal 

position scatter, σ2position_variance, as well as with the average receptive field size of the 

neuronal population, σ2neuronal_RF (Dumoulin & Wandell, 2008).  

!
σ2 population RF = σ2 neuronal_RF + σ2 position_variance + k                (11) 

                 

Where k is a constant factor for capturing non-neural contributions to the pRF.  

A higher variance in the neuronal positions will increase the pRF size, despite 

unchanged neuronal RF sizes. The assumption we examine here is that the neuronal 

position scatter will not only influence the estimated pRF size, but will also influence 

the ability to measure center-surround configurations of the pRFs. Figure 9 illustrates 

this idea. When the position variance of a neuronal population is low (Fig. 9A), there 

is a clear circular receptive field noticeable as a pRF, which still shows a center-

surround organization. With high position variance (Fig. 9B) this center-surround 

organization seems to have disappeared. Using formula 11, we calculated the pRF 

from a total of 100,000 neuronal receptive fields. While keeping the neuronal RF 

constant we varied position variance (and k=0). Figure 9C shows a representation of 

the pRFs that are calculated for neuronal populations with different position 

variances. Increasing position variance leads to a decrease in center-surround 

configuration of the pRF. Specifically, the amplitude of the negative surround 

becomes less pronounced (Figure 9D).  
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This simulation illustrates that the neuronal position scatter will not only affect the 

pRF size, but also the strength of the negative component of the pRF. For visual areas 

with a high neuronal position variance, the ability to measure center-surround 

configurations is therefore lost at the resolution of fMRI. 

 

 

Figure 9 Simulations estimating the pRF from a population of individual neuronal 

receptive fields (RF). The pRFs are calculated from 100,000 individual neuronal 

receptive fields using equation 11. Individual RFs are identical each with their own 

center-surround configuration. Panels A and B illustrate a few individual RFs with low 

(A) and high (B) position variance. The actual simulations used a 100,000 RFs. These 

individual RFs were summed to give rise to the pRF (C). For the neuronal population 

with a low variance in its positions (A) the neuronal RF center-surround configuration 

is reflected in its pRF. However, the pRF of the neuronal population with high 

position scatter (B) has lost the center-surround configuration at the pRF level. The 

relationship between the position variance of a neuronal population to the response 

strength of the suppressive surround of the estimated pRF (arrow in panel C) is shown 

in panel (D). For a neuronal population with a high position variance the response 

strength of the suppressive surround approaches zero. These simulations suggest the 

ability to measure center-surround configurations is lost in neuronal populations with 

 a high neuronal position scatter.  

!
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Supplementary figures 
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Supplementary figure 1 Differences in baseline estimation. A: The conventional 

OG-model estimates the parameters of the baseline activation during the fit of the 

pRF, according to the whole time-series. Comparing the baseline activity 

measurements for the OG-model and the DoG-model, we find different estimates for 

this baseline activation, which are measured to the same time-series. These data are 

taken from V1 of all subjects. The errorbar represents standard error of mean. This 

suggests the OG-model is able to compensate for the negative fMRI signal by 

lowering its baseline activation. B: An example time-series from a recording site in V1 

(dashed lines) with the predictions of the conventional OG-model where the baseline 

activation is estimated using the two ways. First, the baseline is calculated during the 

GLM fit (black line); the second method calculates the parameters for the baseline 

using the time-series where no stimulus was shown (gray line). This example illustrates 

that the conventional OG-model is able to compensate for the negative fMRI signal to 

some extent by lowering the baseline level. 

 

 

 

 

 

 

 

 



! APPENDIX!
!

! 144!

 

 



SUPPLEMENTARY FIGURES! !
!

! 145!

Supplementary figure 2 The natural images that were used as stimuli in the 

experiment. The images came from the Berkeley Segmentation Dataset and 

Benchmark database (D. Martin et al., 2001). 
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Supplementary figure 3 For all the images in the Berkeley Segmentation Dataset 

and Benchmark database there were manual labels available (D. Martin et al., 2001). 

In each manually labeled image, human observers identified the most important 

aspects of the image. We used these measurements of the subjective important aspects 

of the scene to define and quantify the knowledge-based perceptual hypothesis of the 

image. The average of 5 manually labeled images was used as our definition of the 

perceptual hypothesis. 
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Supplementary figure 4 For the sensory-driven image information we calculated 

the local contrast-energy by the RMS-contrast.  
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Nederlandse samenvatting 
 

Zicht is een van de belangrijke zintuigen die ons in staat stellen om onze omgeving 

waar te kunnen nemen en hiermee een interactie te hebben. Wanneer we rondkijken 

in de wereld zien we veel verschillende objecten en vormen. Voor onze interactie met 

de wereld om ons heen, is het nodig dat we objecten kunnen zoeken, vinden en 

herkennen. Hiervoor moet het visuele systeem objecten kunnen segmenteren en 

detecteren. 

Ons brein krijgt via onze ogen een enorm grote hoeveelheid aan informatie 

binnen. Aangezien de informatie die vanuit onze ogen komt, ruizig en ambigu is, 

maakt het visuele systeem van deze informatie een interpretatie. Voor het maken van 

deze interpretatie worden niet alleen de zintuiglijke eigenschappen van de stimulus 

gebruikt, maar ook contextuele informatie die bestaat uit onze kennis van de wereld. 

Met behulp van deze voorkennis voorspelt het visuele systeem wat de meest 

waarschijnlijke oorzaak is van het beeld op het netvlies.  

Hoe het beeld van het netvlies in onze hersenen wordt verwerkt en hoe dit ons 

gedrag beïnvloedt, is een belangrijke vraag in de neurowetenschappen. In dit 

proefschrift is onderzocht wat de contextuele invloed van zintuiglijke en 

kennisgebaseerde eigenschappen is op zowel ons gedrag (hoofdstuk 2) als de neurale 

stimulus representatie van de visuele cortex (hoofdstuk 3, 4 en 5). Hiervoor hebben we 

een combinatie van gedragsmethoden en computationele neuroimaging technieken 

gebruikt. 

In de experimenten beschreven in dit proefschrift hebben we zowel 

synthetische als natuurlijke afbeeldingen gebruikt. Waar de synthetische afbeeldingen 

voornamelijk zintuiglijke informatie bevatten, bevatten de natuurlijke afbeeldingen 

zowel zintuiglijke als op kennis gebaseerde informatie. Van de natuurlijke 

afbeeldingen kwantificeren we zowel de lokale contrast-energie (zintuiglijke 

informatie) als de subjectief belangrijke informatie (kennisgebaseerde informatie).  

 

In hoofdstuk 2 laten we zien dat er een interactie van zintuiglijke en kennisgebaseerde 

informatie terug te vinden is in ons gedrag. Wanneer we om ons heen kijken in de 

wereld, hebben we de ervaring dat we onze omgeving waarnemen met veel details, 

zoals een camera. Echter, vaak merken we grote veranderingen in onze omgeving 
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helemaal niet op. Dit onvermogen wordt ook wel veranderingsblindheid genoemd. 

Dit verschijnsel illustreert dat niet elk deel van de visuele scene zo gedetailleerd wordt 

verwerkt als we intuïtief ervaren. Het visuele systeem moet van de grote hoeveelheid 

informatie die het ontvangt via onze ogen een coherent beeld maken. De hersenen 

hebben slechts een beperkte verwerkingscapaciteit, en hierdoor kan niet alle 

informatie van de visuele scene in detail verwerkt worden. Hierbij zien we dat 

sommige veranderingen gemakkelijker op te sporen zijn dan andere.  

In het tweede hoofdstuk onderzoeken we wat de invloed van zintuiglijke 

informatie (lokale contrast-energie) en kennisgebaseerde informatie (subjectief 

belangrijk) in natuurlijke afbeeldingen is op ons vermogen om veranderingen te 

detecteren. We meten reactietijden, terwijl we veranderingen maken in zowel de 

zintuiglijke als de kennisgebaseerde informatie van de afbeelding. Onze resultaten 

laten zien dat de mogelijkheid om veranderingen in een visuele scene te detecteren, 

zowel door de zintuiglijke als de kennisgebaseerde informatie wordt beïnvloed. 

Bovendien vinden we een interactie; manipulaties in een visuele scene, die zowel groot 

zijn in de verandering van zintuiglijke als kennisgebaseerde informatie worden het 

snelst gevonden. Deze resultaten suggereren dat de zintuiglijke en kennisgebaseerde 

informatie niet onafhankelijk van elkaar worden verwerkt in het visuele systeem. 

 

In hoofdstuk 3, 4 en 5 hebben we vervolgens onderzocht hoe de interactie tussen de 

zintuiglijke en kennisgebaseerde informatie van de stimulus is gerepresenteerd in het 

neurale signaal van de visuele cortex. Hiervoor hebben we gebruik gemaakt van 

functionele MRI. Met behulp van fMRI kunnen we hersenactiviteit meten in reactie 

op visuele stimuli. We kunnen hierdoor onderzoeken hoe de visuele cortex reageert op 

verschillende visuele prikkels.  

 

Neuronen in de visuele cortex reageren op een bepaald gebied in het gezichtsveld, dit 

wordt ook wel het receptieve veld van dit neuron genoemd. Bij het stimuleren van dit 

deel van het gezichtsveld, wordt dit neuron geactiveerd. Met fMRI kunnen we per 

corticale locatie de regio in het visuele veld schatten waarop het reageert; het 

populatie receptieve veld (pRF) (Dumoulin & Wandell, 2008). In dit proefschrift 

presenteren we drie nieuwe analysetechnieken die gebruik maken van de pRF-analyse 
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om contextuele invloeden van zowel zintuiglijke als kennisgebaseerde informatie in de 

visuele cortex te meten. 

Neuronen in de vroege visuele cortex hebben kleine receptieve velden en 

zullen daarom alleen informatie van een klein gedeelte van de visuele scene bevatten. 

De informatie van neuronen met kleine receptieve velden zal hierdoor veel 

ambiguïteiten bevatten. Een manier om te disambigueren, is om de informatie in 

context te plaatsen. Dit kan bijvoorbeeld door de informatie te integreren over een 

groter gedeelte van het visuele veld. In de visuele cortex kan stimulatie buiten het 

klassieke receptieve veld de hersenactiviteit verminderen en een negatief fMRI signaal 

veroorzaken. 

 

In hoofdstuk 3 presenteren we een methode waarmee we laten zien dat neuronen in de 

vroege visuele cortex rekening houden met de context van lokale stimulatie. Hier 

breiden we het originele pRF-model uit door rekening te houden met stimulatie 

buiten het klassieke receptieve veld. Waar het originele model geen negatieve fMRI 

responsen kan verklaren, zien we dat dit nieuwe model dat wel kan. We laten zien dat 

dit nieuwe model voornamelijk in vroege visuele gebieden een betere voorspelling van 

het gemeten fMRI signaal geeft. 

Verschillende klinische aandoeningen kunnen de eigenschappen van de pRF 

veranderen. Deze nieuwe methode geeft ons een directe maat van de eigenschappen 

van de pRFs in het visuele systeem, die nuttig zijn voor het bestuderen van zowel 

gezonde als klinische populaties. Een mooi voorbeeld hiervan is de studie van 

Anderson en collegae (Anderson et al., 2017), waarbij ons model is gebruikt om te 

laten zien dat er minder suppressie is buiten het klassieke receptieve veld bij mensen 

met schizofrenie. 

 

Met behulp van het pRF-model kunnen we een voorspelling maken van de 

hersenactiviteit voor elke visuele stimulus. In hoofdstuk 4 beschrijven we een fMRI 

studie waarin we het pRF-model gebruiken om de visueel gepresenteerde afbeelding 

te identificeren. We hebben zowel synthetische als natuurlijke afbeeldingen 

geïdentificeerd op basis van de zintuiglijke lokale contrast-energie informatie.  

We laten zien dat het model kan worden gebruikt om afbeeldingen te 

identificeren, waarmee het model niet expliciet is getraind. Waar zowel de 
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synthetische als de natuurlijke afbeeldingen kunnen identificeren, was de prestatie 

minder goed voor de natuurlijke afbeeldingen. 

Wat hierbij interessant is, is dat we zien dat (met behulp van de voxels van het 

eerste visuele gebied V1) bepaalde natuurlijke afbeeldingen moeilijker zijn te 

identificeren dan andere, en dat dit patroon vergelijkbaar is tussen verschillende 

proefpersonen. Wij denken dat een belangrijke reden hiervoor is, dat de natuurlijke 

afbeeldingen naast de zintuiglijke ook kennisgebaseerde informatie bevatten. Het 

pRF-model baseert zijn voorspelling alleen op de zintuiglijke contrast informatie, en 

wij zien dit als een aanwijzing dat de kennisgebaseerde informatie reeds aanwezig is in 

de interne representatie van V1.  

 

In hoofdstuk 5 hebben we verder onderzocht wat het effect is van de op kennis 

gebaseerde informatie in natuurlijke afbeeldingen op de interne stimulus representatie 

van vroege visuele gebieden. De interactie tussen zintuiglijke informatie en onze 

kennis van de wereld is de basis van perceptie, maar er is geen consensus over hoe 

deze interactie het neurale signaal in vroege visuele gebieden beïnvloedt. Huidige 

theorieën implementeren de kennis van de wereld als een perceptuele hypothese die 

wordt vergeleken met de zintuiglijke input. Volgens deze theorieën kan de perceptuele 

hypothese de zintuiglijke informatie die door vroege visuele gebieden gerepresenteerd 

word, onderdrukken of juist versterken. In deze studie vinden we dat de neurale 

respons op contrast-energie (zintuiglijk) in vroege visuele gebieden (V1, V2 en V3) 

wordt versterkt wanneer deze respons wordt veroorzaakt door een gedeelte van de 

afbeelding dat we als subjectief belangrijk beschouwen (kennisgebaseerd).  

 

In dit proefschrift laten we zien dat perceptie zowel door zintuiglijke stimulatie als 

onze kennis van de wereld bepaald wordt. We hebben aangetoond dat de interactie 

van de zintuiglijke en kennisgebaseerde informatie zowel in ons gedrag als in het 

neurale signaal van vroege visuele gebieden terug te vinden is. Waar deze effecten 

gewoonlijk worden bestudeerd met behulp van synthetische stimuli, extrapoleren we 

deze resultaten naar het gebruik van natuurlijke afbeeldingen. 
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