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Our brain is one of our most important organs. As the control center of the body, it allows us to e.g. 

breathe, think, perform any kind of (voluntary) action, and perceive our outer and inner environment. 

It consists of billions of neurons that are divided between the brainstem in the center of the brain, the 

cerebellum at the bottom of the back of the brain, and the cerebrum (the ‘big brain’; Figure 1A). The 

brainstem controls basic bodily functions such as breathing, while the cerebellum coordinates 

voluntary movement. The cerebrum performs higher functions such as learning, speech, decision 

making, and processing sensory input. The superficial portion of the human cerebrum is called the 

cerebral cortex or gray matter, as it appears grayish in histological slices. It consists of vast quantities 

of several types of neuronal cell bodies that are interconnected via their axons and dendrites. Some 

types of neurons have myelinated axons that extend inwards to neurons in other regions of the brain, 

or to other parts of the body. The combination of all these myelinated axons has a white appearance 

and is thus called white matter. The myelinated axons can be thought of as neuronal highways, 

relaying information from one place in the brain to another. The white matter is largely surrounded 

by gray matter, which in turn is surrounded by cerebrospinal fluid (CSF). CSF is a clear, colorless fluid 

that serves as a shock absorber, provides immunological protection, and plays a vital role in the 

regulation of blood flow in the brain. Most processing in the human brain takes place in gray matter, 

as this is where the cell bodies and dendrites of neurons generally are located. 

 

Figure 1: Organization of the human brain. A) Sagittal slice of the brain without skull, indicating the 
location of the brainstem (green), cerebellum (red), and cerebrum (gray and white). B) Schematic 
representation of cytoarchitectonic (left column) and myeloarchitectonic (right column) laminar 
organization of early visual cortex. Roman numerals denote cortical layers. Adapted from: (Duvernoy, 
Delon, & Vannson, 1981; Miriam D. Waehner). C) Functional connectivity across cortical depth. Cortical 
depth compartment locations are consistent with cortical laminae in B). After: (Felleman & Van Essen, 
1991). 
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Brain organization 

Cortical layers 
Zooming in on the human cortex, we see that it is between 1.5 and 4 mm thick (Fischl & Dale, 1999) 

and that it can be divided into several layers, based on cytoarchitectonic (distribution of cell bodies of 

neurons; Figure 1B, left panel; Brodmann, 1903, 1909), or myeloarchitectonic (distribution of myelin; 

Figure 1B, right panel; Gennari, 1782; Nieuwenhuys, 2013; C. Vogt & Vogt, 1919; O. Vogt, 1910) 

features. These layers -also called laminae- are present throughout the entire brain, although the 

relative thickness of each of the layers differs between brain areas. Six layers can be defined 

throughout most of the human cortex (Brodmann, 1909). Laminae can also be defined based on the 

functional connectivity, which follows a specific pattern across cortical depth (Figure 1C). This 

functional connectivity can be divided into ascending (feedforward), descending (feedback), and 

lateral interactions (Felleman & Van Essen, 1991; Shipp, 2007). In the visual system, ascending 

connections generally terminate in layer IV (Felleman & Van Essen, 1991; Shipp, 2007; Sincich & 

Horton, 2005). This central layer, also called the granular layer, consists mostly of stellate and 

pyramidal cell bodies. In primary visual cortex (V1), ascending connections mainly consist of thalamic 

afferents (Hubel & Wiesel, 1972). For other parts of the visual system, ascending connections mainly 

contain afferents from visual field maps lower in the visual hierarchy, although this connectivity is less 

clear-cut than for V1 (Hubel, 1988). Descending (feedback) connections in the cortex mainly terminate 

in the supragranular and infragranular layers of the cortex (Felleman & Van Essen, 1991). Descending 

information can come in the form of feedback from other parts of the brain, such as influences of 

attention. Lateral processing refers to the information flow between neurons located at different 

cortical depths, but a similar location at the surface of the cortex. 
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Cortical blood supply 
Neurons need oxygen to function as they cannot store energy themselves. This is supplied by blood 

vessels. Signals from blood vessels can in turn be used to map brain activity. The cortical vasculature 

is arranged in a specific way (Duvernoy et al., 1981; Figure 2). Pial arteries delivering oxygen-rich blood 

run along the cortical (also called pial) surface. As these can only supply oxygen to neurons at the 

cortical surface, there needs to be a way to deliver oxygen to neurons deeper in the cortex. This comes 

in the form of diving arteries. These arteries run perpendicular to the cortical surface, extending across 

multiple cortical layers (Figure 2). These diving arteries then split off further into smaller and smaller 

arterioles and capillaries, where the oxygen exchange with neurons ultimately takes place. The 

deoxygenated blood is then removed via the venules that feed into the larger ascending or draining 

veins (Duvernoy et al., 1981; Havlicek & Uludag, 2019). These draining veins run perpendicular to the 

cortical surface and deliver their contents to the pial veins at the cortical surface. Thus, there is a clear 

directionality of blood flow across cortical depth, with oxygenated blood travelling from the cortical 

surface to the deeper layers of the cortex, and deoxygenated blood travelling from the deeper layers, 

through more superficial layers, to the cortical surface. The pial arteries, diving arteries, draining veins, 

and pial veins are collectively called the cortical macrovasculature. Arterioles, capillaries, and venules 

are collectively called the cortical microvasculature.  

 

Figure 2: Schematic representation of the cortical vasculature. Red: oxygen-rich blood. Blue: 
deoxygenated blood. Purple: capillaries, where oxygen is exchanged with neurons.  
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Visual information processing 
Vision is one of our most important senses. Although the eyes are important in collecting visual 

information, ‘seeing’ happens in the brain. In fact, roughly 25% of the human brain is dedicated to 

processing visual information (Van Essen, 2003). When you see an object, any visual information about 

that object undergoes numerous processing steps to arrive at an integrated percept (Figure 3; Gilbert, 

2000). First, light reflecting off the object enters the eye and falls on the retina. Photoreceptors in the 

retina convert the light to electrical signals that are relayed to the brain through the optic nerve. The 

optic nerve then passes through the optic chiasm, where signals from the nasal (nose-side) part of 

each retina cross over. The information that is sent to each hemisphere of the brain from then on 

contains the retinal signals from two eyes, of only one side of the visual world. Information to the left 

of fixation (the left visual field) is relayed to the right hemisphere, and information from the right 

visual field is relayed to the left hemisphere. This information passes through the optic tract to the 

lateral geniculate nucleus (LGN) and is subsequently sent on via the optic radiation to the primary 

visual cortex (V1), located in the occipital lobe. There, the first cortical processing step takes place. 

From there on, the information is sent to higher visual areas. Early and intermediate areas in the visual 

processing hierarchy process relatively basic stimulus information, such as local contrast, orientation, 

edges, and motion. Information processing in higher-order visual areas becomes increasingly complex, 

with visual areas processing information such as the presence of faces, words, houses, or numerosity.  

Figure 3: Schematic representation of the 
visual system. Information from the outside 
world enters the eye and falls on the retina. 
This is then passed on via the optic nerves. 
At the optic chiasm, the information from 
the nasal (nose-side) part of the retina 
crosses over to the other hemisphere. 
Information is then passed on to the primary 
visual cortex via the optic tract, lateral 
geniculate nucleus, and optic radiation. All 
information to the right of fixation (right 
visual field) is relayed to the left 
hemisphere, while information from the left 
visual field is relayed to the right 
hemisphere. After: (Gray, 1995). 
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Higher-order information processing: numerosity 
Numerosity refers to the set size of a group of items (see Figure 4A, B for examples). Numerosity 

perception is a trait shared not only among humans from infants onwards, but also among a wide 

range of other species such as non-human primates, cats, corvids, and zebra fish (Brannon & Terrace, 

1998; Ditz & Nieder, 2016a; Hauser, Tsao, Garcia, & Spelke, 2003; Pisa & Agrillo, 2009; Potrich, 

Sovrano, Stancher, & Vallortigara, 2015). Numerosity perception is advantageous, as for example 

correctly and quickly judging the number of bananas in a pile or the number of assailants can be 

essential for a monkey’s survival. Numerosity perception is also implicated in many higher cognitive 

functions, such as multiple object tracking (Piazza, 2011), mathematics (Dehaene, 1997; Halberda, 

Mazzocco, & Feigenson, 2008; Harvey, 2016), decision making (Nieder & Miller, 2003), and dividing 

attention (Knops, Piazza, Sengupta, Eger, & Melcher, 2014). Neuronal populations selectively 

responding to numerosity stimuli have been identified using electrodes mostly in animals, and a 

network of numerosity-selective topographic cortical maps has been identified using functional 

magnetic resonance imaging (fMRI) in humans ( Figure 4C; Harvey & Dumoulin, 2017; Harvey, Klein, 

Petridou, & Dumoulin, 2013). Even though basic numerosity perception can be studied in animals, it 

is difficult to study higher-order (visual) processing in any species but humans.  

 

Figure 4: Numerosity examples and numerosity maps in the human brain. A) Selecting the largest pile 
of heart-shaped candy is essential to satisfy your sweet tooth. The number of candies in each pile is 
instantly clear, without counting. B) Example numerosity stimuli (4 and 7) as used in this thesis. C) 
Cortical numerosity-selective topographic maps in the right hemisphere of an example subject. NTO, 
NPO, NPC1-3, and NF denote different topographic maps. The lighter-gray area at the bottom of the 
brain denotes the area that was not covered by the fMRI field of view. From: (Harvey & Dumoulin, 
2017).   
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Thesis outline 
A significant portion of processing takes place between cortical laminae. In the visual system, sub-

millimeter resolution fMRI has been used in the early visual cortex to identify laminar processing for 

population receptive field sizes (Fracasso, Petridou, & Dumoulin, 2016) and attention effects (Klein, 

Fracasso, van Dijk, et al., 2018; Kok, Bains, Van Mourik, Norris, & De Lange, 2016). As higher-order 

(visual) processing is much easier to study in humans than in animals, we look to extend laminar fMRI 

past basic visual processing. In this thesis, I investigate laminar processing of higher-order (visual) 

information. In Chapters 2 & 3, I address methodological challenges of laminar fMRI. I investigate 

laminar processing for numerosity stimuli in Chapter 4. I complement these fMRI findings with 

neuronal temporal response dynamics using intracranial recordings in Chapter 5. 

High-resolution methods for human neuroscience 
Traditionally, methods to investigate the fine-grained organization of the brain have involved either 

ex-vivo, or invasive electrode measurements, as non-invasive techniques did not have a sufficient 

resolution in space (spatial resolution) to e.g. distinguish between different cortical laminae 

(Gazzaniga et al., 2014). For instance, the identification of cortical layers based on the cyto- and 

myeloarchitecture was performed solely using slices of brains combined with histological staining 

methods, while the functional connectivity division of neurons across cortical depth has been based 

on probing the brains of several animal species with electrodes while they performed a task. 

It is unfavorable for human cognitive neuroscience to study brain responses in health and disease 

using dead brains or other species, as dead brains do not have any neuronal activity (except if you are 

imaging a salmon and you do the statistics wrong (Bennett, Miller, & Wolford, 2009)) and other species 

lack e.g. the verbal comprehension that is often required to understand task instructions. Luckily, a 

variety of imaging methods are available to this end, all with their own benefits and drawbacks 

(Gazzaniga et al., 2014). To investigate laminar processing in the human brain, we need imaging 

methods that provide a sufficient spatial resolution, even though that means sacrificing some 

resolution in the time domain (temporal resolution). We can then complement these methods with 

imaging techniques that have an inherently high temporal resolution.  

Magnetic Resonance Imaging 
Magnetic Resonance Imaging (MRI) is a widely used method to investigate both the structure and 

function of the brain in health and disease. This popularity is due to the wide availability of MRI 

scanners, as most hospitals have at least one MRI scanner. Additionally, MRI scans do not involve any 

invasive procedures (e.g. surgery, injection of radioactive tracers, or X-rays), and are safe and easy to 

administer to most people of most ages. MRI scanners use extremely strong electromagnets to 

manipulate the spin direction of hydrogen atoms. The strength of this electromagnet is expressed in 

Tesla (T). Scanners used in a clinical setting typically have magnetic field strengths of 1.5 or 3 T. For 

comparison, a typical fridge magnet has a field strength of 5 mT, and electromagnets used in 

scrapyards to effortlessly lift cars are typically around 1 T. These scanners provide sufficient spatial 

resolution for most clinical applications. As the field strength of a scanner increases, so does the 

relative signal strength (signal-to-noise ratio; SNR). This increased SNR can be traded for an increased 

spatial and/or temporal resolution.  
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The last decade has seen a significant increase in field strength for MRI scanners. Ultra-high fields of 

7 T and higher have become available to the research community, providing ever-increasing image 

quality. One of the major advantages of 7 T (and higher field strength) scanners, is that it allows for 

the sub-millimeter investigation of the brain at both a structural, and especially a functional level.  

FMRI typically measures the ratio between oxygenated and deoxygenated blood in the brain, which is 

related to neuronal activation (Logothetis, 2002). This is called the blood oxygenation level-dependent 

(BOLD) signal. The unit of measurement for the spatial resolution of MRI scans is the 3-dimensional 

pixel, called voxel. A typical voxel size for regular fMRI scans is 2 x 2 x 2 mm. The visual cortex is 1.5 – 

2 mm thin. This means that with regular fMRI, one voxel covers the entire thickness of the cortex. 

Thus, it is impossible to investigate processing across cortical depth at these resolutions. With the 

advent of ultra-high field MRI scanners, it has become possible to increase the spatial resolution of 

functional scans to under 1 x 1 x 1 mm. We call this sub-millimeter or laminar fMRI. While at first 

glance, 1 x 1 x 1 mm might look as though it is a two-fold increase in spatial resolution, it is in fact an 

eight-fold increase in resolution (8 mm3 versus 1 mm3) as voxels are volume measurements. This is 

further exacerbated for sub-millimeter resolutions, with voxel sizes of functional scans in this thesis 

reaching as small as only 0.34 mm3 (smaller voxels result in a higher resolution).  

As laminar fMRI has a spatial resolution that is significantly less than the thickness of the cortex, it 

allows researchers to record signals at different cortical depth portions (De Martino et al., 2018; 

Dumoulin, Fracasso, van der Zwaag, Siero, & Petridou, 2018; Kashyap, Ivanov, Havlicek, Poser, & 

Uludağ, 2017). One of the biggest promises of this development is that it has the potential to reveal 

cortical depth-dependent properties resulting from or involved in feedforward and feedback 

processing (Dumoulin, 2017; Dumoulin et al., 2018; Self & Roelfsema, 2017). While the ultimate goal 

of laminar fMRI is to record from different anatomical layers individually, this remains impossible at 

current spatial resolutions. Therefore, using the term laminar fMRI for sub-millimeter fMRI is 

technically a misnomer. However, as it is widely used in the sub-millimeter fMRI literature, I will use 

both the term laminar fMRI as well as sub-millimeter fMRI in this thesis. I use laminar fMRI methods 

in Chapters 2, 3, and 4 of this thesis.  
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Challenges of laminar fMRI 
While laminar fMRI holds great promise, data acquisition and analysis at this resolution are non-trivial 

in practice. Even though it is increasingly popular, these challenges currently prevent it from seeing 

widespread applications. I will briefly discuss some of them. 

Data acquisition challenges and considerations 
Functional MRI is an umbrella term for several different data acquisition techniques that are each used 

to measure a proxy of brain activity. Each of these techniques have their own advantages and 

disadvantages, and most are based on the BOLD signal. One of these techniques is gradient echo (GRE) 

echoplanar imaging (EPI) due to its easy implementation, high SNR, good sensitivity to large and small 

blood vessels, and (relatively) large coverage (Havlicek & Uludag, 2019). GRE-EPI is the general method 

of choice for regular (non-laminar) fMRI studies, and consequentially also for laminar fMRI. For 

laminar fMRI, the primary focus is recording signals from the layer-specific microvasculature. 

However, this is mixed with non layer-specific signals from mainly the venous macrovasculature for 

GRE-EPI (Havlicek & Uludag, 2019).  

Across cortical depth, blood is drained towards the cortical surface (Duvernoy et al., 1981). This 

directional blood pooling has the consequence that the recorded signal at a given cortical depth is the 

combination of any signal at that depth, plus the hemodynamic consequences (in- and outflow of 

(de)oxygenated blood) of signals at all depths below it. Other acquisition techniques, such as spin 

echo-based ones, have a higher specificity, recording signals from mostly the microvasculature, but 

are limited in SNR and coverage. Alternative non-BOLD acquisition techniques that have good 

specificity (ability to selectively record from the microvasculature) and sensitivity (SNR), such as 

cortical blood volume (CBV) measurements (e.g. VASO; Huber et al., 2015, 2017), are effective but are 

much more difficult to implement. I use GRE-EPI acquisitions in all fMRI chapters in this thesis. 

The increased spatial resolution of laminar fMRI and associated penalty in temporal resolution lead to 

a very limited coverage of the functional acquisition slab. While at regular resolution, virtually whole-

brain functional volumes can be collected in approximately 1.5 s, sub-millimeter resolution functional 

volumes are limited to 2-3 cm-thick slabs, collected every 1-4 s. Therefore, it is difficult to study large 

cortical networks quickly with laminar fMRI. Moreover, if anatomical landmarks cannot be identified, 

or the targeted location is variable between subjects, prior localizer scans might be required for the 

correct targeting. The placement of the functional volume thus needs to be carefully planned and 

performed to target the desired location.  

In regular scanner setups, the receive coils that are used to record the fMRI signal are distributed 

around the scalp of the subject. To increase the local SNR, these elements can be placed more closely 

together, over the desired cortical location. For this, custom-built receive coils are needed. As the 

increased SNR comes at the cost of a further reduction in the field of view, these coils further 

complicate the targeting process. 

For the best image quality, it is paramount that subjects move their head as little as possible during a 

scanning session. While this holds true for any MRI scan, it is especially relevant for laminar fMRI, as 

moving just one millimeter already means a spatial shift of over a voxel. Subject motion can be 

reduced by using experienced subjects, and by restricting head motion as much as possible using 

mechanical constraints such as padding around the head, tape, custom head casts, or bite bars. Even 

though the last two options are effective in reducing motion even in experienced subjects, they can 

feel very restrictive in the already crammed scanner environment.   
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Data analysis challenges 
Once collected, all fMRI data need to be processed to reduce noise as much as possible, select the 

voxels that should be included in the analysis by registering the functional volumes to an anatomical 

scan, and calculate the desired outcome metrics. While this is already non-trivial for fMRI at regular 

resolution, analyzing laminar fMRI data requires several extra steps and increased precision, further 

complicating the process. I will discuss the most important of these steps below. 

FMRI data contain voxels located in white matter, gray matter, and non-brain matter (CSF, bone, etc.). 

For data analysis purposes, you typically want to select only the gray matter voxels. Regular resolution 

fMRI data do not show a clear distinction between white and gray matter. To select the correct voxels, 

functional volumes are brought to the same space as an anatomical scan and are then positioned in 

such a way that the volumes are aligned. This process is called (co-)registration. As anatomical scans 

show a very clear difference between gray and white matter, it is then easy to select only the former 

and use this to restrict the functional data to only (cortical) gray matter voxels. The distinction 

between gray and white matter voxels is clearer in laminar fMRI data than for regular resolution fMRI 

data. It is even possible to select the gray matter voxels immediately from the functional data. 

Although this was the standard just a few years ago, this approach is extremely tedious as you 

manually need to draw the gray matter definition for each slice, every time you collect new data. A 

much faster way to select the desired gray matter voxels, is to register the functional data to 

anatomical data, just like with regular resolution data. However, fMRI data are distorted due to small 

inhomogeneities in the magnetic field, resulting in a mismatch between functional and the 

undistorted anatomical data. These distortions increase with higher field strengths and cause local 

shifts in voxel locations in the functional volume. These geometrical distortions are present in all fMRI 

data, but as sub-millimeter fMRI requires more precise registration to the anatomy, it is especially 

important to correct for these distortions at these sub-millimeter resolutions. To do this, we collect 

additional functional volumes with identical distortions, but in an opposite direction. This allows for 

correcting distortions by calculating the undistorted image: the midpoint nonlinear transformation 

between the two distorted images. Using this correction, it becomes possible to precisely register the 

laminar fMRI data to the anatomical data. This registration must be done to a great degree of 

precision, as misaligning a volume by 1 mm already means being more than a voxel off-target. 

Apart from the functional data, anatomical data processing also requires additional/adjusted data-

analysis steps for laminar fMRI. The resolution of anatomical data used in laminar fMRI studies needs 

to be sub-millimeter, just like the functional data. A typical whole-brain anatomy covers a couple 

million voxels. Software that automatically determines which voxels contain white, gray, or other 

matter has improved over the last years, but most of the current methods still need some manual 

correction. Next, to be able to perform any analysis across cortical depth, you first need to define at 

what cortical depth each gray-matter voxel lies. Cortical depth for fMRI is usually expressed as relative 

depth between 0 (gray-white matter border) and 1 (gray matter-CSF border). Central cortical depth, 

at a relative depth of 0.5 should correspond with layer IV. Simply dividing the gray matter into equal 

parts across cortical depth is an attractive option. While this results in layer IV being located at the 

correct locations in flat pieces of cortex, it under- or overestimates the location of layer IV (and other 

layers) in the highly curved gyri and sulci of the brain (Waehnert et al., 2014). As it turns out, the total 

volume of each cortical layer is constant along the cortex, resulting in thick, compressed outer layers 

and thin, stretched-out inner layers in sulci, and vice versa for gyri. Nowadays, equi-volume depth 

mapping, which incorporates the changes in relative depth of layers based on this biological principle, 

is the generally accepted and implemented method for generating cortical depth maps.  
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Linear systems analysis for laminar fMRI 
A fundamental assumption of nearly all fMRI analysis techniques, is that the relationship between 

local neuronal activity and the BOLD response can be described as linear (Figure 5). That is, the 

recorded BOLD signal is assumed to be proportional to the local average neuronal activity, averaged 

over a voxel, over a period of time (Figure 5; Boynton, Engel, Glover, & Heeger, 1996). This is essential 

for (almost) all analyses that use a standard or subject-specific hemodynamic impulse response 

function (HRF) to predict the temporal BOLD response pattern in reaction to a set of known stimuli. 

These predictions are generated by multiplying and temporally summing the assumed HRF. A prime 

example is any general linear model (GLM) based approach, which are used in most fMRI research 

carried out to this day. If BOLD response linearity is violated, it leads to under- and/or overestimations 

and potential mislocalization of activity. Luckily, BOLD linearity at regular resolution holds for most 

practical applications (e.g. Boynton, Demb, Glover, & Heeger, 1999; Boynton et al., 1996; Boynton, 

Engel, & Heeger, 2012), although there are some deviations, mostly in event-related designs (e.g. Birn, 

Saad, & Bandettini, 2001; Kershaw, Kashikura, Zhang, Abe, & Kanno, 2001; Pfeuffer, McCullough, Van 

De Moortele, Ugurbil, & Hu, 2003; Robson, Dorosz, & Gore, 1998; Soltysik, Peck, White, Crosson, & 

Briggs, 2004; Vazquez & Noll, 1998; Zhang, Zhu, & Chen, 2008).  

 

Figure 5: Diagram of the linearity assumption for fMRI. The relationship between the Stimulus and 
Neuronal Response can be a nonlinear function of any stimulus property. The fMRI Response, 
consisting of the Hemodynamic consequences of the Neuronal Response and recorded by the MRI 
Scanner, is linearly related to the Neuronal Response. This is the linearity assumption for fMRI. Noise 
may be introduced at any stage but can be summarized as a single noise factor. After: (Boynton et al., 
1996). 

BOLD response linearity for fMRI must adhere to the two assumptions of a linear system: scaling, and 

temporal additivity (Figure 6). We can define a system with a hemodynamic transform 𝐿, neuronal 

response over time 𝑛(𝑡), and the hemodynamic response 𝐻(𝑡) as output: 

𝐿[𝑛(𝑡)] =  𝐻(𝑡)  (Equation 1) 

For the scaling assumption to hold, multiplying the neuronal response by a constant 𝑘 (as the result 

of e.g. an increase in stimulus intensity) should lead to a 𝑘-fold increase in the hemodynamic response:  

𝐿[𝑘𝑛(𝑡)] = 𝑘𝐿[𝑛(𝑡)] = 𝑘𝐻(𝑡) (Equation 2) 

For the temporal additivity assumption to hold, the response to the sum of two neuronal responses 

should be equal to the sum of the responses of each separate input. Given two neuronal responses 

𝑛1(𝑡) and 𝑛2(𝑡), this is formalized as:  

𝐿[𝑛1(𝑡) + 𝑛2(𝑡)] = 𝐿[𝑛1(𝑡)] + 𝐿[𝑛2(𝑡)] (Equation 3) 
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The easiest way to visualize this property, is by imagining two neuronal responses that are elicited 

close in time to each other, such that the hemodynamic response associated with the first neuronal 

response has not yet returned to baseline when that the second neuronal response is elicited. The 

temporal additivity assumption then states that the second hemodynamic response -resulting from 

the second neuronal response- simply adds to the first hemodynamic response, without interacting in 

any way (Boynton et al., 2012). 

For laminar fMRI, the local hemodynamic response at a given depth does not only depend on the local 

neuronal response, but also on the responses at deeper cortical depths because of directional blood 

pooling towards the cortical surface. This dependency may result in a violation of the linearity 

assumptions for laminar fMRI. Therefore, before we can start using laminar fMRI to answer 

neuroscientific questions, we must first investigate whether the assumptions of a linear system hold 

for laminar fMRI. In Chapter 2, I assess the scaling assumption across cortical depth, and in Chapter 3 

I assess the temporal additivity assumption across cortical depth in the early and intermediate visual 

cortex (visual field maps V1, V2, and V3). 

 

Figure 6: Linearity assumptions for a linear system: Scaling (top row) and Temporal additivity (bottom 
row). Gray bars represent stimulus presentations. L denotes a hemodynamic transform. Factor n(t) 
represents the neuronal response over time t. H(t) denotes the hemodynamic response over time t.  
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Electrocorticography 
As neuronal processing happens on the hundreds of millisecond timescale and the temporally sluggish 

blood response to neuronal activity that fMRI measures progresses on the second timescale, the 

temporal resolution of (laminar) fMRI leaves things to be desired. Several other non-invasive 

neuroimaging methods have a significantly better temporal resolution (Gazzaniga et al., 2014). 

However, this increased temporal resolution comes at the cost of a significantly reduced spatial 

resolution, as is the case for e.g. electroencephalography (EEG) and magnetoencephalography (MEG). 

Methods that combine a great temporal resolution with a good spatial resolution thus need to be 

invasive. Most direct brain recordings are performed using (arrays of) electrodes that are inserted into 

the brain of an animal. This is an extremely invasive procedure. However, these electrophysiological 

methods can have a single-neuron resolution, with a temporal resolution in the millisecond range. 

Even though these methods would be great to use in humans for their spatial and temporal resolution, 

they are only rarely applied, and only if medically necessary.  

A somewhat more common -though still quite rare- method in humans is implanting cortical surface 

electrodes. These electrodes are typically 1-2 mm in diameter and are placed directly on the cortical 

surface (electrocorticography; ECoG). These electrodes directly measure the electrical activity of only 

the neurons that lie directly underneath them (Lachaux, Rudrauf, & Kahane, 2003). The temporal 

resolution of ECoG is in the millisecond range. As it is an invasive method, ECoG can only be used when 

this is deemed clinically necessary. This is commonly done in patients with medically intractable 

epilepsy. When epilepsy is non-responsive to any other treatment, the epileptic focus (the location in 

the brain from where the epileptic seizures originate) is often surgically removed. To spare as much 

of the healthy cortex as possible, electrode grids are implanted under the skull of the patient (Lee, 

Spencer, & Spencer, 2000). The patient is then monitored to identify the exact location of the epileptic 

focus. This is then used as a guide for neurosurgery. During the monitoring phase, some patients agree 

to participate in scientific studies. In summary, ECoG provides a relatively high spatial and extremely 

high temporal resolution, complementing laminar fMRI. Together, these methods can be used to gain 

a better understanding of the fine-grained functional organization of the human brain. 

  



17 | General introduction 
 

Summary 
Most cortical processing takes place between different laminae of the cortex. With advances in 

neuroimaging, it is now becoming possible to investigate information processing across cortical depth. 

While early visual processing at the laminar level is relatively well-studied, much is still unknown about 

the laminar organization of higher-order (visual) information processing. Although laminar fMRI can 

be used to investigate laminar information processing, this technique comes with numerous 

challenges, some of which remain unresolved thus far. One of these issues is the applicability of fMRI 

analyses based on the assumption of a linear relationship between neuronal activity and BOLD signal 

amplitude. In Chapters 2 & 3, I assess whether the two assumptions that must be met for this linearity, 

hold across cortical depth. I perform these measurements in the visual system. 

In Chapters 4 & 5, I investigate higher-order visual information using high-resolution methods. 

Specifically, I investigate laminar processing of numerosity information in the parietal (association) 

cortex using laminar fMRI in Chapter 4. As little is known about laminar processing of higher-order 

visual information, I use the information flow in the early visual cortex as hypothesis. In the early visual 

system, processing progresses from central cortical depth towards both the deep and superficial 

layers. In Chapter 5, I complement the high spatial resolution study of the previous chapter by 

exploring the temporal characteristics of numerosity processing using intracranial recordings. 

 

  



18 |  
 

Chapter 2 

 
 

Linear amplitude scaling across cortical 
depth for laminar fMRI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

van Dijk, J.A., Fracasso, A., Petridou, N., & Dumoulin, S.O., Linear amplitude scaling across cortical 

depth for laminar fMRI (submitted) 

Acknowledgement of author contributions 
JAvD, AF, and SOD designed the experiment. JAvD and AF collected and analyzed the data. All authors 

contributed to and reviewed the main manuscript text. JAvD prepared all figures. SOD and NP 

provided general supervision and guidance throughout. 



19 | Linear amplitude scaling across cortical depth for laminar fMRI 
 

Abstract 
A fundamental assumption of nearly all functional magnetic resonance imaging (fMRI) analyses is that 

the relationship between local neuronal activity and the blood oxygenation level dependent (BOLD) 

signal can be described as following linear systems theory. With the advent of ultra-high field (7T and 

higher) MRI scanners, it has become possible to perform sub-millimeter resolution fMRI in humans. A 

novel and promising application of sub-millimeter fMRI is measuring responses across cortical depth, 

i.e. laminar imaging. However, the cortical vasculature and associated directional blood pooling 

towards the pial surface strongly influence the cortical depth dependent BOLD signal, particularly for 

gradient-echo BOLD. This directional pooling may potentially affect BOLD linearity across cortical 

depth. Here we assess whether the amplitude scaling assumption for linear systems theory holds 

across cortical depth. For this, we use stimuli with different luminance contrasts to elicit different 

BOLD response amplitudes. We find that BOLD amplitude across cortical depth scales with luminance 

contrast, and that this scaling is identical across cortical depth. Our results suggest that the amplitude 

scaling assumption for linear systems theory across cortical depth holds for luminance contrast 

manipulations in sub-millimeter laminar BOLD fMRI. 

  



20 | Linear amplitude scaling across cortical depth for laminar fMRI 
 

Introduction 
The cerebral cortex consists of separate cortical regions that perform specialized computations. The 

first parcellation of the cortex into separate cortical regions was based on anatomical differences 

across cortical depth, i.e. cortical layers or laminae (Brodmann, 1903, 1909; Gennari, 1782; 

Nieuwenhuys, Broere, & Cerliani, 2015; C. Vogt & Vogt, 1919; O. Vogt, 1910, for reviews see Geyer & 

Turner, 2013; Nieuwenhuys, 2013). 

Magnetic resonance imaging (MRI) is one of the most popular techniques to study the human brain 

non-invasively. The recent development in static magnetic field strength to ultra-high fields of 7 Tesla 

and higher, has enabled researchers to investigate the human brain at a sub-millimeter (mesoscopic) 

scale. At this spatial resolution, it becomes possible to measure both anatomical and functional 

cortical depth dependent signals that reflect contributions of different cortical layers. Sub-millimeter 

laminar functional MRI (fMRI) promises to complement anatomical measurements across cortical 

depth with functional properties that may indicate feedforward and feedback processes (Dumoulin et 

al., 2018; Self & Roelfsema, 2017).  

However, fMRI across cortical depth faces substantial challenges (Dumoulin et al., 2018; Kashyap et 

al., 2017; Yacoub, De Martino, & Ugurbil, 2018). One dominant challenge relates to the cortical 

vascular organization. While fMRI detects hemodynamic consequences of neuronal activity (Heeger, 

Huk, Geisler, & Albrecht, 2000; Logothetis, 2002), the cortical vasculature has a specific organization 

across cortical  layers: blood flows from pial and intracortical arteries and arterioles to the capillary 

bed that directly interfaces with neuronal tissue, and is then drained via venules and intracortical veins 

to larger pial veins at the cortical surface (Duvernoy et al., 1981; Turner, 2002). This likely explains a 

large part of the consistently reported finding that BOLD signal amplitude is larger at the cortical 

surface and systematically decreases toward deeper layers (see e.g. Chen, Wang, Gore, & Roe, 2012; 

De Martino et al., 2013; Dumoulin, 2017; Dumoulin et al., 2018; Fracasso, Van Veluw, et al., 2016; Kim 

& Ress, 2017; Koopmans, Barth, Orzada, & Norris, 2011; Koopmans, Boyacioǧlu, Barth, & Norris, 2012; 

Lawrence, Formisano, Muckli, & de Lange, 2017; Polimeni, Fischl, Greve, & Wald, 2010; Puckett, 

Aquino, Robinson, Breakspear, & Schira, 2016; Self, van Kerkoerle, Goebel, & Roelfsema, 2019; J. C. 

Siero, Petridou, Hoogduin, Luijten, & Ramsey, 2011; van den Berg, Klomp, & Petridou, 2016; Yu, Qian, 

Chen, Dodd, & Koretsky, 2014; Zimmermann et al., 2011). The vascular architecture across cortical 

depth has also been modeled in detail e.g. (Boas, Jones, Devor, Huppert, & Dale, 2008; Reichold et al., 

2009) and poses a fundamental challenge for the analysis of laminar fMRI as blood pooling effects 

might differently affect the blood oxygenation level dependent (BOLD) signal in deeper layers 

compared to more superficial ones (Heinzle, Koopmans, den Ouden, Raman, & Stephan, 2016).   

Furthermore, due to the directional blood pooling across layers, hemodynamic responses from deeper 

cortical layers influence signals at superficial layers. For example, if there is neuronal activity in the 

deeper cortical depth portions only and not in the more superficial ones, a BOLD signal change would 

be measured at all cortical depths, due to this directional blood pooling (see Figure 1, lowest red line). 

Theoretically, this could occur in absence of feedforward signals due to clinical manifestations (see 

e.g. Masuda, Dumoulin, Nakadomari, & Wandell, 2008), or in situations where neuronal activity is 

primarily driven by feedback signals -typically arriving in the supragranular and/or infragranular depth 

portions, as demonstrated by Kok and colleagues (Kok et al., 2016) and Klein et al (Klein, Fracasso, 

Dijk, et al., 2018).  
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In summary, the specific cortical vascular organization can potentially undermine fundamental 

assumptions in fMRI analysis at the sub-millimeter scale. Nearly all fMRI data-analysis techniques 

assume that fMRI responses are linearly proportional to a local average neuronal activity over a period 

of time following linear systems theory (Boynton et al., 1996). For this theory to hold, two assumptions 

must be met: scaling and temporal additivity. These assumptions have been tested for conventional 

supra-millimeter fMRI for which they largely hold, provided that the stimuli used are within a defined 

range of stimulus parameters that is commonly used in neuroimaging experiments (see e.g., Boynton 

et al., 1996; Boynton, Engel, & Heeger, 2012; Cohen, 1997; Friston, Jezzard, & Turner, 1994; Heeger 

et al., 2000; Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000); for nonlinearities, mostly found 

in event-related designs (see e.g., Birn, Saad, & Bandettini, 2001; Kershaw, Kashikura, Zhang, Abe, & 

Kanno, 2001; Pfeuffer, McCullough, Van De Moortele, Ugurbil, & Hu, 2003; Robson, Dorosz, & Gore, 

1998; Soltysik, Peck, White, Crosson, & Briggs, 2004; Vazquez & Noll, 1998; Zhang, Zhu, & Chen, 2008). 

The laminar BOLD signal amplitudes and directional blood pooling across layers potentially violate 

these assumptions, as different portions across cortical depth are not independent.  

Here we test whether the scaling assumption for a linear system holds in human visual cortex for BOLD 

amplitude across cortical depth using the most common acquisition protocol at 7T; gradient echo 

(GRE) BOLD fMRI. Thus, we seek to extend the BOLD linearity assumption to the cortical depth domain, 

specifically for amplitude scaling. If we define a system with a hemodynamic transform L, neuronal 

response over time 𝑛(𝑡), and the hemodynamic response 𝐻(𝑡) as output: 

𝐿[𝑛(𝑡)] =  𝐻(𝑡)  (Equation 1) 

For the scaling assumption to be satisfied, the new output must be equal to the original output, 

multiplied by a constant k: 

𝐿[𝑘𝑛(𝑡)] = 𝑘𝐿[𝑛(𝑡)] = 𝑘𝐻(𝑡)   (Equation 2) 

On a sub-millimeter level, however, the hemodynamic response at depth 𝑑 does not only depend on 

the local neuronal response, but also on responses at deeper cortical depths because of the draining 

effects towards the cortical surface. Thus, the hemodynamic response at depth 𝑑 can be expressed 

as: 

𝐻𝑐(𝑑) = 𝐿[𝑛(𝑡)]𝑑 + ∑ 𝑤𝑖
𝑑−1
𝑖=𝑑0

𝐻𝑐(𝑖)  (Equation 3) 

Where 𝐻𝑐(𝑑) is the hemodynamic response at depth 𝑑; 𝐿[𝑛(𝑡)]𝑑  is the hemodynamic transform of 

the local neuronal response over time at depth 𝑑; and ∑ 𝑤𝑖
𝑑−1
𝑖=𝑑0

𝐻𝑐(𝑖) reflects the draining from the 

sum of the hemodynamic response 𝐻𝑐(𝑖) at all cortical depths below depth 𝑑, up to the gray-white 

matter surface 𝑑0, each weighted by a factor 𝑤𝑖. This weighting factor represents an estimation of the 

draining of altered deoxyhemoglobin content and increased blood pressure from lower layers 

(Marquardt, Schneider, Gulban, Ivanov, & Uludağ, 2018).  The hemodynamic response at a given depth 

is thus a combination of the local neuronal activity and draining from deeper layers. Therefore, the 

hemodynamic response is not only dependent on the neuronal responses at that location (or depth) 

but also on the neuronal responses at other locations (depths). This dependence might violate the 

assumption that the hemodynamic response is proportional to the underlying local neuronal activity 

and could drive the system nonlinear. For example, if task demands drive deeper cortical depths more 

actively than more superficial depths due to feedback connections (Angelucci et al., 2002; Felleman & 

Van Essen, 1991), this would result in an increase in the hemodynamic response at all depths, while 

there is no additional local neuronal component at most depths. This is illustrated in Figure 1, lower 

red curve. This violates the scaling assumption between cortical depths.           
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We can express the scaling assumption across cortical depth as: 

𝐻𝑐2(𝑑) = 𝑘𝐻𝑐1(𝑑)   (Equation 4) 

Where 𝐻𝑐1(𝑑) and 𝐻𝑐2(𝑑) are the hemodynamic responses at each cortical depth 𝑑, for condition 𝑐1 

and 𝑐2 respectively, and 𝑘 is a scaling constant from one stimulus condition to another (Figure 1, green 

curve), which should be constant across depth for the scaling assumption to hold across cortical depth. 

We used stimuli with different luminance contrasts (i.e. sinewave gratings with 5, 20, and 80% 

luminance contrast) to elicit gradually increasing neuronal responses. For linear amplitude scaling 

across cortical depth to hold, the BOLD response amplitude across cortical depth to a higher contrast 

(Figure 1, green curve) should be equal to the response profile across cortical depth for a lower 

contrast multiplied with a scaling factor 𝑘 that is independent of cortical depth (Figure 1, gray curve), 

therefore retaining the shape but changing in amplitude. Figure 1 also shows two changes in response 

amplitude that do not follow linear systems theory (Figure 1, red lines). For example, an intercept shift 

due to e.g. a spatially restricted increase in neuronal activation does not satisfy linear systems theory 

requirements (Figure 1, lower red curve).  

All subjects participated in two sessions. In one session, participants passively fixated the center of a 

large fixation cross, while they performed a one-back motion direction discrimination task in the other 

session. We find that response amplitudes increase with increasing contrast and increase towards the 

cortical surface. Scaling these responses according to linear systems theory resulted in a substantial 

overlap between contrasts, supporting the validity of linear amplitude scaling for GRE-BOLD fMRI 

across cortical depth for stimulus luminance contrast. Correspondence between sessions was 

excellent.  

 

Figure 7: Theoretical response amplitude changes across cortical depth as luminance contrast 
increases. See also Equation 4. WM = white matter, CSF = cerebrospinal fluid. Gray line: Base response 
amplitude across cortical depth for a given contrast, 𝐻𝑐(𝑑), red and green lines indicate theoretical 
response changes as the luminance contrast increases. The green line satisfies the scaling requirement 
according linear system theory, i.e. the response increase corresponds to a multiplication of 𝐻𝑐(𝑑) with 
a scaling factor k, resulting in 𝑘𝐻𝑐(𝑑). Both red lines indicate potential increases in responses that do 
not follow linear system theory. The lower red line corresponds to adding a response at the deepest 
cortical depth 𝑑0, and the resulting draining offset to the original BOLD response, 𝐻𝑐(𝑑) + 𝐻𝑐2(𝑑0). 
Although this is a linear transformation, this does not satisfy the scaling requirement for a linear 
system. The upper red line corresponds to a response increase that includes a maximum response. A 
maximum response is also a nonlinear - and biologically plausible - transformation.   
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Methods 

Participants 
Five participants (all male, age range 23-44 years) took part in the experiment. One participant was 

left-handed. All participants had normal or corrected-to-normal visual acuity and were experienced 

with the MRI environment. Informed consent was acquired from all participants. All experimental 

procedures were conducted in accordance to the Declaration of Helsinki and approved by the ethics 

committee of the University Medical Center Utrecht.  

Stimuli 
Stimuli were presented on a 32” LCD screen, specifically designed for use in an MRI environment 

(Cambridge Research Systems, 2012). The screen resolution was 1920x1080 pixels, with an active area 

of 69.8 x 39.3cm and a refresh rate of 120Hz, with a built-in linear luminance look-up table. The display 

was positioned at the end of the bore, and viewed via a mirror, at a total viewing distance of 220cm. 

The stimulus diameter subtended 10.2 degrees of visual angle (deg).     

All stimuli were generated with MATLAB (Mathworks, 2015b) using the Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997). A green fixation cross (0.1 deg in diameter) stretching from corner to 

corner throughout the center 10.2 deg, was presented at all times. The stimuli consisted of sinewave 

gratings (0.5 cycles per degree) oriented in any of 4 possible directions (0-135 deg in 45 deg steps; 

Figure 2A; similar to (Masuda et al., 2010)). The gratings were moving perpendicular to the orientation 

of the bars at 1.76 deg per second and limited by a circular aperture with 5.1 deg radius. Movement 

was either towards the left, or towards the right edge of the screen. The luminance contrast of the 

gratings was 5, 20, or 80%. These contrasts largely lie within the approximately linear range of stimulus 

space (Boynton et al., 1999).   

Stimuli and fixation cross were presented for 12 seconds, followed by a 12-second period of mean 

luminance baseline with the fixation cross. During the 12 seconds of stimulus presentation, stimuli 

were shown each time for 750 ms, followed by 250 ms of mean luminance. The subsequent 

presentation randomly moved in the same motion direction as the previous presentation (12.5% 

chance), or not. No more than two consecutive presentations could have the same motion direction. 

Each block contained a stimulus of only 1 luminance contrast. Each run consisted of 15 blocks (5 blocks 

of each contrast, presented in a semi-randomized order). As the repetition time of the functional 

volumes was very long and averaging between session is undesirable at sub-millimeter resolution, this 

design was the most reasonable.   

Task 
Participants completed two sessions. Each session consisted of 6 or 7 runs. The same stimuli were 

used during both sessions. During one session, participants were instructed only to fixate the center 

of the fixation cross. To assess the stability of amplitude scaling between sessions, subjects performed 

a one-back motion direction discrimination task on the other session. During this session, participants 

were instructed to fixate the center of the fixation cross and indicate whenever two consecutive 

stimulus presentations had the same motion direction by means of a button press. 

Visual field maps definition 
Visual field maps were acquired in separate scanning sessions, using near-identical procedures as in 

previous studies (e.g. Dumoulin & Wandell, 2008). All visual field maps were restricted to 5.1 degrees 

eccentricity -the radius of the stimulus in this study- based on eccentricity estimates following the 

population receptive field (pRF) approach (Dumoulin & Wandell, 2008). All data were collected using 

a Philips Achieva 7T scanner (Philips, Best, the Netherlands) using a dual-channel volume transmit coil 
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and a 32-channel receive coil (Nova Medical, MA, USA), using a 2D-EPI sequence. For participants S1, 

S4, and S5, visual field mapping data were collected using a traversing bar-stimulus as in (Dumoulin & 

Wandell, 2008), but with gray-scale natural images as carrier. Functional data were acquired at a 1.8 

mm isotropic resolution, with a TR/TE = 1500/25 ms, and 248 time points per run. Three runs were 

collected for each participant. For S2, and S3, identical stimuli were used as by Dumoulin & Wandell. 

For S2, 8 functional runs were collected at a resolution of 2 mm isotropic, and TR/TE = 1500/25 ms 

(248 time points per run). For S3, 7 functional runs were collected at a resolution of 1.8 mm isotropic, 

TR/TE = 2100/25 ms (182 time points per run). Visual field maps for visual areas V1, V2, and V3 were 

defined for all participants (Figure 2B).  

High resolution MRI and fMRI acquisition 
High resolution anatomical and functional data were acquired using a Philips Achieva 7 T scanner with 

a maximum gradient strength of 40mT/m and a slew rate of 200 T/m/s (Philips, Best, The Netherlands). 

A dual-channel volume transmit coil was used for all scans (Nova Medical, MA, USA). A 32-channel 

receive coil (Nova Medical, MA, USA) was used for all anatomical scans, while two custom-built 16-

channel high-density surface receive arrays were used for all functional scans ( MRCoils BV; Petridou 

et al., 2013). These surface arrays were positioned adjacent so that the two arrays touched each other 

lengthwise but did not overlap. Participants were positioned such that their external occipital 

protuberance was approximately aligned with the center between the arrays, at the height of the 

most distal receive elements from the isocenter.   

Anatomical data were acquired using an MP2RAGE sequence (Marques et al., 2010). Whole-brain 

sequence parameters were: TI1 = 800 ms, TI2 = 2700 ms, TRMP2RAGE = 5500 ms, TR/TE = 6.2/2.3 ms, flip 

angle α1 =7, and α2 = 5, bandwidth = 403.7 Hz/pixel, acceleration factor using SENSE encoding = 3.5 x 

1.3 (RL and AP respectively), resolution = 0.64mm isotropic, total scan time 9 min 57 s.   

Functional data were acquired with a T2*-weighted 3-dimensional multi-shot EPI (3D- EPI, two shots 

per slice, 34 slices, 68 shots overall). The sequence parameters were: TR/TE = 59/28 ms, flip angle: 

20°, acceleration factor using SENSE encoding: 3.5 (right-left) × 1.3 (anterior-posterior), echo planar 

factor: 27, bandwidth (phase-encode): 19.1 Hz/pixel, voxel size = 0.70mm isotropic, FOV = 131 (right-

left) × 120 (feet-head) × 24 (anterior- posterior) mm, 34 coronal slices, and 28% oversampling in the 

slice direction. Functional volumes were acquired every 4 s and functional scans were each 91 time 

frames (364 s) in duration. 

Additionally, we acquired ‘topup’ functional data with reversed right-left phase-encoding and 

geometrical distortions in opposite directions from the original functional data (Andersson, Skare, & 

Ashburner, 2003). Images with opposite phase encoding polarities were extracted, and susceptibility 

induced distortion was estimated using nonlinear warping to estimate the undistorted mid-point 

between the two volumes in AFNI (Cox, 1996). Five volumes were acquired per topup run. For each 

session, 6 or 7 functional and accompanying topup runs were acquired for each participant.  
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Pre-processing: functional data 
The fMRI data pre-processing was performed using AFNI. First, motion parameters between runs were 

computed by aligning the first volumes for each run to the first volume of the first run. Subsequently, 

motion parameters within runs were calculated by aligning each volume within a run to the first 

volume of that run. The individual motion-corrected runs were then despiked, scaled, and detrended. 

During the scaling step, the time-series for each run and every voxel were converted to percentage 

BOLD by dividing the signal of each voxel by its temporal mean, multiplying the resulting signal with 

100, and subsequently subtracting 100 to ensure that the mean temporal response for each voxel was 

zero percent. The detrending step was preformed using the AFNI function 3dDtrend with a fourth-

degree polynomial detrending. A warp field to correct for geometric distortions in the 3D-EPIs was 

calculated using a nonlinear transformation, performed on the original (non-motion corrected, scaled, 

despiked, or detrended) volumes. For this, the first 5 volumes of the 3D-EPI for each run, and the 5 

volumes of each topup 3D-EPI run were used. As the 3D-EPI volumes have the opposite distortions in 

the phase-encoding direction from the topup 3D-EPI, the undistorted 3D-EPI volume is the halfway 

warping between the two extremes (Andersson et al., 2003).  

Next, the motion estimates and warp field results were combined to calculate the 3D-EPI mean image, 

averaging over all warped and motion corrected volumes between runs and collapsing over all time 

points. This mean EPI image was then registered to the anatomical data. This process involved several 

steps. First, the anatomy was clipped so that only the occipital lobe was left. Then the anatomy and 

mean EPI image were brought into the same space by aligning their respective centers of mass. Next, 

the ‘Nudge dataset’ plugin in AFNI was used to provide a good starting point for the automated 

registration. This registration consisted of two affine transformations, using the local Pearson 

correlation as cost function (Saad et al., 2010). The first one allowed for a maximum shift and rotation 

of 3mm. The second iteration allowed for a maximum shift and rotation of 1mm. The transformation 

matrices for the manual and automated steps were joint into a single affine matrix. To reduce the 

number of interpolation steps we applied this registration matrix along with the warp field (see 

previous paragraph) in a single step to each motion-corrected, despiked, scaled, and detrended run 

(see previous paragraph) to align these volumes to the registered mean EPI image. For this, we used 

the AFNI function 3dNwarpApply with nearest neighbor interpolation. Then, the resulting volumes 

were resampled into anatomy space to allow for accurate cortical depth calculation, using nearest 

neighbor interpolation. This procedure resulted in registered time-series for each run. All in all, our 

procedure involved a total of two spatial interpolation steps to get from the motion-corrected, 

despiked, scaled, and detrended runs to the registered, topup-corrected time-series for each run in 

anatomy space. 



26 | Linear amplitude scaling across cortical depth for laminar fMRI 
 

 

Figure 2: Stimulus design and processing steps. A) Example stimuli with 5% (red border), 20% (green 
border), and 80% (blue border) luminance contrast. B) Example anatomical slice with visual field map 
definition overlay. Inset: slab positioning for functional data acquisition. C) Anatomical slice with 
volume-preserving depth map (colored), and visual field map (dashed lines) overlay. D) Anatomical 
slice with t-statistical map (colored), and visual field map (dashed lines) overlay. This illustrates the 
accuracy of the registration. This statistical map is only used for illustrative purposes. E) Example time-
series. Colors correspond to luminance contrast presentations with the same color-code as figure 2A. 
Colored bars represent when the stimulus was shown, transparent bars represent the presentation of 
mean-luminance baseline. F) Averaged block responses at relative cortical depth 0.1 and 0.5, where 0 
is the gray-white matter border, and 1 is the gray matter-cerebrospinal fluid border. The line color 
corresponds to responses elicited by the luminance contrasts as in figure 2A. Error regions represent 
+/-2 standard errors (95% confidence intervals) of the mean across repeated stimulus presentations 
for V1. Gray rectangle represents when a stimulus was presented. Dashed box represents the time 
points included in the analysis.     

 

Pre-processing: anatomical data  
The MP2RAGE anatomical images were segmented using the CBS-tools plugin (Bazin et al., 2007) 

(www.nitrc.org/projects/cbs-tools/) in MIPAV (http://mipav.cit.nih.gov/), and subsequently manually 

optimized in 3D Slicer (Fedorov et al., 2012). Next, a volume-preserving distance map between the 

gray matter-white matter (GM/WM) border and the gray matter-cerebrospinal fluid (GM/CSF) border 

was computed (Waehnert et al., 2014) in 6 separate level-set volumes. This approach takes into 

account cortical folding in the depth estimation and is implemented in CBS-tools. These level sets were 

projected on the 3D-EPI space for subsequent laminar analysis (Figure 2C).  
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Analysis 

BOLD across cortical depth 

For each participant, visual field map (V1, V2 and V3) and luminance contrast, we took each registered, 

topup-corrected time-series (Figure 2E) and divided these into 24s blocks, each starting at stimulus 

onset. The volume-preserving distance map was divided in 5 quantiles, spanning from gray matter-

white matter (GM/WM) border to gray matter-cerebrospinal fluid (GM/CSF) border. We calculated 

the mean percentage BOLD signal change for the response amplitude of the second, third, and fourth 

sampling point in a block (at 4, 8, and 12 s after stimulus onset respectively; see Figure 2F, dashed 

box), and the standard error of the mean across repeated stimulus presentations for each depth bin 

and  luminance contrast (Figure 2F). Note that this approach ignores the depth-dependent differences 

in temporal BOLD response characteristics (see e.g., Siero et al., 2015, 2011). As the temporal 

resolution in this experiment is 4 s, we only sample a few points of the response curve, and these 

temporal BOLD response differences are too small to effectively pick up at this temporal resolution. 

Moreover, averaging over the sampling points further reduces the presence of small temporal 

differences. Initial analysis using a basic general linear model (GLM) with luminance contrast as 

independent variable, yielded near identical results. This type of analysis also takes the post-stimulus 

undershoot into account. However, as the basic assumptions for a GLM include that the system that 

is being tested adheres to linear systems theory, this analysis is inherently circular and therefore not 

used in this study. We calculated the across repeated stimulus presentations of the BOLD response 

amplitudes to each luminance contrast for each visual field map by dividing the across repeated 

stimulus presentations standard deviation by the mean signal amplitude across repeated stimulus 

presentations at each depth bin.  These estimates were then averaged over participants (Figure 2G-I). 

Similar measures were previously used for depth-dependent fMRI by Kim & Ress (J. H. Kim & Ress, 

2017). 

Linearity assessment 
To assess the response linearity across cortical depth, we first plotted all unique combinations of BOLD 

amplitudes across cortical depth (𝐻𝑐1(𝑑) and 𝐻𝑐2(𝑑)) to two out of three different contrasts across 

cortical depth against each other for each individual participant and visual field map (5% vs 20%, 20% 

vs 80%, and 5% vs 80% grating contrast for V1, V2, and V3; see Figure 4A-C for group averages, and 

Figure S 2 for individual contrast pairs ). We then used a linear fit to estimate the best fitting line to 

the BOLD amplitudes from each of the combinations of BOLD responses across cortical depth 

mentioned above. Only a slope parameter was estimated with this linear fit as is required to satisfy 

the linear amplitude scaling assumption. This was done for all individual participants, and repeated 

for V1, V2, and V3. This estimated slope of the best fitting line then corresponds to the scaling constant 

𝑘 in Equation 4.  

Next, we overlaid the responses to different contrasts for each participant and region of interest by 

scaling each stimulus contrast response (𝐻𝑐2(𝑑)) by a constant 𝑘 to fit other measured luminance 

contrast responses over depth (𝐻𝑐1(𝑑) see Figures 4D-F and 5D-F for group averages). As there were 

multiple luminance contrasts, multiple scaling constants were estimated, one for each combination of 

𝐻𝑐1(𝑑)  and 𝐻𝑐2(𝑑). These scaling constants were estimated using a regression for each luminance 

contrast pair, fitting only a slope parameter to scale one luminance contrast response amplitude over 

depth to the other, thus omitting the intercept estimation. Then, we calculated the explained variance 

of the original responses (𝐻𝑐1(𝑑))  based on the scaled responses to the other contrasts 𝑘𝐻𝑐2(𝑑) to 

assess the degree of linearity of the responses across cortical depth. Explained variance was calculated 

for each pair of contrasts (one original, and one scaled) separately. Note that the calculated amplitude 

scaling constants and explained variance using this approach, and the approach used in the previous 
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paragraph, are identical. However, the results from the analysis in this paragraph are displayed on the 

group level. As such, the two approaches are complementary. All procedures were performed for the 

initial (fixation-only) and the retest (one-back task; Figure 5A-F) sessions separately. To assess the 

reliability of scaling between sessions we overlaid the response amplitudes for both sessions on each 

other (Figure 5G-I) and calculated the explained variance between sessions.  

Additionally, we calculated the average response amplitude over cortical depth between contrasts by 

averaging the three luminance contrast responses. This averaged response was then scaled to each 

individual luminance contrast response over cortical depth in the same way as described in the 

previous paragraph. Next, we calculated the explained variance between these scaled responses and 

the original responses for each of the three pairs (scaled and original response amplitude over depth). 

Results of this analysis can be found in Figure S3. Note that this approach already includes a weighted 

version of the scaling target response in the averaged response. These responses are therefore not 

independent of each other. In the other approaches described in this section, the luminance contrast 

response pairs are independent of each other. 

Results 

BOLD signal amplitude increases with luminance contrast and cortical depth 
For each subject, the fMRI signal increased both as a function of luminance contrast and cortical depth 

in V1-3 (see Figure 3A-C for V1 for three example participants; for additional participants see Figure 

S1). These signal increases are consistent with previous literature reporting increases with luminance 

contrast (Boynton et al., 1996, 2012) and cortical depth (J. H. Kim & Ress, 2017; Muckli et al., 2015; 

Polimeni et al., 2010; Siero et al., 2011). The latter is expected based on the cortical vasculature, as 

blood pooling increases towards the pial surface (Duvernoy et al., 1981). The standard error across 

repeated stimulus presentations increased towards the cortical surface. This is expected as thermal 

noise scales with signal amplitude.    

Next, we averaged the different subjects and observed the same signal increase (Figure 3D-F). For 

example, in the central depth bin of V1 (Figure 3D), the 5% luminance contrast elicited a response 

amplitude of 0.8% BOLD, whereas 20% and 80% luminance contrast elicited 1.1% BOLD and 2.6% BOLD 

respectively in the same depth bin. For V2 (Figure 3E), the 5%, 20%, and 80% luminance contrast 

elicited a response amplitude of 1.3, 1.6, and 2.4 % BOLD in the central depth bin respectively. For V3 

(Figure 3F), these values were 1.5, 1.7, and 2.4% BOLD respectively. 

Variability across cortical depth (Figure 3G-I) was expressed by dividing the standard deviation of the 

signal amplitude over voxels at a given cortical depth bin within a given visual field map by the mean 

signal amplitude across repeated stimulus presentations at each depth bin within each visual field 

map, expressed as a percentage. This was calculated for each participant separately. Variability was 

highest for 5% luminance contrast responses for all visual field maps, with 80% consistently showing 

the lowest variability. Variability was generally lowest around the central depth bins, increasing 

outwards. In V1, there is a notable increase in variability near the gray-white matter surface. 

Additionally, variability is generally higher in V1 for 5% and 20% luminance contrast with respect to 

the other visual field maps. This is mainly driven by a lower BOLD response amplitude for these 

luminance contrasts compared to other visual field maps, as visible in Figure 3D.    
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Figure 3: BOLD response amplitudes as a function of cortical depth and different luminance contrasts 
for the first session. A-C) BOLD response amplitudes across cortical depth for three example 
participants, for visual field map V1. Error regions represent +/-2 standard errors of the mean (95% 
confidence intervals) across repeated stimulus presentations for a region of interest, for each depth 
bin and luminance contrast. Panels for the other participants can be found in Figure S1. D-F) Group 
averages for visual field map V1, V2, and V3. BOLD response amplitudes increase with luminance 
contrast and towards the cortical surface. Error regions represent +/- 2 standard errors (95% 
confidence intervals) of the mean response across depth between subjects. G-I) Variability (standard 
deviation across repeated stimulus presentations divided by the mean across voxels, in percentage) 
over depth for visual field map V1, V2, and V3. Thin lines denote individual subject. Thick lines denote 
group averages. Line colors correspond to luminance contrast, as in Figure 3A-F.          
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Linear systems theory captures differences in signal amplitudes 
To assess the response linearity across cortical depth, we plotted all unique combinations of BOLD 

responses to two different luminance contrasts across cortical depth for each individual participant 

(Figure 4A-C; see Figure S2 for separate plots for each contrast pair). If responses to a higher luminance 

contrast (𝐻𝑐1(𝑑)) are a scaled version of a lower luminance contrast (𝑘𝐻𝑐1(𝑑), see equation 4), BOLD 

responses across cortical depth should fall on a straight line going through the origin with a slope equal 

to 𝑘. For V1, these linear fits explained an average variance of r2 = 0.99, 0.97, and 0.99 for 5% to 20%, 

5% to 80%, and 20% to 80% luminance contrast scaling respectively. For V2, the average explained 

variance was r2 = 0.99, 0.99, and 0.98, and r2 = 0.96, 0.99, and 0.98 for V3. 

To visualize the results in an alternative way, we plotted the averaged original responses (𝐻𝑐1(𝑑)) and 

averaged scaled responses (𝑘𝐻𝑐1(𝑑), equation 4; Figure 4D-F). See Table 1, left value in every cell, for 

all group estimates of 𝑘. The scaled responses were good predictors for responses at other contrasts. 

Both analyses indicate that the response amplitude across cortical depth elicited by one luminance 

contrast, was an excellent predictor for the response amplitude across cortical depth to another 

luminance contrast.  

 

Figure 4: Linear systems theory captures differences in signal amplitude for the first session. A-C) BOLD 
response amplitude for individual participants (different marker symbols), for V1, V2, and V3. Different 
marker colors represent different depth bins. Each possible pair of two out of three luminance contrasts 
is plotted against each other (different colored lines), with %BOLD for the lower contrast on the x-axis, 
and for the higher contrast on the y-axis. Linear fits were forced to only fit a slope parameter, k from 
Equation 4. These fits explained 96-99% of variance. See Figure S2 for separate plots of each luminance 
contrast pair. D-F) Measured BOLD response across cortical depth for different luminance contrasts 
(colored lines) and visual field maps (different panels), overlaid with scaled responses to other 
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contrasts (dotted lines). Scaled responses represent the measured BOLD response across cortical depth 
for other contrasts, scaled by a scaling constant k (see Equation 4). These scaled responses explained 
96-99% of variance. Error regions represent +/- 2 standard errors (95% confidence intervals) of the 
mean response across depth between subjects. These are scaled by a factor k for the scaled responses.        

Table 1: Group amplitude scaling factor 𝑘 for all unique combinations of BOLD responses to two 
different luminance contrasts across cortical depth. The left value in each cell represents the scaling 
parameter for the first session, and the right value in each cell represents the scaling parameter for 
the second session. Separate rows: pairs of luminance contrasts. Separate columns: visual field maps.     

𝒌 (session 1 / session 2) 

 V1 V2 V3 

𝑯𝟐𝟎(𝒅) = 𝒌𝑯𝟓(𝒅) 1.50 / 1.61 1.24 / 1.26 1.16 / 1.15 

𝑯𝟖𝟎(𝒅) = 𝒌𝑯𝟓(𝒅) 3.62 / 3.89 1.87 / 1.93 1.58 / 1.69 

𝑯𝟖𝟎(𝒅) = 𝒌𝑯𝟐𝟎(𝒅) 2.38 / 2.33 1.50 / 1.53 1.37 / 1.47 

 

Linear amplitude scaling generalizes across sessions  
Next, we assessed whether these results generalized between sessions. In the second session, 

participants had to detect when the motion direction of the stimulus was identical on two consecutive 

presentations. The average discriminability (d’) was 2.2, indicating a detection performance of well 

above chance level (d’ of S1-5 were 2.6, 2.2, 2.1, 2.3, and 1.8 respectively, minimum d’ for any 

individual run is 1.4).  

Akin to our results above, the BOLD signal increased both as a function of contrast and cortical depth 

in V1-3 (Figure 5A-C). In the central depth bin of V1 (Figure 5A), the 5% luminance contrast elicited a 

response amplitude of 0.7% BOLD, whereas 20% and 80% luminance contrast elicited 1.1% BOLD and 

2.5% BOLD respectively in the same depth bin. For V2 (Figure 5B), the 5%, 20%, and 80% luminance 

contrast elicited a response amplitude of 1.2, 1.5, and 2.3 % BOLD in the central depth bin respectively. 

For V3 (Figure 5C), these values were 1.3, 1.6, and 2.3% BOLD respectively.  

Similar to Figure 4D-F, we plotted the averaged original responses (𝐻𝑐1(𝑑)) and averaged scaled 

responses (𝑘𝐻𝑐1(𝑑), equation 4; Figure 5D-F). See Table 1, right value in every cell, for all group 

estimates of 𝑘. The scaled responses were excellent predictors for responses at other contrasts. For 

V1, these scaled responses explained an average variance of r2 = 0.98, 0.96, and 0.99 for 5% to 20%, 

5% to 80%, and 20% to 80% luminance contrast scaling respectively. For V2, the average explained 

variance was r2 = 0.99, 0.99, and 0.99, and r2 = 0.98, 0.99, and 0.99 for V3. 

Furthermore, we overlaid the responses across cortical depth to each session. These responses were 

near identical (r2 = 0.99 for all contrasts and visual field maps), indicating that the reliability between 

sessions of luminance contrast responses across cortical depth is excellent.  
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Figure 5: BOLD response amplitude and amplitude scaling for the second session are very similar to the 
first session. A-C) Group average BOLD response amplitudes across cortical depth of the second session 
for visual field map V1, V2, and V3. Error regions represent +/- 2 standard errors (95% confidence 
intervals) of the mean response across depth between subjects. D-F) Measured BOLD response across 
cortical depth of the second session for different contrasts (colored lines) and visual field maps 
(different panels), overlaid with scaled responses to other contrasts (dashed lines). These scaled 
responses explained 96-99% of variance. Error regions represent +/- 2 standard errors (95% confidence 
intervals) of the mean response across depth between subjects. These are scaled by a factor k for the 
scaled responses. G-I) Group average BOLD response amplitudes across cortical depth for the first 
session (solid lines) and second session (dotted lines, grayscale). Error regions represent +/- 2 standard 
errors (95% confidence intervals) of the mean response across depth between subjects. Responses for 
both sessions matched almost perfectly (explained variance 99%).           
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Discussion 
We assessed whether the scaling assumption for a linear system holds for BOLD amplitude across 

cortical depth. We evaluated BOLD fMRI responses across cortical depth elicited by viewing moving 

sinewave gratings with 5%, 20%, and 80% luminance contrast. We find that BOLD responses vary as a 

function of both luminance contrast and cortical depth. Additionally, we find that the variability of the 

BOLD response amplitude decreases with increasing luminance contrast, and that variability is highest 

in V1. In particular, we find that scaled BOLD responses across cortical depth, elicited by viewing one 

luminance contrast, are excellent predictors (average explained variance r2 = 0.96-0.99) for responses 

across cortical depth to another luminance contrast, supporting the validity of the amplitude scaling 

assumption for BOLD amplitude across cortical depth. We do not find differences between scanning 

sessions, indicating that the robustness of the amplitude scaling assumption for the tested visual 

stimulus across cortical depth is stable over time.  

Variability across cortical depth decreased with increasing luminance contrast, with 5% luminance 

contrast showing the highest variability across cortical depth for all visual field maps. This can be 

attributed to consistently lower signal amplitude than for other luminance contrasts, with comparable 

variability (see Figure 3A-C, Figure S1). Generally, variability showed a U-shaped profile across cortical 

depth, being lowest around the central depth bins and increasing towards the WM/CSF and WM/GM 

borders (see Figure 3G-I). However, as physiological and thermal noise may have different layer 

dependence, variability profiles across depth and the specific values measured here are likely to vary 

with parameters such as functional resolution, distance of the measured tissue to the radio frequency 

coils, and task-related signal amplitude.  

Several recent studies have investigated the laminar response profiles focusing on the underlying 

neurovascular coupling in humans (De Martino et al., 2013; Herman, Sanganahalli, Blumenfeld, 

Rothman, & Hyder, 2013; Huber, Goense, et al., 2014; Huber et al., 2015; Kemper et al., 2015; 

Koopmans, Barth, & Norris, 2010; Koopmans et al., 2011, 2012; Olman et al., 2012; Polimeni et al., 

2010; Ress, Glover, Liu, & Wandell, 2007; Siero et al., 2011; Xing, Yeh, Burns, & Shapley, 2012; 

Zimmermann et al., 2011); non-human primates (G. Chen et al., 2012; Goense & Logothetis, 2006; 

Goense, Merkle, & Logothetis, 2012; Goense, Zappe, & Logothetis, 2007; Smirnakis et al., 2007; Zappe, 

Pfeuffer, Merkle, Logothetis, & Goense, 2008); and other mammals (Harel, Lin, Moeller, Ugurbil, & 

Yacoub, 2006; Jin & Kim, 2008; Lu et al., 2004; Silva & Koretsky, 2002; Yang et al., 2002; Yu et al., 2012, 

2014; Zhao, Wang, Hendrich, Ugurbil, & Kim, 2006). All these studies have focused on the feasibility 

of laminar imaging. In addition, a few studies have employed sub-millimeter fMRI for systems and 

cognitive neuroscience questions (Y. Chen et al., 2011; Cheng, Waggoner, & Tanaka, 2001; De Martino 

et al., 2015; Fracasso, Petridou, et al., 2016; Goodyear & Menon, 2001; Huber et al., 2015; Kok et al., 

2016; Marquardt et al., 2018; Muckli et al., 2015; Smith & Muckli, 2010; Yacoub, Harel, & Ugurbil, 

2008; Yacoub, Shmuel, Logothetis, & Uǧurbil, 2007). However, these latter studies have largely 

avoided the interpretation of BOLD amplitude measures, as this type of measure is susceptible to 

blood pooling effects across cortical depth. Here we provide data for the usability of BOLD fMRI 

amplitude measurements across cortical depth and the amplitude linearity assumption that underlies 

many fMRI analyses.  

Here we used a T2*-weighted, gradient-echo (GRE) based 3D-EPI acquisition to collect the functional 

data. This type of acquisition is sensitive to the microvasculature, but also to larger vessels 

(macrovasculature; e.g. draining veins) and is thus affected by blood-pooling effects across cortical 

depth. Therefore, a signal elicited at a deeper cortical depth affects the measured signal at more 

superficial cortical depths, which results in less laminar specificity and the commonly observed signal 

increase in that direction, also found in this study. These effects could be corrected for in the analysis, 
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for instance by implementing a spatial correction approach as proposed by Markuerkiaga and 

colleagues (Markuerkiaga, Barth, & Norris, 2016), Marquardt and colleagues (Marquardt et al., 2018), 

or potentially by implementing more elaborate models of BOLD at different cortical depths that better 

capture general spatiotemporal properties of the hemodynamic signal, and the dynamics of capillary, 

arterial, and venous effects (Aquino, Robinson, Schira, & Breakspear, 2014; Aquino, Schira, Robinson, 

Drysdale, & Breakspear, 2012; Boas et al., 2008; Heinzle et al., 2016; Puckett et al., 2016; Uludağ & 

Blinder, 2018) with respect to more traditional hemodynamic models (Buxton, Wong, & Frank, 1998; 

Klaas Enno Stephan, Weiskopf, Drysdale, Robinson, & Friston, 2007). We observed a relative decrease 

in BOLD amplitude for the most superficial depth bin in several visual field maps and for several 

luminance contrasts. These could be due to partial volume artifacts, and because the microvasculature 

is less dense near the cortical surface (Duvernoy et al., 1981).  

One could argue that the increase in BOLD amplitude towards the cortical surface overshadows any 

cortical depth-dependent specificity in sub-millimeter GRE-based fMRI, i.e. the depth dependent 

signal may arise from partial voluming of the larger vessels at superficial depths only and signals may 

decrease as a function of the distance from the these depths. However, it has been shown that there 

is sufficient specificity present in depth-dependent GRE acquisitions to measure different signals 

across the cortical depth. Biophysical models show that in the worst-case scenario, extravascular 

contamination from the veins at the pial surface falls off four-fold at a distance of half the vessel 

diameter, thus rapidly decreasing when moving away from the cortical surface (Ogawa et al., 1993). 

Additionally, at very high resolutions it is possible to isolate signals from middle layers from those at 

the pial surface (Fracasso, Luijten, Dumoulin, & Petridou, 2017). Furthermore, several studies using 

GRE-BOLD acquisitions and advanced analysis methods, have shown cortical depth-dependent 

modulations; of population receptive field size (Dumoulin & Wandell, 2008; Fracasso, Petridou, et al., 

2016); with attention (Klein, Fracasso, Dijk, et al., 2018); with the absence or presence of illusory 

contours (Kok et al., 2016); and with contextual feedback (Muckli et al., 2015). 

It is possible that the different vascular compartments over cortical depth have different (non)linear 

contributions to the measured BOLD signal at different luminance contrasts, e.g. nonlinear for the 

macrovasculature (draining veins), and linear for the microvasculature. We speculate that given the 

sensitivity of GRE-BOLD fMRI to the microvasculature, one would expect that nonlinearities over 

cortical depth resulting from the macrovasculature would have been detected here. We speculate 

that an increase in spatial resolution would not be expected to yield considerably different results. 

One could also argue that the microvasculature can exhibit nonlinearities, while the macrovasculature 

exhibits linear contributions to BOLD signal amplitude over cortical depth. However, if this were the 

case, GRE-BOLD fMRI would be able to pick up on nonlinearities in the microvasculature, especially 

closer to the gray-white matter surface as the capillary density is high at that compartment (Duvernoy 

et al., 1981). These would be detectable as nonlinearities at deeper and intermediate cortical depths, 

as compared to superficial depths, as these are most contaminated by macrovascular contributions. 

The third option would be that both the macrovascular and microvascular contributions are nonlinear 

but cancel each other out (near) perfectly. In this case, it would be hard to separate these 

contributions using GRE-BOLD fMRI. However, this would mean that linearity can still be assumed for 

most practical applications.  All in all, linearity is not a feature that is only expected of GRE-BOLD fMRI, 

but also for other acquisition sequences at sub-millimeter resolutions, e.g. spin echo-based 

acquisitions, 3D-GRASE (Feinberg & Günther, 2009), and VASO (Huber et al., 2015, 2017; Jin & Kim, 

2008). If anything, it is expected that GRE-BOLD fMRI is most sensitive to nonlinear macrovascular 

contributions.   
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Although the explained variance for the amplitude scaling is extremely high, there are minor 

deviations from linearity. These deviations are also apparent in Figure 4A-F, and Figure 5D-F. The 

deviations from linearity are more apparent at the highest luminance contrast, hinting at a potential 

increase in nonlinearity near the higher end of stimulus parameter space.  

For a more complete evaluation of linear systems theory for BOLD amplitude across cortical depth in 

the visual domain, stimuli varying in high and other low-level domains such as spatial frequency, as 

well as the temporal additivity assumption for a linear system should also be investigated. However, 

the current stimuli span a wide range of stimulus energy, also using luminance contrasts at the edge 

of parameter space (5% and 80%). Thus, if the BOLD amplitude across cortical depth were nonlinearly 

scaled between different stimulus energy, we would have been able to capture this. Moreover, 

contrast manipulations are frequently used in the visual neuroscience literature, and were originally 

used for the assessment of the scaling assumption at supra-millimeter resolutions (Boynton et al., 

1999, 1996, 2012). All in all, our results can be generalized for the visual domain along different 

contrast levels, while the scaling assumption remains to be validated for other modalities and 

measurements of contrast energy. Our data do not allow for the investigation of different 

contributions to the generation of the BOLD signal, so neuronal to vascular and vascular to BOLD 

contributions cannot be disentangled with the current experimental design. Additionally, because of 

the currently used pooling of large numbers of voxels using a region of interest-based approach, we 

cannot exclude that local pockets of nonlinearity might be observed within a region of interest (here: 

visual field map). However, our results do provide evidence for the linearity of BOLD amplitude across 

cortical depth as a function of luminance contrast for region of interest-based approaches. The 

temporal additivity assumption for a linear system was not currently assessed as the presently used 

volume acquisition time (4 s) results in too sparse a sampling of the fMRI time-series to assess this 

property. At the current resolution (0.7 mm isotropic voxels), this is the fastest our system could 

collect data. Thus, only one out of two assumptions for a linear system across cortical depth has been 

evaluated so far.  

To our knowledge, response amplitude to different luminance contrasts is only assessed by one other 

laminar fMRI publication to date. In that study, Marquardt and colleagues (Marquardt et al., 2018) 

assess the cortical depth profiles of luminance contrast responses, but do not assess luminance 

contrast linearity of BOLD amplitude across cortical depth. Instead, they propose a novel spatial 

deconvolution approach to correct for the directional component of the intracortical vasculature 

(Marquardt et al., 2018). The range of their measured signal amplitudes is similar to the current 

findings. They also use a GRE-based EPI sequence with the same resolution, albeit with a shorter TR 

(2.94 s versus 4 s here) and more coverage (52 slices versus 34 slices in the present study). Upon simple 

visual inspection, both their deconvolved and original results are likely to fit with the current findings, 

providing further evidence that the scaling assumption for a linear system holds across cortical depth 

for luminance contrast manipulations.        

We do not find any evidence for significant changes in signal amplitude across cortical depth between 

sessions, even though the second session included a stimulus-related task. This appears to be in 

contradiction with previous studies that have shown attention-related differences for supra-

millimeter fMRI (see e.g., O’craven, Rosen, Kwong, Treisman, & Savoy, 1997; Schwartz et al., 2005); 

across cortical depth in e.g. population receptive field center positions (Klein, Fracasso, Dijk, et al., 

2018); or suggest such differences due to e.g. a lack of feedforward input in patients with macular 

degeneration (Masuda et al., 2008). Potential explanations for the apparent lack of task-driven 

changes in our study are two-fold. First, evidence suggests that attentional signal modulation in early 

visual cortex is reduced with respect to extrastriate visual field maps (Clark & Hillyard, 1996; Klein, 
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Fracasso, Dijk, et al., 2018; Moran & Desimone, 1985; O’craven et al., 1997; Somers, Dale, Seiffert, & 

Tootell, 1999). Moreover, Klein et al (Klein, Fracasso, Dijk, et al., 2018) focused on measures that do 

not depend on signal amplitudes. When comparing signal amplitudes, they found little modulation of 

BOLD amplitude between different attention conditions. Additionally, the one-back task used in the 

present study required very little attentional resources to carry out correctly as the events were 

sparse, and the stimulus was very salient. We therefore argue that attentional modulation did not play 

a role in the present study.  

Conclusion 
We provide evidence that the scaling assumption for linear systems theory can be met for BOLD 

amplitude measures across cortical depth, i.e. responses scale with luminance contrast, and this 

amplitude scaling is identical across cortical depth. Thus, the BOLD linearity assumption for amplitude 

scaling commonly employed for conventional fMRI analysis, extends to the cortical depth domain for 

luminance contrast manipulations.  
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Supplementary Information 

 

Figure S 1:  BOLD response amplitudes as a function of cortical depth and different luminance contrasts 
for the first session.  BOLD response amplitudes across cortical depth for the two participants not 
shown in Figure 3A-C, for visual field map V1. Error regions represent 95% confidence intervals of the 
mean across repeated stimulus presentations in a region of interest, for each depth bin and luminance 
contrast. 
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Figure S 2: BOLD response amplitude at each depth bin for every combination of two luminance 
contrast presentations, for each participant (different marker shapes), with best linear fit line. Different 
cortical depths are denoted as different marker sizes and colors, as indicated in the appropriate 
legends. N.B. Combining each column of panels in one figure, results in Figures 4A-C. A-C) BOLD 
response amplitudes for 5% luminance contrast (x-axis) plotted against the BOLD response amplitude 
for 20% luminance contrast (y-axis) for V1-V3. D-F) BOLD response amplitudes for 5% luminance 
contrast (x-axis) plotted against the BOLD response amplitude for 80% luminance contrast (y-axis) for 
V1-V3. G-I) BOLD response amplitudes for 20% luminance contrast (x-axis) plotted against the BOLD 
response amplitude for 80% luminance contrast (y-axis) for V1-V3.  
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Figure S 3: Measured BOLD response amplitude across cortical depth for different luminance contrasts 
for session 1 (red, green, and dark blue solid lines), and BOLD response amplitude across cortical depth 
averaged over all luminance contrasts for session 1 (light blue line). Dashed black lines represent the 
average luminance contrast response (light blue line), scaled by a factor k to best fit each luminance 
contrast response. These scaled responses explained 99% of variance. Error regions represent 95% 
confidence intervals of the mean response across depth between subjects. Different panels display 
different visual field maps. 
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ABSTRACT  
Advancements in ultra-high field (7 T and higher) magnetic resonance (MRI) scanners have made it 

possible to investigate both the structure and function of the human brain at a sub-millimeter scale. 

As neuronal feedforward and feedback information arrives in different layers, sub-millimeter 

functional MRI has the potential to uncover information processing between cortical microcircuits, 

across cortical depth. For nearly all fMRI analyses, one of the main assumptions is that the relationship 

between local neuronal activity and the blood oxygenation level dependent (BOLD) signal can be 

described as following linear systems theory. Directional blood pooling across cortical depth, 

stemming from the anatomy of the cortical vasculature may affect BOLD response linearity, 

complicating analysis and interpretation. Here we assess whether the temporal additivity assumption 

of linear systems theory holds for laminar fMRI. We find that BOLD response predictions are constant 

across cortical depth in V1, V2, and V3. Our results suggest that the temporal additivity assumption 

for linear systems theory holds for laminar fMRI. Together with our previous work, we show that BOLD 

response linearity holds across cortical depth for sub-millimeter gradient-echo BOLD fMRI in the early 

visual cortex.  
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Introduction 
Magnetic resonance imaging (MRI) is one of the dominant methods to non-invasively study the 

structure and function of the (human) brain. Over the past two decades, this imaging method has seen 

rapid developments, resulting in ever-increasing technical possibilities and applications. With the 

advent of ultra-high (7 Tesla and higher) field MRI scanners, it has become possible to investigate both 

structure and function of the human brain at a sub-millimeter resolution. As the human cortex has a 

thickness of 1.5 - 4 mm (Fischl & Dale, 1999) and is comprised of six anatomically (and functionally) 

distinct laminae or layers (Brodmann, 1903, 1909; Gennari, 1782; C. Vogt & Vogt, 1919; O. Vogt, 1910), 

sub-millimeter resolutions enable the investigation of cortical depth-dependent signals reflecting 

contributions from different cortical layers (also known as laminar MRI). Sub-millimeter functional 

MRI (fMRI) promises to complement anatomical measurements across cortical layers, adding valuable 

information about fundamental processing in cortical microcircuits, and functional properties that 

reflect feedforward and feedback interactions within the thickness of the cortex (De Martino et al., 

2018; Dumoulin et al., 2018; Lawrence et al., 2017; Natalia Petridou & Siero, 2017; Self & Roelfsema, 

2017; Self et al., 2019; K. E. Stephan et al., 2019). 

These promises, however, do not come without challenges (Dumoulin et al., 2018; Kashyap et al., 

2017; Yacoub et al., 2018). One dominant challenge of laminar fMRI relates to the organization of the 

cortical vasculature across cortical depth. Blood flows from pial and intracortical arteries and 

arterioles to the capillary bed that directly interfaces with neuronal tissue, and is then drained via 

venules and intracortical veins to larger veins at the cortical surface (Duvernoy et al., 1981; Turner, 

2002). This results in a directional blood collection -also called blood pooling- across cortical depth 

towards the cortical surface. Therefore, the fMRI signal at a specific cortical depth does not only 

consist of measurements of the hemodynamic consequences of local neuronal activity (Heeger et al., 

2000; Logothetis, 2002), but also of hemodynamic changes at underlying cortical depths, closer to the 

gray-white matter surface. The weighting of these two factors -local neuronal activity in micro vessels, 

and draining effects from micro- and macrovasculature- is dependent upon the specific acquisition 

methods used (S. G. Kim & Ogawa, 2012; Natalia Petridou & Siero, 2017). Detailed models of the 

vascular architecture across cortical depth (see e.g. Boas et al., 2008; Reichold et al., 2009) additionally 

show that blood pooling effects might differentially affect blood oxygenation-dependent (BOLD) 

signals at deeper cortical depths compared to ones closer to the cortical surface (Heinzle et al., 2016).  

While draining effects across cortical depth pose a challenge to laminar fMRI, these effects are largely 

irrelevant for fMRI at conventional resolutions (>>1 mm3), as one voxel at these resolutions typically 

spans most of the thickness of the cortex. One of the major assumptions underlying nearly all fMRI 

data-analysis techniques, is that fMRI responses are linearly proportional to a local average neuronal 

activity over a period of time (Boynton et al., 1996). This assumption largely holds for conventional-

resolution fMRI, provided that the stimuli used are within a defined range of stimulus parameters that 

is commonly used in neuroimaging experiments, see e.g. (Boynton et al., 1996, 2012; Cohen, 1997; 

Friston et al., 1994; Heeger et al., 2000; Miezin et al., 2000); for nonlinearities, mostly found in event-

related designs and very short stimulus presentations, see e.g. (Birn et al., 2001; Kershaw et al., 2001; 

Pfeuffer et al., 2003; Robson et al., 1998; Soltysik et al., 2004; Vazquez & Noll, 1998; Zhang et al., 

2008). However, because of draining effects across cortical depth, laminar BOLD fMRI might violate 

linearity assumptions, as different cortical depth bins are not independent.  
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For BOLD response linearity to hold, two assumptions must be met: linear scaling, and temporal 

additivity. The linear scaling assumption across cortical depth using gradient echo (GRE) BOLD in the 

visual cortex has previously been confirmed to hold (van Dijk et al., submitted), but the temporal 

additivity assumption remains yet to be evaluated. Here we test whether the temporal additivity 

assumption for a linear system holds in human visual cortex using GRE-BOLD at 7T. We thus seek to 

complete the evaluation of the BOLD amplitude linearity assumptions across cortical depth.  

If we define a system with a hemodynamic transform 𝐿, neuronal response over time 𝑛(𝑡), and 

hemodynamic response 𝐻(𝑡) as output: 

𝐿[𝑛(𝑡)] = 𝐻(𝑡)  (Equation 1) 

For the property of temporal additivity to hold, the response to the sum of two inputs should be equal 

to the sum of the responses to each separate input. Given two inputs 𝑛1(𝑡) and 𝑛2(𝑡), this is 

formalized as:  

𝐿[𝑛1(𝑡) + 𝑛2(𝑡)] = 𝐿[𝑛1(𝑡)] + 𝐿[𝑛2(𝑡)] (Equation 2) 

The easiest way to visualize this property, is by imagining two neuronal responses that are elicited 

close in time to each other, such that the hemodynamic response associated with the first neuronal 

response has not yet returned to baseline when that the second neuronal response is elicited. The 

temporal additivity assumption then states that the second hemodynamic response -resulting from 

the second neuronal response- simply adds to the first hemodynamic response, without interacting in 

any way (Boynton et al., 2012). On a sub-millimeter level, the hemodynamic response at a given depth 

𝑑 does not only depend on the local neuronal response, but also on responses at cortical depths closer 

to the gray-white matter border due to blood pooling effects. Thus, the temporal additivity 

assumption at cortical depth 𝑑 can be formalized as:     

𝐿[𝑛1(𝑡) + 𝑛2(𝑡)]𝑑 + ∑ 𝑤𝑖𝐿[𝑛1(𝑡) + 𝑛2(𝑡)]𝑖

𝑑−1

𝑖=𝑑0

= 𝐿[𝑛1(𝑡)]𝑑 + 𝐿[𝑛2(𝑡)] 𝑑 + ∑ 𝑣𝑖𝐿[𝑛1(𝑡)]𝑖

𝑑−1

𝑖=𝑑0

+ ∑ 𝑢𝑖𝐿[𝑛2(𝑡)]𝑖

𝑑−1

𝑖=𝑑0

 

 (Equation 3) 

Then, by substituting Equation 1 for legibility, and rearranging:  

𝐻1,2(𝑡)𝑑 = 𝐻1(𝑡)𝑑 + 𝐻2(𝑡)𝑑 − ∑ 𝑤𝑖𝐻1,2(𝑡)𝑖

𝑑−1

𝑖=𝑑0

+ ∑ 𝑣𝑖𝐻1(𝑡)𝑖

𝑑−1

𝑖=𝑑0

+ ∑ 𝑢𝑖𝐻2(𝑡)𝑖

𝑑−1

𝑖=𝑑0

 

 (Equation 4)  

Where 𝐻1,2(𝑡)𝑑is the hemodynamic response over time to a combination of stimulus 1 and 2 at depth 

𝑑;  𝐻1(𝑡)𝑖  and 𝐻2(𝑡)𝑖  are the hemodynamic responses over time to stimulus 1 and 2 respectively at 

depth 𝑑. The factor ∑ 𝑤𝑖 𝐻1,2(𝑡)𝑖
𝑑−1
𝑖=𝑑0

 represents the draining contributions from the combined 

hemodynamic response 𝐻1,2(𝑡)𝑖  at all cortical depths 𝑖 between the gray-white matter border 𝑑0 and 

the depth bin directly below cortical depth 𝑑. These responses are weighted by a depth-dependent 

factor 𝑤𝑖. The factors ∑ 𝑣𝑖𝐻1(𝑡)𝑖
𝑑−1
𝑖=𝑑0

, and ∑ 𝑢𝑖𝐻2(𝑡)𝑖
𝑑−1
𝑖=𝑑0

 represent the draining contributions as 

described above, but for 𝐻1(𝑡)𝑖  and 𝐻2(𝑡)𝑖  respectively and weighted by factors 𝑣𝑖 and 𝑢𝑖  

respectively. The weighting factors 𝑤𝑖, 𝑣𝑖 or 𝑢𝑖  represent an estimation of the draining of altered 

deoxyhemoglobin content and increased blood pooling from lower layers (Marquardt et al., 2018). 

Both the hemodynamic response to two combined responses, and two separate responses, are thus 
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dependent not only on local neuronal activity, but also on draining from deeper cortical depths. These 

draining effects might not be identical for responses to the combination of two stimuli, versus the two 

stimulus responses separately, and thus violate the temporal additivity assumption at a given cortical 

depth.  

For the temporal additivity assumption across cortical depth to hold, BOLD responses to longer 

stimulus presentation durations should be predicted by a temporal summation of the BOLD responses 

to shorter stimulus presentation durations. This should hold equally well at all cortical depths. Note 

that this does not imply that the predicted responses at a given depth need to exactly match the 

corresponding measured response, but merely that the goodness of fit of these predictions is constant 

across cortical depth. Indeed, previous research has shown that the predictions built from shifted and 

summed responses, do not correspond one-to-one to the measured responses (see e.g. Boynton et 

al., 1996). 

Here we test whether the temporal additivity assumption for a linear system holds in human visual 

cortex for BOLD amplitude across cortical depth, using GRE-BOLD. We thus seek to extend the BOLD 

linearity assumption of temporal additivity to the cortical depth domain. We used three different 

stimulus presentation durations (2.6, 5.2, and 10.4 s, sinewave gratings at 50% luminance contrast) to 

elicit neuronal responses in striate and extrastriate cortex. For temporal additivity across cortical 

depth to hold, the quality of the fits of shifted and summed BOLD responses on measured BOLD 

responses should be consistent across cortical depth. 

We find that peak response amplitudes for each stimulus presentation duration increase towards the 

cortical surface. Moreover, we find larger response amplitudes for longer stimulus presentations. 

Predictions of responses to longer stimulus presentation durations acquired by shifting and adding 

responses to shorter stimulus presentation durations, showed good fit quality, and was consistent 

across cortical depth. In line with previous research, we find that the predictions from the shortest 

(2.6 s) stimulus presentation duration generally had lower fit quality overall than the medium (5.2 s) 

stimulus presentation duration. We conclude that the temporal additivity assumption holds across 

cortical depth for laminar GRE-BOLD fMRI in the visual cortex.    
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Methods 

Participants 
Five subjects (all male, age range 25-45) participated in the experiment. All participants were familiar 

with the MRI environment and had participated in previous experiments. They had normal or 

corrected-to-normal visual acuity. One subject was excluded because of poor signal amplitude. Signed 

informed consent was acquired from all participants. All experimental procedures were conducted in 

accordance to the Declaration of Helsinki and approved by the ethics committee of the University 

Medical Center Utrecht. 

Stimuli 
Stimuli were presented on a 32-inch LCD screen, specifically designed for use in an MRI environment 

(Cambridge Research Systems, 2012).  The screen resolution was 1920 x 1080 pixels, with a screen size 

of 69.8 x 39.3 cm, a refresh rate of 120 Hz, and a built-in linear luminance look-up table. The display 

was positioned at the far end of the bore and viewed via a mirror positioned in the MRI head coil. The 

total viewing distance was 220 cm. The total stimulus diameter subtended 10.2 degrees of visual angle 

(deg).  

All stimuli were generated in MATLAB (Mathworks; 2015b) using the Psychophysics Toolbox (Brainard, 

1997; Pelli, 1997). A fixation dot (0.1 deg in diameter) was presented at all times in the middle of the 

screen. This fixation dot was either red or green, with a color change occurring on average every 1.5 

s. The stimuli consisted of sinewave gratings (0.5 cycles per degree, luminance contrast 50%) oriented 

in any of 4 possible directions (0-135 deg in 45 deg steps; similar to (Masuda et al., 2010), and previous 

work from our group), restricted by a 5.1 deg radius circular aperture. The rest of the screen displayed 

mean luminance at all times. The gratings were moving perpendicular to the orientation of the bars 

at 1.76 deg per second. Movement was either towards the left or towards the right edge of the screen.  

Stimuli were presented for 2.6 s, 5.2 s, and 10.4 s blocks, counterbalanced in order, and interleaved 

with on average 15.6 s-long mean luminance blocks. During stimulus presentation, stimuli were shown 

each time for 700 ms, followed by 167 ms of mean luminance. No two subsequent stimulus 

presentations had the same motion direction or orientation. On half the stimulus blocks, stimulus 

onsets were jittered by 1.3 s. A total of 12 stimulus blocks (four of each duration) were presented per 

run. Each run started with one block of mean luminance. 

Task 
All participants completed one session of 8 runs. Participants were instructed to fixate on the fixation 

dot in the middle of the screen and report any color change of this fixation dot by means of a button 

press. Average fixation task performance was 78 % correct (range 49-100 % for individual runs). 

Visual field map definition 
Visual field map definitions were acquired in separate scanning sessions for each participant. 

Procedures for this were near-identical to previous studies, e.g. (Dumoulin & Wandell, 2008). Details 

for the visual field map definitions for these specific subjects can be found in van Dijk et al (submitted). 

All visual field maps were restricted to 5.1 degrees eccentricity. Only V1, V2, and V3 were included in 

this study (see Figure 1A for an example of V1).  

MRI and fMRI acquisition 
High resolution anatomical and functional data were acquired using a Philips Achieva 7 T scanner. with 

a maximum gradient strength of 40mT/m and a slew rate of 200 T/m/s (Philips, Best, The Netherlands). 

A dual-channel volume transmit coil was used for all scans (Nova Medical, MA, USA). A 32-channel 
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receive head coil (Nova Medical, MA, USA) was used for all anatomical scans, and two custom-built 

16-channel high-density surface receive arrays were used for all functional scans (Petridou et al., 2013; 

MRCoils BV). These surface arrays were positioned adjacent so that the two arrays touched each other 

lengthwise but did not overlap. Participants were positioned such that their external occipital 

protuberance was approximately aligned with the center between the arrays, at the height of the 

most distal receive elements from the isocenter.   

Anatomical data were acquired using an MP2RAGE sequence (Marques et al., 2010). Sequence 

parameters were: TI1 = 800 ms, TI2 = 2700 ms, TRMP2RAGE = 5500 ms, TR/TE = 6.2/2.3 ms, flip angle 

α1 =7, and α2 = 5, bandwidth = 403.7 Hz/pixel, acceleration factor using SENSE encoding = 3.5 x 1.3 

(RL and AP respectively), resolution = 0.64mm isotropic, whole-brain coverage, with a total scan time 

of 9 min 57 s.  

Functional data were acquired using a T2*-weighted 3-dimensional multi-shot EPI (3D- EPI, two shots 

per slice, 25 slices, 50 shots overall). The sequence parameters were: TR/TE = 59/28 ms, flip angle: 

20°, acceleration factor using SENSE encoding: 2.9 (right-left) × 1.3 (anterior-posterior), echo planar 

factor: 27, bandwidth (phase-encode): 702.4 Hz/pixel, voxel size = 0.80 mm isotropic, FOV = 126.3 

(right-left) × 120 (feet-head) × 20 (anterior- posterior) mm, 25 coronal slices, and 10% oversampling 

in the slice direction. The volume repetition time was 2.6 s. Each functional run was 102 time frames 

(4 min 25.2 s) in duration. The acquisition volume orientation was parallel to the receive arrays.   

For each functional run, we acquired an additional five volumes with reversed right-left phase-

encoding. Reversing the phase-encoding direction ensured that these so-called ‘topup’ runs had the 

opposite geometrical distortions to the original volumes (Andersson et al., 2003). These topup runs 

were used in conjunction with the original data to estimate a nonlinear warp field to create a 

susceptibility distortion-free volume, which is the midpoint between the functional and topup data 

(Andersson et al., 2003). This undistorted volume then makes it possible to align the functional data 

to the subject anatomy more accurately, needed for region of interest definition and cortical depth-

based analysis.       

Pre-processing: functional data 
Data processing was performed using AFNI (Cox, 1996) and MATLAB (Mathworks, version 2015b). 

First, a warp field to correct for susceptibility distortions was calculated using a nonlinear 

transformation, with the first five volumes of each of the functional and topup runs as input. Motion 

parameters within runs were estimated by aligning each volume within a run to the first volume of 

that run. Subsequently, motion parameters between runs were estimated by aligning the first volume 

of each run to the first volume of the first run using Fourier interpolation. Next, all runs were 

individually despiked, scaled, and detrended. Despiking was performed using the AFNI function 

3dDespike. The scaling step entailed converting the time-series of each run to percentage BOLD. This 

was achieved by dividing the signal of each voxel by its temporal mean, multiplying that signal with 

100, and subsequently subtracting 100 to ensure that the temporal mean of that voxel was zero 

percent signal change. For the detrending, the AFNI function 3dDetrend with up to a fourth-degree 

polynomial was used. These functional runs were then temporally resampled to 1.3 s timesteps using 

linear resampling. 

Next, the motion estimates and warp field results were combined to calculate the mean EPI image, 

averaging over all warped and motion corrected volumes runs and collapsing over all time points. This 

mean EPI image was then registered to the anatomy using a multi-step procedure. First, the anatomy 

was restricted to roughly the occipital lobe. Next, the mean EPI image and anatomy were brought into 

the same space by aligning the center of mass of the anatomy to the mean EPI image. Then, the ‘Nudge 
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dataset’ AFNI plugin was used to manually shift and rotate the mean EPI image to provide a good 

starting point for two automated registration steps. These registration steps both consisted of an 

affine transformation to further optimize the registration, using local Pearson correlation as cost 

function (Saad et al., 2010). The first transformation allowed for a maximum rotation and/or shift of 

3 mm in any direction, while the second transformation allowed for a maximum rotation and/or shift 

of 1 mm. The transformation matrices of the manual step and the two affine transformations were 

combined into a single affine matrix. As a control, this matrix was then applied to the original mean 

EPI image. These results were then inspected for registration quality. Next, we applied the combined 

affine matrix and the warp field to all temporally resampled motion-corrected, despiked, scaled, and 

detrended runs individually to align these volumes to the registered mean EPI image. This was 

achieved using the AFNI function 3dNwarpApply with nearest neighbor interpolation. These 

registered, distortion-corrected volumes were then resampled to the anatomy, resulting in the 

registered time-series for each run. In total, the motion-corrected, despiked, detrended time-series 

were spatially resampled twice, resulting in the registered, topup-corrected time-series in anatomy 

space (Figure 1B).  

Pre-processing: anatomical data 
Gray/white matter classifications of the anatomical data were carried out using MIPAV 

(http://mipav.cit.nih.gov/) with the CBS-tools plugin (Bazin et al., 2007; www.nitrc.org/projects/cbs-

tools/), and subsequently manually optimized in 3D Slicer (Fedorov et al., 2012). Based on these 

corrected volumes, volume-preserving distance maps between the gray-white matter (GM/WM) 

border and the gray matter-cerebrospinal fluid (GM/CSF) border were computed (Waehnert et al., 

2014) in 6 level-set volumes, also using the MIPAV with the CBS-tools plugin. These level-sets were 

then projected on the distortion-corrected mean time-series for subsequent laminar analysis (Figure 

1C).  

 

Figure 8: Processing steps. A) Example region of interest definition (V1) on a coronal anatomical slice. 
Inset: whole brain with coverage of functional acquisition (red box). B) Motion- and susceptibility-
corrected functional data overlaid on the same anatomical slice as in A). C) Depth map overlaid on 
anatomical slice.     

Analysis 

Temporal response profiles at different cortical depths 
For each participant we divided the distortion-corrected mean time-series into twelve blocks, each 

starting at stimulus onset. These blocks contained as many time points as the stimulus presentation 

duration (2.6, 5.2, or 10.4 s) plus a 15.6 s post-stimulus baseline. Blocks containing the same stimulus 

presentation duration were then averaged together. To assess the temporal responses at different 

http://mipav.cit.nih.gov/
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cortical depths, we divided the distance map (see Pre-processing: anatomical data) into 5 depth 

quantiles, spanning from the GM/WM to the GM/CSF border. Next, we selected voxels within each 

depth bin for each visual field map (V1, V2, and V3) and calculated the mean BOLD amplitude over 

time for each stimulus presentation duration, along with the 95% confidence interval of the variability 

between stimulus blocks of the same length. 

Temporal additivity assessment 
To assess the temporal additivity of BOLD responses for each visual field map at each depth bin, we 

generated predicted responses to longer stimulus presentations by temporally shifting the responses 

to shorter stimulus presentations, and subsequently adding this shifted response to the original 

response for the shorter stimulus (see e.g. Boynton et al., 1996). For example, temporally shifting a 

2.6 s stimulus presentation response by 2.6 s, and subsequently adding this to the non-shifted 2.6 s 

response, created a predicted response to the 5.2 s stimulus presentation. Next, we estimated the 

goodness of fit of these predicted responses by calculating the Pearson correlation between the 

predictions and the original stimulus responses. We subsequently plotted the correlation at each 

depth for each of the three predictions. For temporal additivity across cortical depth to hold, the 

correlation between one stimulus presentation duration and longer one at a given cortical depth bin, 

should be constant over depth. 

We repeated the above procedures at the group level, using between-participant 95% confidence 

intervals instead of between-stimulus repetitions as a measure of variability. We again calculated the 

temporally shifted responses to longer stimulus presentations and estimated the goodness of fit 

across cortical depth for each visual field map.  

Results 

Temporal response profiles increase with presentation duration and towards the 

cortical surface 
For each subject, the maximum BOLD amplitude increased both as a function of stimulus presentation 

duration and cortical depth for all tested visual field maps (V1, V2, V3; see Figure 2A-C for V1 data of 

an example subject). For the example subject, peak amplitudes in V1 at deep, middle, and superficial 

cortical depths for the short (2.6 s), medium (5.2 s), and long (10.4 s) stimulus presentations were: 

1.13, 1.34, 1.44 % BOLD (short); 1.42, 1.93, 2.38 % BOLD (medium); and 1.81, 2.24, 2.72 % BOLD (long). 

We observed similar patterns for the group averaged responses (Figure 2D-L). Group average peak 

amplitudes for V1 at deep, middle, and superficial cortical depth bins for the short (2.6 s) stimulus 

presentation duration were: 0.58, 0.86, and 0.98 % BOLD. For the medium (5.2 s) presentation 

duration, these numbers were: 0.85, 1.19, and 1.63 % BOLD respectively. Lastly, for the long (10.4 s) 

presentation duration, the peak amplitudes were: 1.32, 2.13, and 2.54 % BOLD. For V2, the respective 

peak amplitudes were 0.54, 0.88, and 1.22 % BOLD (short presentation); 0.88, 1.27, 1.76 % BOLD 

(medium presentation); and 1.25, 1.89, and 2.30 % BOLD (long presentation). For V3, peak amplitudes 

at deep, middle, and superficial cortical depth bins were 0.62, 1.05, and 1.31 % BOLD (short 

presentation); 0.87, 1.16, and 2.59 % BOLD (medium presentation); and 1.22, 1.72, and 2.96 % BOLD. 

The consistent increase towards the cortical surface and with visual hierarchy is in line with previous 

literature (see e.g. Kim and Ress, 2017; Muckli et al., 2015; Polimeni et al., 2010; Siero et al., 2011). 

Moreover, response amplitude increased with presentation durations, likewise in line with previous 

research (e.g. Boynton et al., 1996). 
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Figure 9: BOLD response profiles for three stimulus presentation durations at three cortical depth bins 
(deep, middle, and superficial). A-C) BOLD response profiles for one example subject, for visual field 
map V1. Different colors represent different stimulus presentation durations. Shaded regions represent 
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95% confidence intervals of the respective means across repeated stimulus presentations. Average 
normalized depth: 0.13 (deep), 0.58 (middle), and 0.91 (superficial). D-F) Group average BOLD response 
profiles for V1. Shaded regions represent 95% confidence intervals of the mean responses across 
participants. Average normalized depth: 0.13 (deep), 0.59 (middle), and 0.91 (superficial). G-I) As D-F, 
but for V2. Average normalized depth: 0.10 (deep), 0.54 (middle), and 0.90 (superficial). J-L) Idem, for 
V3. Average normalized depth: 0.10 (deep), 0.54 (middle), and 0.90 (superficial).       

Shifted, summed response to shorter presentations show similar temporal progressions 

as longer presentations 
To assess and visualize the temporal additivity assumption across cortical depth, we shifted the 2.6 s 

stimulus presentation curves for each cortical depth bin by 2.6 s and added this shifted response to 

the original 2.6 s response at the given bin. This resulted in the predicted response to a 5.2 s stimulus 

presentation duration. We then overlaid these predicted responses on the measured 5.2 s response 

(Figure 3A-C for three example cortical depth bins for V1; see Figures S1 and S2 for V2 and V3). 

Qualitatively, rise times and peak amplitudes for all ROIs and depth bins were generally similar 

between the predicted response and the 5.2 s measured response.  

For the longest (10.4 s) stimulus presentation duration, we calculated predicted responses in the same 

manner as for the 5.2 s stimulus presentation duration above (Figure 3D-F). These predictions were 

computed from both the 2.6 s and 5.2 s responses separately. The predicted responses based on the 

5.2 s presentation duration and the 10.4 s measured responses were highly similar over the entire 

time course of the response. The predicted responses from the 2.6 s presentation duration and the 

10.4 s measured responses showed similar results (Figure 3A, D). 

 

Figure 10: Predicted and measured BOLD response profiles at three cortical depth bins for visual field 
map V1. Average normalized depth: 0.13 (deep), 0.59 (middle), and 0.91 (superficial). A-C) Group 
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average responses to short (2.6 s, solid red lines) and medium (5.2 s, solid green lines) stimulus 
presentation durations, with predicted responses to medium presentation durations (dashed red lines) 
calculated by shifting and summing the measured responses to the short stimulus presentation 
duration for each depth bin. Shaded regions represent 95% confidence intervals of the mean response 
across participants.  D-F) Group average responses to medium (5.2 s, solid green lines) and long (10.4 
s, solid blue lines) presentation durations with predicted responses to long presentation durations, 
calculated by shifting and summing the measured responses to the short (dotted red lines) and medium 
(dotted green lines) presentation durations. Shaded regions represent 95% confidence intervals of the 
mean response across participants. 

Temporal additivity is constant across cortical depth 
To further assess the temporal additivity assumption across cortical depth, we calculated the fit quality 

of each prediction by calculating the correlation between that prediction and its associated measured 

response. Overall, all predictions for V1 were good fits to their respective measured responses (Figure 

4A), with correlations ranging from r = 0.90 – 0.98, all p < 0.001. The correlation did not differ 

significantly between depth bins. Correlations for V2 ranged from r = 0.91 – 0.98, all p < 0.001, with 

no significant differences between cortical depth bins (Figure 4B). For V3, correlations were more 

variable, ranging from r = 0.82– 0.98, all p < 0.001, with correlations slightly increasing towards the 

cortical surface (Figure 4C). Correlations were generally least variable in V1, and generally highest for 

the predictions made from the 5.2 s presentation to fit the measured 10.4 s presentation across visual 

field maps. Correlations for these predictions ranged from r = 0.96 – 0.98, all p < 0.001, and were very 

consistent between visual field maps and cortical depth bins.  

We also visualized the fit quality across cortical depth for all participants for each visual field map 

(Figure 4D-F). Overall, between-participant average correlations in V1 were mostly consistent across 

cortical depth and between participants. The average across scaling conditions, between participants 

ranged from r = 0.70 – 0.97, all p < 0.01. Correlations for V2 were consistent across cortical depth 

(Figure 4E), with correlations ranging from r = 0.89 – 0.96, all p < 0.001. For V3, correlations were less 

consistent across cortical depth, and lower compared to other visual field maps (Figure 4F). However, 

they remained high at r = 0.75 – 0.95, all p < 0.01. 
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Figure 11: Goodness of fit across cortical depth for visual field maps V1, V2, and V3. A-C) Average 
correlation across scaling conditions (short presentation scaled to long and medium presentations; 
medium presentation scaled to long) for V1 (Figure 4A), V2 (Figure 4B), and V3 (Figure 4C). Shaded 
regions represent 95% confidence intervals of the mean across scaling conditions. D-F) Average 
correlation across participants for V1 (Figure 4D), V2 (Figure 4E), and V3 (Figure 4F). Dashed lines 
represent individual participants. Shaded regions represent 95% confidence intervals of the mean 
across participants.     

Discussion 
Here we assessed whether the temporal additivity assumption for a linear system holds in human 

visual cortex for BOLD amplitude across cortical depth. We evaluated GRE-BOLD fMRI responses at 

five cortical depth bins, elicited by moving sine wave gratings at 50% contrast and presented for 2.6, 

5.2, and 10.4 s (short, medium, and long presentation). We find that BOLD response amplitudes vary 

both as a function of cortical depth, and presentation duration, with higher BOLD amplitudes towards 

the cortical surface, and with increasing presentation duration. In particular, we find that predictions 

to longer stimulus presentations based on the shorter presentations provide consistently good fits 

across cortical depth. Comparing between different predictions, correlations between predictions 

from the medium to the measured long presentation responses were generally highest across all visual 

field maps and cortical depths. In conclusion, we show that the temporal additivity assumption for 

BOLD response linearity holds across cortical depth for sub-millimeter BOLD amplitude 

measurements. 
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A growing body of research has focused on the feasibility of laminar GRE-BOLD fMRI in humans and 

other mammals. The majority of these studies have focused on the neurovascular coupling that 

underlies the fMRI signal in humans (De Martino et al., 2013; Herman et al., 2013; Huber, Goense, et 

al., 2014; Huber et al., 2015; Kemper et al., 2015; Koopmans et al., 2010, 2011, 2012; Olman et al., 

2012; Polimeni et al., 2010; Ress et al., 2007; Siero et al., 2011; Xing et al., 2012; Zimmermann et al., 

2011); non-human primates (Chen et al., 2012; Goense & Logothetis, 2006; Goense et al., 2012, 2007; 

Smirnakis et al., 2007; Zappe et al., 2008); and other mammals (Harel et al., 2006; Jin & Kim, 2008; Lu 

et al., 2004; Silva & Koretsky, 2002; Yang et al., 2002; Yu et al., 2012, 2014; Zhao et al., 2006). Even 

though relatively limited in number, the amount of studies employing laminar fMRI for systems and 

cognitive neuroscience questions has been growing steadily in recent years (Chen et al., 2011; Cheng 

et al., 2001; De Martino et al., 2015; Fracasso et al., 2016; Goodyear and Menon, 2001; Huber et al., 

2015; Kok et al., 2016; Marquardt et al., 2018; Muckli et al., 2015; Smith and Muckli, 2010; Yacoub et 

al., 2008, 2007, for reviews see e.g. De Martino et al., 2018; Dumoulin et al., 2018; Lawrence et al., 

2017; Petridou and Siero, 2017; Self et al., 2017; Self and Roelfsema, 2017; Stephan et al., 2019). 

However, most studies have interpreted BOLD amplitude measurements with caution, as these are 

susceptible to blood pooling effects across cortical depth since measures at different depths are 

inherently not independent. These studies have thus largely focused on non-amplitude sensitive 

measures. In this study, we provide evidence for the usability of BOLD fMRI amplitude measurements 

for systems and cognitive neuroscience questions and address the temporal additivity assumption for 

linear systems analysis that underlies many fMRI studies.      

Particularly of note is that predictions from the short presentation duration fit to either the medium 

or the long presentation duration measured responses generally had the lowest correlations, 

particularly in V2 and V3 (Figure 4B-C). Lower fits indicate deviations from linearity. A potential 

explanation for this pattern, is that the short presentation duration at 2.6 s is quite comparable to an 

event-related design, in which deviations from linearity are regularly found (see e.g. Birn, Saad, & 

Bandettini, 2001; Kershaw, Kashikura, Zhang, Abe, & Kanno, 2001; Pfeuffer, McCullough, Van De 

Moortele, Ugurbil, & Hu, 2003; Robson, Dorosz, & Gore, 1998; Soltysik, Peck, White, Crosson, & Briggs, 

2004; Vazquez & Noll, 1998; Zhang, Zhu, & Chen, 2008). Moreover, e.g. Birn, Saad and Bandettini show 

that deviations from linearity are greater in extrastriate cortex than in striate cortex around stimulus 

presentations lasting 2 s (Figure 4 in Birn et al., 2001). This might contribute to the decreased 

deviations from linearity for the predictions based on the 2.6 s presentations in V1 compared to V2 

and V3, as found here. Additionally, studies show that nonlinear effects might increase when moving 

up in the visual field map hierarchy, with responses in V1 being the most linear, and higher-order 

visual field maps showing increasing deviations from response linearity. This has been shown for both 

the spatial (Kay, Winawer, Mezer, & Wandell, 2013; Wandell, Winawer, & Kay, 2015) and temporal 

domain (Zhou, Benson, Kay, & Winawer, 2018).   

The presence of deviations from linearity (correlations of lower than 1.0) does not invalidate the 

current assessment of temporal additivity across cortical depth. Deviations from linearity at each 

cortical depth between presentation durations were to be expected. Thus, we set out to assess 

whether the deviations from linearity were consistent across cortical depth within visual field map, 

which should be reflected in the goodness of fit plots as straight horizontal lines (Figure 4). Following 

this logic, temporal additivity is consistent across depth in V1 and V2, with good to very good fits. 

These patterns generally also hold across participants (Figure 4D-F). The pattern of model fits across 

depth in V3 is more heterogeneous, but correlations are still generally consistent across cortical depth.  
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GRE 3D-EPI acquisitions are sensitive to both the microvasculature (i.e. arterioles, capillaries, and 

venules) and macrovasculature (e.g. draining veins) in and around the cortex. The measured signal is 

thus affected by blood pooling towards the cortical surface. Thus, the hemodynamic consequences of 

neuronal signals elicited at deeper cortical depths propagate towards the cortical surface, affecting 

the measured signal at more superficial cortical depths. This then leads to less laminar specificity and 

the regularly observed increase of BOLD signal amplitude towards the cortical surface. The increase in 

BOLD signal amplitude towards the cortical surface is also clearly present in the current study, with 

peak amplitudes for each individual condition increasing in this direction. Undesired blood pooling 

effects across cortical depth can be dealt with in several ways. Firstly, these effects can be corrected 

for at the analysis level, for instance by means of spatial correction approaches (see e.g. Markuerkiaga 

et al., 2016; Marquardt et al., 2018), or by implementing more elaborate models of the spatiotemporal 

properties of the hemodynamic signal and associated dynamics of capillary, venous, and arterial 

effects (Aquino et al., 2014, 2012; Boas et al., 2008; Heinzle et al., 2016; Puckett et al., 2016; Uludağ 

& Blinder, 2018).  Secondly, blood pooling effects can be reduced at the acquisition level by choosing 

an acquisition protocol that is less sensitive to macrovascular effects, such as spin echo-based 

sequences, 3D-GRASE (Feinberg & Günther, 2009), or VASO (Huber et al., 2015, 2017; Jin & Kim, 2008).      

For the current results to be generalizable, even within the visual domain, linearity for stimuli varying 

in high- and other low-level domain such as spatial frequency content should also be evaluated in a 

similar way as presented here. Moreover, a wider range of stimulus presentation durations could be 

employed to better cover the extremes of this stimulus space. However, the presentation durations 

used here are similar to the range used in a wide range of block-design fMRI studies Our data do not 

allow for the investigation of different contributions to the generation of the BOLD signal, so neuronal 

to vascular and vascular to BOLD contributions cannot be disentangled with the current experimental 

design. Additionally, because of pooling of large numbers of voxels in this region of interest-based 

approach, we cannot exclude that local pockets of nonlinearity might be present within a visual field 

map. However, our results do provide support for the temporal additivity of BOLD amplitude measures 

across cortical depth as a function of stimulus duration, for region of interest-based approaches. 

Together with our previous assessment of scaling across cortical depth (van Dijk et al., submitted), we 

now provide a comprehensive assessment of response linearity across cortical depth for amplitude-

based GRE-BOLD laminar fMRI.      

Conclusion 
We provide evidence that the temporal additivity assumption for linear systems theory is met for 

BOLD amplitude measures across cortical depth in V1, V2, and V3. This is reflected by the horizontal 

profile of correlation values across cortical depth of the model fits of the predictions (shifted and 

summed responses) on the measured responses. All in all, this work in conjunction with our earlier 

experiments provides a more complete assessment of linearity assumptions across cortical depth, and 

thus the validity of GLM-based analyses of BOLD amplitude measures for laminar fMRI of the early 

visual cortex.  



55 | Evaluating temporal additivity for laminar fMRI 
 

Supplementary figures 

 

Figure S 3: Predicted and measured BOLD response profiles at three cortical depth bins for visual field 
map V2. Average normalized depth: 0.10 (deep), 0.54 (middle), and 0.90 (superficial). A-C) Group 
average responses to short (2.6 s, solid red lines) and medium (5.2 s, solid green lines) stimulus 
presentation durations, with predicted responses to medium presentation durations (dashed red lines) 
calculated by shifting and summing the measured responses to the short stimulus presentation 
duration for each depth bin. Shaded regions represent 95% confidence intervals of the mean response 
across participants.  D-F) Group average responses to medium (5.2 s, solid green lines) and long (10.4 
s, solid blue lines) presentation durations with predicted responses to long presentation durations, 
calculated by shifting and summing the measured responses to the short (dotted red lines) and medium 
(dotted green lines) presentation durations. Shaded regions represent 95% confidence intervals of the 
mean response across participants. 
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Figure S 4: Predicted and measured BOLD response profiles at three cortical depth bins for visual field 
map V3. Average normalized depth: 0.10 (deep), 0.54 (middle), and 0.90 (superficial). A-C) Group 
average responses to short (2.6 s, solid red lines) and medium (5.2 s, solid green lines) stimulus 
presentation durations, with predicted responses to medium presentation durations (dashed red lines) 
calculated by shifting and summing the measured responses to the short stimulus presentation 
duration for each depth bin. Shaded regions represent 95% confidence intervals of the mean response 
across participants.  D-F) Group average responses to medium (5.2 s, solid green lines) and long (10.4 
s, solid blue lines) presentation durations with predicted responses to long presentation durations, 
calculated by shifting and summing the measured responses to the short (dotted red lines) and medium 
(dotted green lines) presentation durations. Shaded regions represent 95% confidence intervals of the 
mean response across participants. 

 

 

  



57 |  
 

Chapter 4 

 
 

Numerosity-selective population 
receptive field properties across cortical 

depth 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

van Dijk, J.A., Fracasso, A., Petridou, N., & Dumoulin, S.O., Numerosity-selective population receptive 

field properties across cortical depth (in preparation) 

Acknowledgement of author contributions 
JAvD and SOD designed the experiment; JAvD collected the data; JAvD and AF analyzed the data; all 

authors contributed to and reviewed the manuscript text; JAvD prepared all figures; SOD, NP, and AF 

provided general supervision and guidance throughout.  



58 | Numerosity-selective population receptive field properties across cortical depth 
 

Abstract 
Numerosity perception refers to the perception of the set size of a group of items. It is a trait shared 

across many species and is linked to many cognitive functions. In humans, topographically organized 

cortical regions responsive to numerosity have been identified using functional magnetic resonance 

imaging (fMRI). Neuronal populations in these regions show a response preference for specific 

numerosities, and this preference gradually changes along the cortical surface. With the development 

of sub-millimeter (laminar) fMRI acquisitions and associated analysis techniques, it has become 

possible to start probing at feedforward and feedback processing across cortical depth, adding an 

additional dimension to fMRI experiments. While knowledge about this information processing is 

increasing rapidly for early visual cortex, little is known about higher-order visual information 

processing across cortical depth. We use laminar fMRI to investigate this for numerosity perception. 

Following an early visual processing account, we expected a U-shaped or inverted U-shaped profile 

for numerosity tuning width across cortical depth. We find that tuning width increases with preferred 

numerosity for individual depth compartments, while the tuning width profile across cortical depth 

generally does not significantly differ from constant. The flat tuning profile is inconsistent with the 

early visual cortex-based models, but may be consistent with similar tuning width profiles between 

topographically organized cortical numerosity-selective regions as found in previous fMRI studies.    
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Introduction 
Numerosity is the set size of a group of items. A wide range of species has been shown to be capable 

of making numerosity judgements, including human infants (Dehaene, 1997) and children (Cantlon et 

al., 2009), non-human primates (Brannon & Terrace, 1998; Hauser, Carey, & Hauser, 2000; Hauser et 

al., 2003), corvids (Ditz & Nieder, 2016a), cats (Pisa & Agrillo, 2009), and zebra fish (Potrich et al., 

2015). Numerosity perception is implicated in many cognitive functions (Burr & Ross, 2008) such as 

multiple object tracking (Piazza, 2011), mathematics (Dehaene, 1997; Halberda et al., 2008; Harvey, 

2016), decision making (Nieder & Miller, 2003), and dividing attention (Knops et al., 2014). Neurons 

that respond selectively to stimuli of a specific numerosity have been found using electrophysiological 

recordings in corvids (Ditz & Nieder, 2015, 2016b), monkeys (Nieder, Freedman, & Miller, 2002; Nieder 

& Miller, 2003, 2004; Sawamura, Shima, & Tanji, 2002; Tokita & Ishiguchi, 2010), and humans (Kutter, 

Bostroem, Elger, Mormann, & Nieder, 2018). Using functional magnetic resonance imaging (fMRI), 

further studies in humans have identified a network of cortical areas involved in numerosity 

processing (Cantlon et al., 2009; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999; Eger et al., 2009; 

Knops et al., 2014; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Pinel et al., 1999). Moreover, recent 

fMRI studies have revealed the existence of a topographic organization for several higher order 

cortical regions, with numerosity response preference and preferred numerosity range (tuning width) 

of neuronal populations gradually changing along the cortical surface (Harvey & Dumoulin, 2017; 

Harvey, Klein, et al., 2013).   

Feedforward information in early visual cortex mostly arrives in layer IV (granular layer; Hubel & 

Wiesel, 1962, 1972, 1974), wheras feedback connections mainly terminate in layers I (a supragranular 

layer) and V/VI (infragranular layers) while avoiding layer IV (Anderson & Martin, 2009; Felleman & 

Van Essen, 1991; Graham, Lin, & Kaas, 1979; Markov & Kennedy, 2013; Rockland & Pandya, 1979; 

Wong-Riley, 1979). Lateral connections are present in all layers (Felleman & Van Essen, 1991). Using 

sub-millimeter fMRI, it is possible to study these information processing flows (for reviews see De 

Martino et al., 2018; Dumoulin et al., 2018; Lawrence et al., 2017; Petridou and Siero, 2017; Self et al., 

2017; Self and Roelfsema, 2017; Stephan et al., 2019). Here we use sub-millimeter fMRI to investigate 

information processing across cortical depth in a parietal numerosity-responsive topographic map.  

Tunings widths (population receptive field (pRF) sizes) in the visual system increase in size as 

information is processed further and further. This is reflected in increasing pRF sizes in cortical areas 

with increasing rank in the visual hierarchy (see e.g. Dumoulin & Wandell, 2008; Harvey & Dumoulin, 

2011). Following this logic, pRF estimates across cortical depth should show a U-shaped profile, i.e. 

smallest in the central layer and increase both towards the infragranular layers and the supragranular 

layers). Indeed, this is confirmed by data showing that layer IV is populated with simple cells, while 

the supra- and infragranular layers contain complex cells with larger receptive fields (Hubel, 1988). 

Furthermore, presence of this U-shaped profile has been confirmed using monkey electrophysiology 

(Self et al., 2019) and human sub-millimeter fMRI (Fracasso, Petridou, et al., 2016). If processing in the 

association cortex is similar to early visual processing, we would expect such a U-shape across cortical 

depth to also be present for numerosity tuning in higher-order association cortex. Alternatively, an 

inverted U-shaped tuning width profile across cortical depth might be observed as processing may 

sharpen tuning widths to ultimately arrive at an accurate numerosity percept. 
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We use ultra-high field sub-millimeter fMRI to investigate tuning width and preferred numerosity 

profiles, and thus processing across cortical depth, in a topographical numerosity map in the parietal 

cortex. We show that tuning width consistently increases with preferred numerosity for individual 

cortical depth bins, and that tuning width generally does not vary significantly across cortical depth. 

We speculate that this may reflect a fundamental difference in processing between visual and 

numerosity-responsive cortex. 

Methods 

Subjects 
Eight subjects (1 female, mean age: 31.4 years, age range 22-45 years old) participated in this study. 

All subjects were familiar with the MRI environment and had participated in previous experiments. 

They had normal or corrected-to-normal visual acuity. One subject was excluded because of poor 

signal quality. All subjects signed informed consent. All experimental procedures were approved by 

the medical ethics committee of the University Medical Center Utrecht and adhered to the guidelines 

of the Declaration of Helsinki.  

Stimuli 
Stimuli were presented on a 32-inch LCD screen, specifically designed for use in an MRI environment 

(Cambridge Research Systems, 2012). The screen resolution was 1920 x 1080 pixels, with a screen size 

of 69.8 x 39.3 cm, a refresh rate of 120 Hz, and a built-in linear luminance look-up table. The display 

was positioned at the far end of the bore and was viewed via a mirror positioned in the head coil of 

the MRI scanner. The total viewing distance was 220 cm. The total visible vertical extent of the screen 

subtended 10.2 degrees visual angle (deg). 

All stimuli were generated in MATLAB (Mathworks; 2018a) using the Psychophysics toolbox (Brainard, 

1997; Pelli, 1997). A large cross consisting of two thin (1 pixel) red diagonal lines starting at the corners 

of a 10.2 x 10.2 degree invisible square and intersecting in the center of the screen was presented at 

all times, with a mean luminance gray background that covered the entire screen. Stimuli consisted of 

groups of circles, randomly distributed to be presented entirely within an invisible circle with a 0.75-

degree radius around the center of the screen. Each group of circles contained 1 to 7 or 20 circles, 

with 20 functioning as a baseline. Numerosity 20 was chosen to this end as it is expected to be well 

outside the response range of neuronal populations responding to numerosities 1 to 7, while neuronal 

populations responding to contrast energy would be expected to respond most strongly to this 

energy-rich condition (Harvey, Vansteensel, et al., 2013). The total surface area (702 pixels) of each 

group of circles was constant between different numerosities. This resulted in a decreased size per 

circle with increasing numerosity (see Figure 1A). This stimulus configuration was identical to the 

‘constant area’ stimulus condition used in previous fMRI numerosity studies (Harvey & Dumoulin, 

2017; Harvey, Klein, et al., 2013). On regular trials, the circles were black. However, groups of white 

circles with the same numerosity were randomly presented instead of black ones on approximately 

9% of the trials. Subjects were asked to respond to these presentations by means of a button press. 

No numerosity-related judgments were required. Average task performance was 97.4 % correct 

(range 69.8 - 100 % for individual runs). 

Stimuli were presented for 350 ms, followed by 250 ms of mean luminance gray. Numerosities 1 to 7 
were displayed sequentially, first in ascending order and then in descending order. Each numerosity 
was presented six times (3600 ms including mean luminance gray presentations) before the next 
numerosity was presented. Numerosity 20 was presented after each ascending or descending sweep, 
(see Figure 1B). These presentations of numerosity 20 lasted 14400 ms (24 presentations). The 
combination of the ascending and descending sweep interleaved with numerosity 20 was repeated 4 
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times for each run. Each run started with 20 presentations of numerosity 20 (12000 ms). The total 
presentation time for one run was 5 m 28.8 s. The stimulus sequence and displays were near-identical 
to those previously used by Harvey and colleagues (Harvey & Dumoulin, 2017; Harvey, Klein, et al., 
2013). Subjects completed 7 (one subject), 8 (one subject) or 9 (five subjects) runs. 

Figure 12: Stimulus design. A) Example stimulus displays with numerosity 1, 4, 7, and 20. B) Stimulus 
sequence. Numerosities 1-7 were presented sequentially, first in ascending, then in descending order. 
After each sweep, a longer block of numerosity 20 (baseline) was presented. The depicted sequence 
was repeated four times per run.  

Region of interest definition 
One topographically organized numerosity map in the parietal cortex of the right hemisphere (NPC1: 

(Harvey & Dumoulin, 2017; Harvey, Klein, et al., 2013) was selected for this study (Figure 2A). This 

region of interest was defined based on previous numerosity experiments in all but one subject 

(Harvey & Dumoulin, 2017; Cai et al., in preparation). For this one subject, the region of interest 

definition was based on the data from the current experiment. Right NPC1 was selected for its 

consistency between subjects (Harvey & Dumoulin, 2017) and relative ease of targeting with the high-

density surface receive arrays (see next paragraph).  

MRI and fMRI acquisition 
High resolution anatomical and functional data were acquired using a Philips Achieva 7 T scanner. with 

a maximum gradient strength of 40mT/m and a slew rate of 200 T/m/s (Philips, Best, The Netherlands). 

A dual-channel volume transmit head coil was used for all scans (Nova Medical, MA, USA). A 32-

channel receive coil (Nova Medical, MA, USA) was used for all anatomical scans, and two custom-built 

16-channel high-density surface receive arrays were used for all functional scans (Petridou et al., 2013; 

MRCoils BV). Positioning of these receive arrays was preformed outside the scanner. First, subjects 

put on a cloth cap to prevent sliding of the surface arrays on their hair and facilitate accurate targeting 

of the region of interest. Next, the receive arrays were placed on the head, with their centers at 

approximately the height of electrode location CPz (following the extended 10-20 system for electrode 

positioning), aligned with midline of the head of the subject. The receive arrays touched each other 

but did not overlap. The exact positioning was varied per subject, as the process was ultimately guided 

by the personalized location of NPC1 based on previous numerosity fMRI studies for all but one 

subject. After positioning, the receive arrays were fixed in place with Powerflex bandage -a type of 

bandage that sticks only to itself- around the forehead and chin of the subject and a set of noise-

dampening non-ferromagnetic headphones. The subject was then carefully transferred to the scanner 

environment, where the receive arrays were further held in place using sandbags behind the head of 

the subject. The subject was positioned such that the middle of the receive arrays (in the volume 

transmit coil) were approximately in the isocenter.   

T1-weighted anatomical data for four subjects were acquired using an MP2RAGE sequence (Marques 

et al., 2010). Sequence parameters were: TI1 = 800 ms, TI2 = 2700 ms, TRMP2RAGE = 5500 ms, TR/TE = 

6.2/2.3 ms, flip angle α1 =7, and α2 = 5, bandwidth = 403.7 Hz/pixel, acceleration factor using SENSE 
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encoding = 3.5 x 1.3 (RL and AP respectively), resolution = 0.65 mm isotropic, whole-brain coverage, 

total scan time 9 min 57 s. T1-weighted anatomical data for the other three subjects was acquired 

using an MPRAGE sequence combined with a proton-density (PD)-weighted sequence. The PD-

weighted acquisition was used to correct for image intensity inhomogeneities. Sequence parameters 

for the MPRAGE acquisition were: TR/TE = 7/2.8 ms, flip angle α = 8 degrees, resolution = 0.49 x 0.49 

x 0.8 mm, whole-brain coverage, total scan time 4 min 56 s. Sequence parameters for the PD 

acquisition were: TR/TE = 5.8/2.8 ms, flip angle α = 1 degree, resolution = 0.49 x 0.49 x 0.8 mm, whole-

brain coverage, total scan time 1 min 16 s. The field of view, orientation, and location of the PD scan 

was identical to the MPRAGE. T1-weighted anatomical data for one subject were acquired on a 3T MRI 

scanner. Sequence parameters were TR/TE = 10/4.6 ms, flip angle α = 8 degrees, resolution = 0.80 x 

0.75 x 0.75 mm, whole-brain coverage. 

Functional data were acquired using a T2*-weighted 3-dimensional multi-shot EPI (3D-EPI, two shots 

per slice, 24 slices, 48 shots overall). The sequence parameters were: TR/TE = 60/28.9 ms, flip angle: 

20°, acceleration factor using SENSE encoding: 3.5 (right-left) × 1.3 (anterior-posterior), echo planar 

factor: 37, bandwidth (phase-encode): 790.1 Hz/pixel, voxel size = 0.93 mm isotropic, FOV = 119 (right-

left) × 119 (feet-head) × 22.32 (anterior- posterior) mm, 24 coronal slices, and 10% oversampling in 

the slice direction. The volume repetition time was 1200 ms. Each functional run was 274 time frames 

in duration. The acquisition volume was rotated approximately 40° in the sagittal plane to assure 

maximum coverage of the region of interest (Figure 2B). The exact angulation differed between 

subjects, depending on their orientation in the scanner and location of the region of interest. 

For each functional run, we acquired an additional five volumes with reversed right-left phase-

encoding. Reversing the phase-encoding direction ensured that these so-called ‘topup’ runs had the 

opposite geometrical distortions to the original volumes (Andersson et al., 2003). These topup runs 

were used in conjunction with the original data to estimate a nonlinear warp field to create a 

susceptibility distortion-free volume, which is the midpoint between the functional and topup data 

(Andersson et al., 2003). This undistorted volume then makes it possible to align the functional data 

to the subject anatomy with improved accuracy, needed for cortical depth-based analysis.    

Pre-processing 
Data processing was performed using AFNI (Cox, 1996) and MATLAB (Mathworks; 2015b). First, a warp 

field to correct for susceptibility distortions was calculated using a nonlinear transformation, with the 

first five volumes of each of the functional and topup runs as input. Subsequently, motion parameters 

between runs were estimated by aligning the first volume of each run to the first volume of the first 

run using Fourier interpolation. Next, the first 10 time points of each run were removed to ensure that 

the signal had reached a steady state after the start of stimulus presentation. All runs were then 

individually despiked, scaled, and detrended. Despiking was performed using the AFNI function 

3dDespike. The scaling step entailed converting the time-series of each run to percentage signal 

change. For the detrending, the AFNI function 3dDetrend with up to a fourth-degree polynomial was 

used. Lastly, all runs were then averaged together and the between-run average temporal mean of 

each voxel was added, resulting in the mean time-series used as input for the numerosity modelling 

(see below).  

Next, the motion estimates and previously computed warp field to correct for susceptibility distortions 

were applied to each run. Then, the mean EPI image was computed by taking mean across all these 

runs and time-points. This EPI mean image was then registered to the anatomy using a multi-step 

procedure. First, the anatomy was restricted to roughly the parietal lobe using the AFNI function 

@clip_volume. Next the EPI mean image was de-obliqued using the AFNI function 3dWarp. Then, the 
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de-obliqued EPI mean image and anatomy were brought into the same space by aligning the center 

of mass of the anatomy to the de-obliqued EPI mean image. Then, the ‘Nudge dataset’ AFNI plugin 

was used to manually shift and rotate the de-obliqued EPI mean image to provide a good starting point 

for two automated registration steps. These registration steps both consisted of an affine 

transformation to further optimize the registration, using local Pearson correlation as cost function 

(Saad et al., 2010). The first transformation allowed for a maximum rotation and/or shift of 3 mm in 

any direction, while the second transformation allowed for a maximum rotation and/or shift of 1 mm. 

These affine transformations were then applied to the manually moved, mean de-obliqued EPI image. 

The transformation matrices of the manual step and the two affine transformations were combined 

into a single affine matrix. To assure that these matrices were combined correctly, the combined affine 

matrix was then applied to the original EPI mean image. These results were then inspected for 

registration quality.  

All anatomical data were resampled to a 0.6 mm isotropic resolution using linear resampling. 

Gray/white matter classifications of the MP2RAGE anatomical data (four subjects) were carried out 

using MIPAV (http://mipav.cit.nih.gov/) with the CBS-tools plugin (Bazin et al., 2007; 

www.nitrc.org/projects/cbs-tools/). For the MPRAGE anatomical data (three subjects), gray/white 

matter classification was performed using Freesurfer (http://surfer.nmr.mgh.harvard.edu/). All 

classifications were manually optimized. Volume-preserving distance maps between the gray-white 

matter (GM/WM) border and the gray matter-cerebrospinal fluid (GM/CSF) border for all subjects 

were computed using MIPAV with the CBS-tools plugin (Waehnert et al., 2014). The distortion-

corrected mean time-series were then projected on these volumes for subsequent laminar analysis 

(Figure 2A, B).  

http://mipav.cit.nih.gov/
http://surfer.nmr.mgh.harvard.edu/
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Figure 13: Processing steps and model fits. A) Region of interest (NPC1) definition and volume-
preserving cortical depth map on a partial sagittal anatomical slice. Inset: whole brain anatomical slice 
with the location of the partial slice (red box). B) Mean susceptibility-corrected functional data 
registered to the anatomy, with gray matter-CSF (white) and gray-white matter (blue) borders. C) 
Preferred numerosity results at all depths for the region of interest. No threshold was applied. D) 
Preferred numerosity at the middle depth bin on a partial mesh corresponding to the coverage in A-C), 
coronal view. Threshold: R2 = 8%. F) Time-series of an example voxel (dotted line), overlaid with best 
fitting predicted fMRI response (solid red line). Goodness of fit (R2) = 62%, preferred numerosity = 2, 
tuning width = 4.7. F) Example tuning model with the same preferred numerosity and tuning width as 
in E).   

Analysis 

Numerosity modelling 
Numerosity tuning for each voxel was estimated from the mean time-series data and the stimulus 

time course, using methods very similar to pRF mapping (Dumoulin & Wandell, 2008). These methods 

have previously been described in Harvey and colleagues (2013). This analysis was performed using 

the mrVista software package (http://white.stanford.edu/software/) and custom numerosity-

modelling code from Harvey and colleagues (2013, 2017).  

In short, we estimated the aggregate numerosity tuning of neurons in each voxel. This numerosity 

tuning consisted of a preferred numerosity, and a tuning width for each (numerosity-selective) voxel. 

A forward model was used to predict the neuronal response based on the overlap of the presented 

numerosity at each time point in time and the numerosity tuning. This model estimated preferred 

numerosity and tuning width in logarithmic space as the mean and standard deviation of a Gaussian 

respectively. A Gaussian numerosity tuning model in logarithmic space has previously been shown to 

result in better model fits than a Gaussian model in linear space (Harvey, Klein, et al., 2013), and was 

http://white.stanford.edu/software/
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further motivated by behavioral (Nieder & Miller, 2003), neurophysiological (Nieder & Miller, 2003, 

2004), computational (Dehaene & Changeux, 1993), and other neuroimaging (Piazza et al., 2004) 

studies. Next, the predicted neuronal response was convolved with a canonical two-gamma 

hemodynamic response function (HRF; Friston et al., 1998) to make a predicted fMRI time-series. This 

process was repeated to create a set of predicted fMRI time-series, for all combinations of a large 

range of preferred numerosity (67 equal steps between 0 and 2) and tuning width (400 equal steps 

between 0.03 and 3) parameters. A single neuron is highly unlikely to show a response preference for 

a non-integer numerosity, as numerosity perception is inherently integer. However, as single voxels 

contain many neurons that might contain different sub-populations of numerosity-selective neurons, 

the averaged numerosity preference of a voxel may be a non-integer value. Therefore, predictions 

were also made for non-integer preferred numerosity. The predicted time-series were then compared 

to the fMRI time-series of each voxel, and the best fitting parameters for each voxel were chosen by 

minimizing the sum of squared errors between the predicted and measured time-series (Figure 2C-E). 

The best fitting preferred numerosity and tuning width were then converted to linear space, resulting 

in an asymmetric Gaussian with a peak at the preferred numerosity and a tuning width of its full width 

at half maximum (FWHM, Figure 2F; Harvey et al., 2013). 

Cortical depth analysis 
Volumes containing the numerosity modelling results were de-obliqued and subsequently registered 

to the anatomy by applying the combined registration matrix (see the ‘Pre-processing’ section above) 

and the susceptibility-correction warp field using the AFNI function 3dNwarpApply with wsinc5 

interpolation. These registered, distortion-corrected volumes were then resampled to the anatomy 

(using 3dResample with nearest-neighbor interpolation), resulting in the registered numerosity 

modelling results volumes. In total, the numerosity modelling results were spatially resampled twice, 

resulting in the registered, distortion-corrected numerosity modelling results in anatomy space (Figure 

2C). 

To assess preferred numerosity and tuning width at different cortical depth bins, we divided the 

volume-preserving depth map into 7 equal depth quantiles spanning from the GM/WM to the GM/CSF 

border. Next, we selected voxels within each cortical depth bin for each region of interest. Only voxels 

with a goodness of fit (explained variance; R2) that exceeded the 80th R2 percentile within that depth 

bin were included in further analysis (range: R2 = 3 - 28%). If not stated explicitly, the reported results 

are from this thresholding procedure. When stated explicitly, this procedure is called ‘variable 

threshold’. The analysis was repeated using an absolute explained variance threshold of 10%. This 

threshold is denoted as the ‘fixed threshold’ procedure in the results (where applicable). The 80th 

percentile thresholding approach was used to avoid inclusion of an increasing number of voxels 

towards superficial depth bins, as explained variance generally increases towards the cortical surface 

(Fracasso, Petridou, et al., 2016). The fixed thresholding approach was included as it is the traditional 

thresholding method for numerosity and pRF modelling methods (Dumoulin & Wandell, 2008; Harvey, 

Klein, et al., 2013).  

After thresholding, we estimated a bootstrapped linear fit on the preferred numerosity and tuning 

width of the selected voxels. This was repeated for each depth bin. Next, we sampled these fits at 

numerosity 3 and 5 for each subject and depth, and subsequently Z-scored. These results were then 

averaged across subjects and a second-degree polynomial was fit on the data. In parallel, the average 

tuning width was calculated per subject for each depth bin and subsequently Z-scored. These data 

were then combined, and a second-degree polynomial fit was performed on the group data.    
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Results 

Tuning width increases with preferred numerosity 
The R2 80th percentile at each depth bin was used as a threshold for the model parameters (preferred 

numerosity and tuning width). This resulted in approximately equal numbers of voxels in each depth 

bin. The average number of voxels included across all subjects and depth bins was: M = 395.5 voxels 

(85.4 mm3), standard deviation (SD) = 116.1 voxels. On average, estimated tuning width increased 

with preferred numerosity across subjects: Mslope = 2.05, SDslope = 1.65, Rangeslope = -0.75 – 5.95 (Figure 

3A-C, E-G for two example subjects). Estimated tuning width increased with preferred numerosity for 

43 out of 49 depth bins. 

 

Figure 14: Preferred numerosity and tuning width across cortical depth for two example subjects. The 

threshold for each depth bin is the 80th R2 percentile. A-C, E-G) Preferred numerosity versus tuning 

width at three cortical depth bins. Average normalized depth: 0.09 (deep), 0.54 (middle), and 0.93 

(superficial). Blue circles represent individual voxels. Red lines represent the best linear fit. Shaded 

regions represent 95% confidence intervals of the linear fit. Tuning width consistently increased with 

increasing numerosity for each depth bin. R2 = goodness of fit threshold at that specific depth (80th 

percentile), n = number of voxels within a depth bin after applying the R2 threshold. D, H) Average 

tuning width and numerosity for each cortical depth bin.   

Tuning width remains constant across cortical depth 
Average tuning width and preferred numerosity did not vary consistently across cortical depth (Figure 

3D, H, 4A). Average preferred numerosity and tuning width across depth ranged from 1.92 to 4.65 and 

4.83 to 21.89 respectively. The Z-scored average tuning width across cortical depth decreased towards 

the cortical surface (mean polynomial fit parameter values: slope = 0.05, quadratic component = -

1.48; Figure 4B), although this trend was not significant t(48)slope = 0.03, p = 0.98, t(48)quadratic = -0.82, 

p = 0.42. The group average tuning width across cortical depth at numerosity 3, as sampled from the 

linear fits at each cortical depth (mean polynomial fit parameter values: slope = 0.04, quadratic 

component = -1.07; Figure 4C) did not significantly deviate from a horizontal, straight line: t(46)slope = 

0.02, p = 0.99, t(46)quadratic = -1.07, p = 0.58. The same held for the group average tuning width across 
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cortical depth sampled at preferred numerosity 5 (mean polynomial fit parameter values: slope = -

3.43, quadratic component = 3.10; Figure 4D), t(46)slope = -1.67, p = 0.10, t(46)quadratic = 1.58, p = 0.12. 

Results with a fixed (10%) explained variance threshold are virtually indistinguishable from the 80th 

percentile threshold (see Figure 4E-G). Notably, with the fixed 10% threshold the slope parameter of 

the polynomial fit in Figure 4H was significant, p = 0.04, compared to the former p = 0.10 (Figure 4D). 

No notable differences in cortical dept profiles were found between subjects with different anatomical 

data acquisitions (note particularly the absence of clustering in Figure 4A, E). 

Figure 15: Tuning width generally does not vary across cortical depth. A-D) Results for 80th percentile 
R2 (variable) threshold. E-H) Identical to A-D, but for a fixed threshold of R2 = 10%. A, E) Average 
preferred numerosity and tuning width across cortical depth bins for each subject. B, F) Z-scored 
average tuning width across cortical depth. Gray lines represent individual subjects. Red lines represent 
best second-degree polynomial fit. Shaded regions represent 95% confidence interval of the fit. C, G) 
Z-scored tuning width, sampled at numerosity 3 from the linear fits for each depth bin (red lines in 
Figure 3). Gray lines represent individual subjects. Red line represents best second-degree polynomial 
fit. Shaded regions represent 95% confidence interval of the fit. D, H) Same as C, G) but sampled at 
numerosity 5.  

Discussion 
We investigated information processing across cortical depth for higher-order visual processing. To 

this end, assessed tuning width and numerosity preferences across cortical depth in parietal cortex. 

We show that tuning width increases with numerosity. This increase is consistent with previous 

findings at lower resolutions (Harvey & Dumoulin, 2017; Harvey, Klein, et al., 2013). Additionally, we 

find that the estimated tuning width does not consistently change across cortical depth. This is 

inconsistent with what has been observed in the primary visual cortex (Fracasso, Petridou, et al., 

2016). Even though we find a significant decrease across cortical depth for sampled numerosity 5 using 

fixed thresholding (R2 = 10%), we currently do not feel confident to draw any conclusions from this 

isolated finding, given the variability between thresholding schemes. Additional analysis should 

further substantiate these results.  
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The absence of a U-shaped tuning width profile across cortical depth may well indicate that laminar 

processing in association cortex is inconsistent with laminar processing in primary visual cortex. 

Primary visual cortex mainly receives ascending information directly from the lateral geniculate 

nucleus (LGN). However, the source of ascending information arriving in NPC1 is almost certainly more 

diffuse, potentially resulting in an absence of any tuning width changes across cortical depth. 

Moreover, NPC1 has been shown to be one of the later topographic numerosity maps in the 

processing hierarchy (Harvey & Dumoulin, 2017), potentially further reducing any differences across 

cortical depth as ascending information has already been processed. Further clues for substantial 

differences between numerosity and early visual processing arise from tuning width/pRF size patterns 

across respective processing hierarchies. In the visual system, a roughly five-fold increase of pRF size 

is observed when ascending in the processing hierarchy (Harvey & Dumoulin, 2011), while tuning 

widths remain relatively constant across topographic numerosity maps (Harvey & Dumoulin, 2017). 

This may reflect a fundamental difference in processing between visual and numerosity-responsive 

cortex that might be present across cortical depth as well. However, pRF sizes across cortical depth in 

the visual system have thus far only been investigated for primary visual cortex, so variations in this 

pattern may well be present along the visual hierarchy as well. 

One potential explanation for the absence of a U-shaped tuning width profile across cortical depth 

might be that this pattern may be occluded by measurement noise. Tuning width between subjects 

varies by almost a factor of five, which might obscure to subtle trends in tuning across cortical depth 

being masked. However, Z-scoring the tuning width data mitigates the between-subject variation, 

showing no significant U-shape across cortical depth. Additionally, taking the average tuning width 

across cortical depth (Figure 4B, F) can obscure differences in tuning width profiles for different 

numerosities. 

Another reason why a significant U-shaped profile was not observed, is that the data processing 

pipeline used might not be sensitive enough to detect it. Although this remains a possibility, near-

identical methods have previously been used to show attention effects (Klein, Fracasso, van Dijk, et 

al., 2018) and pRF size changes (Fracasso, Petridou, et al., 2016) across cortical depth. These studies 

have revealed systematic variations across cortical depth, making it unlikely that the processing 

pipeline is not sensitive enough to pick up cortical depth-dependent variations in the current study. 

Moreover, we replicated the commonly found pattern of tuning width increases with preferred 

numerosity, while goodness of fit values were reasonable. Although these latter values were generally 

lower than in previous numerosity studies (Harvey & Dumoulin, 2017; Harvey, Klein, et al., 2013), this 

was to be expected as the signal-to-noise ratio (SNR) of the fMRI signal decreases significantly with 

increasing spatial resolution. Goodness of fit values for the sub-millimeter experiments by Klein and 

colleagues (2018) and Fracasso et al (2016) were on average higher than for the current study. 

However, these measurements were all performed in primary visual cortex. Cognitive tasks generally 

have a lower inherent SNR, requiring more data to be collected to reach the same statistical power as 

in the early visual cortex (Harvey, Klein, et al., 2013). This can be achieved for the current study by 

collecting even more data from the existing subjects and increasing the number of subjects. 

The resolution of the collected fMRI data was 0.93 mm isotropic. This resolution was chosen to 

optimize the repetition time (1200 ms), while remaining in the sub-millimeter domain. This short 

repetition time resulted in the higher statistical power required here as all data had to be collected in 

one session because registration between sessions is undesirable for sub-millimeter fMRI. 

Additionally, numerosity mapping experiments have a relatively low SNR by default. The spatial 

resolution of the fMRI data combined with the local thickness of the cortex allows for the definition 

of approximately 4 cortical depth bins. Due to the curvature and the location of the gray matter on 
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the acquisition grid, more depth bins can be defined. However, due to the limited number of bins, 

more complex trends across cortical depth may be difficult to identify. 

To further differentiate different explanations for the found differences in receptive field profiles 
across cortical depth between numerosity-selective and early visual cortex, future research may want 
to focus on comparing tuning width profiles across cortical depth between topographic numerosity 
maps, and extending pRF size profiles across cortical depth to visual field maps outside primary visual 
cortex. 

Conclusion 
We use sub-millimeter fMRI to investigate numerosity preference across cortical depth and found 

robust modelling results at a sub-millimeter, single-voxel level. We find that tuning width increases 

with preferred numerosity within each depth bin. We show that the tuning width profile across 

cortical depth is mostly constant. We replicate previously identified tuning width increases with 

preferred numerosity, and extend this across cortical depth. The flat tuning profile is inconsistent with 

an early visual cortex-based model and may indicate fundamental differences in laminar organization 

between early visual and association cortex.   
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Abstract 
Numerosity -the set size of a group of items- perception is a trait shared across numerous species. 

Electrophysiological recordings in animals have shown the presence of numerosity-selective neuronal 

populations. In humans, numerosity-selective neuronal populations have been identified using 

functional magnetic resonance imaging (fMRI). However, the limited temporal resolution of fMRI 

inhibits the study of temporal characteristics of numerosity-selective neuronal populations. Here we 

use intracranial recordings to investigate numerosity tuning in humans, focusing on high-frequency 

transient activations. This technique combines a high spatial resolution with an excellent temporal 

resolution. We find numerosity-tuned responses at a parietal site that is in line with previous fMRI 

studies. Neuronal populations at this location did not respond to visual stimuli per se (faces, houses, 

letters), in contrast to several occipital sites. This further corroborates the specificity of the numerosity 

tuning of this parietal site. We show that the response profile of parietal numerosity-tuned neuronal 

populations is distinctly different from responses to the same stimuli in the occipital lobe, and further 

link fMRI results and electrophysiological recordings.  
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Introduction 
Numerosity refers to the set size of a group of items. Its perception is implicated in many cognitive 

functions (Burr & Ross, 2008) and decision-making processes such as multiple object tracking (Piazza, 

2011), mathematics (Dehaene, 1997; Halberda et al., 2008; Harvey, 2016), decision making (Nieder & 

Miller, 2003), and dividing attention (Knops et al., 2014). Behavioral studies have shown that 

numerosity perception is a trait shared across a wide range of species, including human infants 

(Dehaene, 1997), children (Cantlon et al., 2009), zebra fish (Potrich et al., 2015), non-human primates 

(Brannon & Terrace, 1998; Hauser et al., 2000, 2003), cats (Pisa & Agrillo, 2009), and corvids (Ditz & 

Nieder, 2016a). Neuronal populations that are selective for numerosity have been found using 

electrophysiological recording in corvids (Ditz & Nieder, 2015, 2016b), monkeys (Nieder, Freedman, & 

Miller, 2002; Nieder & Miller, 2003, 2004; Sawamura, Shima, & Tanji, 2002; Tokita & Ishiguchi, 2010), 

and using depth electrodes in humans (Kutter et al., 2018). Studies using functional magnetic 

resonance imaging (fMRI) have found a network of cortical areas that are involved in numerosity 

processing (Cantlon et al., 2009; Dehaene et al., 1999; Eger et al., 2009; Knops et al., 2014; Piazza et 

al., 2004; Pinel et al., 1999). Recent fMRI studies have revealed that a number of areas in locations 

involved in numerosity processing are topographically organized, with numerosity preference 

gradually changing along the cortical surface (Harvey & Dumoulin, 2017; Harvey, Klein, et al., 2013). 

Neuronal populations in these topographic regions show a large response for stimuli of a specific 

numerosity and respond less and less when the numerosity of a stimulus is farther from the preferred 

numerosity of that cortical location. This is in line with electrophysiological recordings for numerosity 

in animals, where spiking rates of (a group of) numerosity-selective neurons decrease with distance 

from the preferred numerosity (see Nieder, 2018 for a review). Moreover, single-neuron recordings 

using depth electrodes in human medial-temporal lobe also show this pattern (Kutter et al., 2018). 

Recordings of topographically organized numerosity tuned neuronal populations in humans have so 
far been carried out using fMRI. However, temporal properties of numerosity-related responses are 
difficult to study with fMRI. Recordings at high temporal resolutions in the human brain are usually 
limited to magneto- and electroencephalography (MEG and EEG) which arguably lack the spatial 
resolution to find fine-grained spatial patterns of numerosity-tuning as found with fMRI. Intracranial 
recordings (electrocorticography; ECoG) combine excellent temporal (ms range) and good spatial (mm 
range) resolution and are an ideal tool to study temporal characteristics of numerosity tuning at a 
proper spatial scale in the awake and healthy human brain. This technique, however, is invasive and 
therefore recording opportunities are sparse. Thus far, ECoG in humans has been used to identify 
neuronal populations preferring mathematical operations (Daitch et al., 2016), but has not been used 
to study numerosity-tuned responses.  

Here, we use electrocorticography (ECoG) to measure responses to visual stimuli depicting different 

numerosities. To facilitate comparison with fMRI findings, we used stimuli that were identical to those 

used in previous fMRI studies that have found numerosity-tuned cortical areas (Harvey & Dumoulin, 

2017; Harvey, Klein, et al., 2013). We find a numerosity-selective response pattern in a location 

corresponding with the most robustly identifiable numerosity-selective topographic map in fMRI 

studies. We provide several control conditions showing that the response preferences of this 

electrode are not in line with purely visual, or category specific visual stimuli, further supporting the 

numerosity-selective nature of this response pattern.      
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Methods  
Subject information 

Subjects were two patients with drug-resistant epilepsy and candidate for resective surgery. They 

were admitted for intracranial epilepsy monitoring at the University Medical Center Utrecht. They 

were implanted with subdural ECoG electrode grids as the standard diagnostic procedure for surgical 

treatment. The study was approved by the ethical committee (METC) of the University Medical Center 

Utrecht, in accordance with the Declaration of Helsinki (2013), and patients signed informed consent. 

Subject 1 was a 19-year old, left-handed female. Electrode grids were located on the left lateral surface 

of the brain, covering most of the temporal lobe, large parts of the occipital lobe, and part of the 

parietal lobe (Figure 1A). Studies for this subject were conducted under METC protocol number: 

NL50036.041.14. 

Subject 2 was a 15-year old, right-handed female. Electrode grids were located on the right lateral and 

medial surface of the brain, covering part of the medial and most of the lateral occipital lobe, partially 

extending to the superior and inferior temporal lobe (Figure 1B). Studies for this subject were 

conducted under METC protocol number: NL48022.041.14. 

Stimuli 

Visual stimuli were presented to the subject on an NEC MultiSync E221N, 21.5-inch IPS monitor, with 

a resolution of 1920x1080 pixels, driven by an Acer Aspire E5-573G laptop. The screen was viewed at 

approximately 70 cm distance. All stimuli were presented using Presentation® software (version 18.0, 

Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

Numerosity stimuli 
Mean luminance gray background with a large diagonal red cross was presented at all times. This cross 

aided fixation and ran from one corner of the screen to the other Stimuli consisted of groups of circles, 

randomly distributed within an invisible circle with a 50-pixel radius. The number of circles per 

stimulus display included all integers from 1 to 7, and 20. Numerosity 20 was chosen because it is 

expected to be well outside the response range of neuronal populations responding most to small 

numerosities, while neurons responding to just contrast energy should respond most strongly to this 

energy-rich condition (Harvey & Dumoulin, 2017). The total surface area of each group of circles was 

constant, hence the circles were larger when the stimulus display contained fewer of them. On regular 

trials, the circles were black. In approximately 10% of the trials (two per numerosity on average), white 

circles were presented instead of black. Subjects had to respond to these trials by pressing a button. 

No numerosity-related judgments were required.  

Stimuli were presented for 250 ms, followed by an inter-stimulus interval (ISI) of 600 ms during which 

only the mean luminance gray screen with the fixation cross was presented. Numerosities 1 to 7 were 

displayed sequentially in ascending order, then in descending order with six consecutive presentations 

per numerosity (Figure 1C). These ascending and descending sweeps were separated by twelve 

presentations of numerosity 20. The full sequence (ascending 1-7, then 20, descending 7-1, then 20) 

was repeated twice within each run. Each run started and ended with a 1200 ms mean luminance gray 

screen with a fixation cross, resulting in a total presentation time of 186 s per run. The stimulus 

sequence is near-identical to those used in recent numerosity-related fMRI paradigms (Harvey et al., 

2013; Harvey & Dumoulin, 2017). This numerosity stimulus paradigm is further referred to as ‘fixed 

order’. 
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For subject 2, an additional numerosity stimulus paradigm was added. Stimuli were identical to the 

fixed order paradigm, but stimuli were presented in a semi-randomized order, so that no two 

consecutive stimuli displayed the same numerosity. Additionally, a variable ISI of 650-950 ms (mean 

ISI = 800 ms) was introduced instead of the fixed ISI, and the number of presentations (24) was the 

same for all numerosities. Each run started and ended with 1200 ms of mean luminance. Total 

presentation time for one run was 194.4 s. This stimulus paradigm is further referred to as ‘random 

order’. 

Visual category stimuli 
To control for visual stimulation per se, we compared responses during our numerosity experiment 

with responses during an experiment in which high-pass filtered images of faces, individual letters, or 

houses were presented on a mean luminance gray background. Each image measured 330 x 330 pixels 

and was presented in the center of the screen. Each presentation lasted 500 ms, with a variable ISI 

lasting 690-1250 ms during which a mean luminance gray screen was presented. The total number of 

presentations per run was 36 (12 per stimulus category), with a total average run time of 52.9 s per 

run.   

Data acquisition 
Arrays of subdural ECoG electrodes were implanted for a week as part of epilepsy treatment, for 

localization of the epileptic focus. Grid electrodes (AdTech, Racine, WI) had a measurement surface of 

2.3 mm diameter, with 1 cm inter-electrode spacing, and were positioned directly on the cortical 

surface. A reference electrode was positioned extra-cranially on the mastoid bone. Electrode signals 

were inspected by a clinical professional and excluded from the analysis if they showed major 

recording artifacts or excessive epileptic activity. A total of 80 implanted electrodes were selected for 

this study for subject 1, and 56 electrodes for subject 2, based on cortical location. Data were acquired 

using a 128-channel recording system (Micromed, Treviso, Italy) with a 2048 Hz sampling rate and 

band-pass filtered between 0.15–536 Hz. Electrodes were localized from an MRI co-registered cortical 

tomography (CT) and projected to the cortical surface of each subject (Hermes, Miller, Noordmans, 

Vansteensel, & Ramsey, 2010). We collected one fixed order numerosity and six visual category runs 

for subject 1. For subject 2, we collected one fixed order and two random order numerosity runs, and 

two visual category runs.      

Data preprocessing 
All data processing was performed using MATLAB (2018a, Mathworks, MA, USA) and the Fieldtrip 

toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). Electrodes on the parietal (for subject 1 only), 

temporal, and occipital lobes were selected for analysis. For subject 2, three additional electrodes 

were excluded from further analysis due to poor signal quality. Electrodes included in the analysis 

were not located over the clinically defined seizure focus. All ECoG time course data of each subject 

were first notch-filtered at 50 Hz and 2 octaves (100 and 150 Hz, filter width of 3 Hz) to remove line 

noise and subsequently re-referenced to the common average of all included electrodes. 
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Numerosity experiment processing 
All numerosity data were epoched from 500 ms before until 1000 ms after stimulus onset. Then, the 

first presentation of each numerosity block was removed to remove any numerosity change onset 

effects. This left 20 presentations per numerosity for numerosities 1-7, and 40 presentations of 

numerosity 20 for further analysis. We first removed the evoked signal (average over all epochs with 

the same numerosity) for each numerosity from the common average-corrected signals. Next, we 

calculated the power for each epoch using a fast Fourier transform (FFT) over a frequency range of 2-

122 Hz in steps of 2 Hz with a sliding window width of 300 ms, tapered with a Hanning window to 

attenuate edge effects. The time-window of interest lay between 200 ms before and 700 ms after 

stimulus onset, in steps of 50 ms. The resulting power data were then normalized, so that the 

amplitudes at each frequency contributed equally to the resulting signal (Miller, Sorensen, Ojemann, 

& Den Nijs, 2009; Miller, Zanos, Fetz, Den Nijs, & Ojemann, 2009). These normalized data for each 

presentation were subsequently baseline-corrected by subtracting the temporal mean over 200 ms to 

50 ms preceding stimulus onset. To identify electrodes and frequency ranges of interest, average 

power spectral density (PSD) for each numerosity was plotted for each electrode. All further analyses 

were performed on the high frequency band (HFB; 60-120 Hz). Temporal responses to each 

numerosity were represented by averaging over the HFB for further analysis. Subsequently, tuning 

preferences were identified by taking the mean response for each numerosity over the HFB and a time 

window 0-300 ms after stimulus onset. Initial selection of electrodes for further analysis was based on 

visual inspection of these mean responses. Two electrodes were selected for s1. More electrodes 

showed responses, but their response profiles did not differ from occipital electrode s1-Oc1. Three 

electrodes were selected for s2, with some other electrodes showing similar response patterns. 

Electrode s1-Oc2 was selected based on high responses to all stimulus types in the control experiment. 

The responses of the selected electrodes were then compared by performing a general linear model 

(GLM) analysis with the response to numerosity 20 as baseline, and each other numerosity as a 

categorical variable, defined as the difference between the response to that numerosity and the 

response to numerosity 20. 

Control experiment processing 
All processing steps for the visual categories data were identical to the numerosity data. However, 

exact parameters differed for some steps. These differences are listed next. If analysis steps are not 

mentioned, the parameters were identical to the numerosity data analysis.  

Initial epochs were defined starting 500 ms before until 1750 ms after stimulus onset, and all epochs 

were retained for further analysis. The time-window of interest was 200 ms before until 1250 ms after 

stimulus onset. Mean responses across time and frequency range of interest were taken from 150-

600 ms after stimulus onset. Responses between categories were then compared using a GLM analysis 

with the response to letters as baseline, and each stimulus category as categorical variable.  
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Figure 16: Electrode grid locations and stimulus sequence for the numerosity experiment. A) Lateral 
view with electrode locations (yellow dots) for subject 1. Purple circle indicates the location of parietal 
electrode 1. Light brown circles indicate the locations of occipital electrodes 1 and 2. B) Caudal-lateral 
and medial views with electrode locations (yellow dots) for subject 2. Brown circles indicate the 
locations of occipital electrodes 1,2, and 3. C) Stimulus sequence. Stimuli were presented for 250 ms, 
with a 600 ms inter-stimulus interval. Horizontal colored bars in the upper half and vertical colored 
bars in the lower half of the panel represent the presented numerosity, corresponding to the colored 
block sequence. Each colored horizontal or vertical bar represents one stimulus presentation. Stimuli 
were presented sequentially, with six (numerosity 1-7) or twelve (numerosity 20) consecutive 
presentations. The colored block sequence was repeated four times per run.        

Results 

High-frequency band power reveals numerosity tuned responses in parietal cortex 
Parietal electrode 1 in patient 1 (s1-P1) PSD-plots showed a large response across the HFB to 

numerosity 7 and a smaller response to numerosities further away from 7 (Figures 2A and 3A, see full 

power spectrum per numerosity in Figure 3C). The response to numerosity 7 showed a clear peak 

around 150 ms after stimulus onset (Figure 2B). In line with existing fMRI studies, we performed a 

GLM analysis with 20 as baseline and numerosities 1-7 as categorical variables, showing that the 

responses of s1-P1 to numerosity 7 were significantly higher than for numerosity 20, t(171) = 2.95, p 

= 0.004, even though these numerosities are relatively close to each other in logarithmic space in 

which numerosity response modelling is commonly performed (Dehaene & Changeux, 1993; Nieder 

& Miller, 2003, 2004; Piazza et al., 2004). Responses to numerosity 20 were significantly higher than 

0, t(171) = -2.24, p = 0.03. Responses to numerosity 1 were significantly lower than for numerosity 20, 

t(171) = -2.33, p = 0.02. Responses to other numerosities were not significantly different from 20, 
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t(171) = -1.75-1.70, p = 0.08-0.95. The same response pattern was observed in a split-half analysis 

(Figure S1). We thus observe a clear tuning to numerosity 7 in s1-P1. 

Comparing the response of s1-P1 to numerosity 7 with its response to visual category stimuli shows 

that s1-P1 selectively responds to numerosity, as responses to face, letter, or house-stimuli are not 

significantly different from 0, t(212) = -0.08, p = 0.93  (Figure 3B, see Figure S2 column A for more 

elaborate results for the visual category stimuli).  

 

 

Figure 17: Responses to numerosity stimuli for subject 1. A) Normalized power spectral density across 
frequency and time for parietal electrode 1 for numerosity 1, 4, 7, and 20 (example stimuli as insets). 
Solid black lines represent stimulus onset, dashed black lines represent stimulus offset (total 
presentation time per epoch: 250 ms). B) Mean normalized power in the high frequency band (60-120 
Hz) over time. Shaded regions represent standard error of the mean across stimulus repetitions. Gray 
rectangles represent when a stimulus was presented.  

Response patterns in occipital cortex do not show numerosity tuning  
Response patterns in occipital cortex were either tuned for stimulus energy, or were untuned, i.e. 

responding to all numerosities. Electrodes s1-Oc1 (Figure 3D) and s1-Oc2 (Figure 3E) did not show 

numerosity-tuned responses. Electrode s1-Oc1 showed a general response for numerosity 4 and 

higher. A GLM with 20 as baseline and numerosities 1-7 as categorical variables revealed that the 

response to numerosity 20 was higher than the responses to 1-3: t(171) = -2.24, p = 0.03 (numerosity 

1), t(171) = -2.30, p = 0.02 (numerosity 2), and t(171) = -3.40, p = 0.0008 (numerosity 3). Responses to 

numerosity 20 were significantly higher than 0, t(171) = 4.60, p < 0.001. Responses to numerosity 4-7 

did not differ significantly from 20, t(171) = -0.71-0.21, p = 0.48-0.84. Responses for s1-Oc2 did not 

show any consistency between numerosities, with only the responses to numerosity 3 being 

significantly lower than the ones to numerosity 20, t(171) = -2.48, p = 0.01. All other responses were 

not significantly different from 20, t(171) = -1.67-0.97, p = 0.10-0.61. 
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In contrast to the parietal numerosity-tuned electrode s1-P1, occipital electrodes did respond to 

stimuli in the control experiment (face, letter, and house stimuli; see Figure S2). Responses of  s1-Oc1 

in the control experiment were significantly higher than 0, t(212) = 8.45, p < 0.001, and significantly 

higher for letters than for faces ( t(212) = -2.82, p = 0.005) or houses ( t(212) = -4.33, p < 0.001). 

Responses for s1-Oc2 were consistently higher than 0, t(212) = 8.09, p < 0.001, and were not 

significantly different between stimulus categories (letters versus faces t(212) = -0.47, p = 0.66; letters 

versus houses t(212) = -1.34, p = 0.18). In summary, s1-Oc1 and s1-Oc2 do not exhibit numerosity-

tuned response patterns, but do show responses to face, letter, and house stimuli. 

Response patterns for subject 2 (s2-Oc1, s2-Oc2, and s2-Oc3) were inconsistent with patterns 

expected for numerosity tuning. Responses for fixed order numerosity stimuli were variable for s2-

Oc1 (Figure 3F) and s2-Oc3 (Figure 3H), but consistent between numerosities for s2-Oc2 (Figure 3G). 

For the random order version of the numerosity experiment, response patterns for s2-Oc1-3 (Figure 

3I-K) showed much clearer trends.  

For s2-Oc1 (Figure 3F, I), responses to 20 were higher than all other numerosities except 5 for the fixed 

order run, and higher than all other numerosities for the random order runs with responses steadily 

increasing with numerosity. A GLM with 20 as baseline and numerosities 1-7 as categorical variables 

revealed that for the fixed order run, responses to 20 were significantly higher than responses to 

numerosity 1,2,4, and 7, t(154) = -3.57, -3.16, -2.21, -2.18 respectively, with p < 0.001, p = 0.002, 0.03, 

0.03. For the random order runs, responses to 20 were significantly higher than those to numerosity 

1-4, t(154) = -3.78, -3.11, -2.80, -2.18 respectively, with p < 0.001, p = 0.002, 0.006, 0.03. Thus, 

responses consistently increased with numerosity for the random order runs, consistent with a 

response increase with increasing stimulus energy. This pattern was less clear for the fixed order run.  

For s2-Oc2 (Figure 3G, J), responses were consistent between numerosity and fixed and random order 

runs. A GLM showed that responses to 20 were significantly higher than 0 for both stimulus orders, 

t(154) = 13.57, 10.10 (fixed and random order respectively), p < 0.001. For the fixed order run, 

responses to numerosity 2 were on average significantly lower than for 20, t(154) = -2.32, with p = 

0.02 with a difference of 0.18 between the two. No numerosity responses were significantly different 

from 20 for the random order runs. In summary, s1-Oc2 did not show a numerosity-tuned response 

pattern, but rather responded to all numerosity stimuli virtually equal. This did not differ between run 

types.  

For s2-Oc3 (Figure 3H, K), responses are highest for numerosity 20 for both the fixed and random 

order runs. For the fixed order run, responses to numerosity 20 are on average significantly higher 

than all other responses except numerosity 6, t(154) = -4.04- -2.28, p < 0.001- 0.03. For numerosity 6: 

t(154) = -1.89, p = 0.06. The response pattern is inconsistent across numerosities, with neither a 

constant increase, nor a constant overall response, though still responsive to all visual stimuli. For the 

random order runs, responses to numerosity 20 were on average higher than all numerosities, t = -

6.00- -2.87, p<0.005. Responses generally increased with numerosity. To summarize, s2-Oc3 

consistently responds most to numerosity 20, with a general increased response with numerosity for 

the random order runs. 

All in all, response patterns of electrodes in subject 2 are inconsistent with numerosity-tuned 

responses. However, response patterns of s2-Oc1 and s2-Oc3 correspond with responses of neuronal 

populations sensitive to stimulus energy, as increasing numerosity of a stimulus display increases its 

stimulus energy. This type of response is typically found in the visual system (Harvey & Dumoulin, 

2017). Responses of s2-Oc2 are consistent with neuronal populations that respond non-selectively to 
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any transient visual information. Note that the coverage for s2 differed from s1. For s2, coverage did 

not include the equivalent of the parietal region covered by s1-P1. 

 

Figure 18: Average responses to numerosity and visual category stimuli. A) Mean normalized power 
across high gamma (60-120 Hz) across a time window 0-300 ms after stimulus onset for electrode s1-
P1. B) Electrode s1-P1: mean normalized power across high gamma (60-120 Hz) across 150-600 ms 
after stimulus onset for visual category stimuli and mean normalized power as in 3A for numerosity 7. 
C) Power spectrum log-log plot averaged over epochs (0-300 ms after stimulus onset) with the same 
presented numerosity for s1-P1. D-K) Mean normalized power across high gamma (60-120 Hz) across 
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a time window 0-300 ms after stimulus onset for several electrodes in s1 (D, E) and s2 (F-K). F-H) For 
fixed-order numerosity stimulus presentation, subject 2. I-K) Same electrodes as in F-H, for random-
order numerosity stimulus presentation. 

Discussion 
We provide intracranial recordings of numerosity-tuned neuronal populations in humans. We show 

that the response pattern of this population is distinct from the response pattern of electrodes that 

visually responsive per se, which showed either a flat or an increasing response with numerosity. 

Furthermore, we show that the numerosity-tuned population is unresponsive to images of faces, 

letters, and houses.  

With the identification of numerosity-tuned neuronal populations, we attempt to bridge the gap 

between non-human electrophysiology and human fMRI. Thus far, recordings in humans have been 

limited to fMRI, which has a limited temporal resolution. The current recordings provide high spatial 

and excellent temporal resolution, making it possible to look at transient responses of numerosity-

tuned neuronal populations in humans. Additionally, intracranial recordings measure a different 

aspect of neuronal activity when compared to fMRI, with ECoG recording electric signals (similar to 

electrophysiology, but in humans) and fMRI measuring the hemodynamic consequences of neuronal 

activity. Even though these fMRI signals are correlated with HFB power (Hermes et al., 2012; Manning, 

Jacobs, Fried, & Kahana, 2009),  the relationship between the two is not completely clear.  

The location of the numerosity-tuned electrode is consistent with the most robust numerosity map 

identified in previous fMRI results (Eger et al., 2009; Harvey & Dumoulin, 2017; Knops et al., 2014; 

Piazza et al., 2004). Moreover, the response profile of the parietal numerosity-tuned neuronal 

population was distinctly different from the response profiles in occipital locations, for both the 

numerosity and faces/houses/letters control experiment. 

Even though the current results are indicative of numerosity-tuned responses in the human parietal 

cortex, the identified numerosity-tuned neuronal populations underlie only a single electrode in a 

single subject. A more parietal-frontal coverage would be desirable to cover more locations previously 

identified using fMRI. A previous study using ECoG also shows that there are neuronal populations 

selective for mathematical tasks in these regions (Daitch et al., 2016). Additionally, having the 

aforementioned coverage on the right hemisphere would be optimal, as topographic numerosity 

maps are more robust in this hemisphere (Harvey & Dumoulin, 2017; Harvey et al., 2013). However, 

electrode grid coverage is entirely dependent on clinical purposes, greatly reducing the possibility of 

covering these exact locations and limiting the available time to collect data.  

As the numerosity stimuli for subject 1 -in which we identified the numerosity-tuned electrode- were 

presented in a predictable order, some order effects might have been present in the data. To reduce 

these effects, we removed every first presentation from a stimulus block with the same numerosity. 

However, these potential order effects combined with the fact that all data came from a single run, 

make replication with a (semi-) random presentation order over multiple runs desirable.     

Conclusion 
We provide intracranial recordings of numerosity-tuned neuronal populations in human parietal 

cortex, thereby linking animal electrophysiology and fMRI findings on numerosity tuning. Moreover, 

we show that the response profile of parietal numerosity-tuned neuronal populations is distinctly 

different from responses to the same stimuli in the occipital lobe. 
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Supplementary information 

 

Figure S 5: Split half analysis of responses of parietal electrode 1 (s1-P1) for all numerosity stimuli 
shows a consistent response preference for numerosity 7. Mean power across high frequency band 
(60-120 Hz) across a time window 0-300 ms after stimulus onset for odd (A) and even (B) presentations, 
and for the first (C) and second (D) half of the run.  
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Figure S 6: Responses to face, letter, and house stimuli for subject 1. A-C) Different columns represent 

different electrodes (s1-P1, s1-Oc1, s1-Oc2) Top row: Normalized power spectral density across 

frequency and time for three electrodes for epochs containing letter presentations. Middle row: Mean 

normalized power in the high frequency band (60-120 Hz) over time. Different trace colors represent 

different stimulus condition: faces, letters, and houses (see inset). Shaded regions represent standard 

error of the mean across stimulus repetitions. Gray rectangles represent when a stimulus was 

presented. Bottom row: Mean power across the high frequency band (60-120 Hz) across 150-600 ms 

after stimulus onset. Different colors represent different stimulus conditions. The numerosity-selective 

electrode s1-P1 (column A) does not show a significant response to any of the stimulus categories. 

Occipital electrode s1-Oc1 (column B) shows a clear preference for letter stimuli, while also responding 

to general visual information from numerosity stimuli (see Figure 3D). Occipital electrode s1-Oc2 

(column C) shows a general response for all three stimulus categories, while not responding to 

numerosity stimuli (see Figure 3E).       
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In this thesis, I have discussed how information processing streams in the human brain are organized 

across cortical depth, and methods that we can use to investigate this. Ultra-high field sub-

millimeter (f)MRI has seen significant development over the last ten years (for reviews, see De 

Martino et al., 2018; Dumoulin, Fracasso, van der Zwaag, Siero, & Petridou, 2018; Lawrence, 

Formisano, Muckli, & de Lange, 2017; Petridou & Siero, 2017; Self & Roelfsema, 2017; Stephan et al., 

2019). So much so, that it is now possible -for the first time in history- to study laminar information 

processing in humans without having to perform invasive procedures to get a high enough spatial 

resolution. We have seen that, although laminar fMRI is very promising, it is difficult to perform and 

there are several significant challenges we need to overcome, both in terms of data acquisition and 

analysis. Although analysis techniques from regular-resolution fMRI can largely be used for laminar 

fMRI, there are potential complications. One of the main complications is that, due to directional 

blood draining across cortical depth, the measured BOLD signal from each neuronal population is 

not only dependent on the signal from that population, but also on the fMRI signal from deeper-

lying neuronal populations (Koopmans et al., 2011; Markuerkiaga et al., 2016). Traditional fMRI 

analysis techniques assume that the signals from two different neuronal populations are 

independent. Therefore, these techniques might not be applicable for laminar fMRI, potentially 

resulting in a biased picture of activation patterns. One of the fundamental assumptions of most 

analysis techniques is that the relationship between neuronal activation and the measured signal is 

linear. I have assessed the requirements for this assumption in Chapters 2 & 3.  

While early visual and (sensori)motor processing at the laminar level is relatively well-studied (e.g. De 

Martino et al., 2013; Fracasso, Petridou, & Dumoulin, 2016; Huber et al., 2014; Kok, Bains, Van Mourik, 

Norris, & De Lange, 2016), much is still unknown about laminar processing for any higher-order 

processes. These processes are most easily studied in humans, as they can easily comply with, and 

respond to, complex instructions that are (usually) essential in studying higher-order processes. With 

laminar fMRI, it is now possible to start investigating laminar processing of higher-order information. 

In Chapter 4, I used laminar fMRI to study higher-order information processing in the form of 

numerosity-tuning properties across cortical depth. In Chapter 5, I have investigated transient 

numerosity-tuned responses using ECoG and compared the numerosity response profiles between 

numerosity-selective and visual cortex. 

BOLD-response linearity holds for laminar fMRI of the visual system 
The linearity between neuronal activation and the measured BOLD signal can be confirmed by 

assessing the two main assumptions for a linear system: scaling, and temporal additivity. The scaling 

assumption tells us that the signal measured from a stimulus that elicits e.g. twice the neuronal 

response amplitude, should be twice the original signal amplitude. The temporal additivity assumption 

tells us that the signal measured from two stimuli being presented close in time, should be equal to 

the sum of measured signal caused by each stimulus separately. For this summation, the second signal 

is shifted by the amount of time between the two stimuli and added to the first response. The linearity 

of the BOLD response has been shown to (mostly) hold for regular fMRI (see e.g. Boynton, Engel, 

Glover, & Heeger, 1996; Boynton, Engel, & Heeger, 2012; Cohen, 1997; Friston, Jezzard, & Turner, 

1994; Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000).   

Although applying laminar fMRI to neuroscientific questions is the ultimate goal, it is important to first 

confirm that the two assumptions for a linear system hold for this extremely promising field. This way, 

we can make sure that our interpretations and measurements are indeed the result of experimental 

manipulations, and not of an overlooked assumption that may have been violated. Therefore, I 

assessed the linearity of gradient-echo (GRE) BOLD-based fMRI signal amplitude measurements across 
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cortical depth in Chapters 2 & 3 of this thesis, using the visual system as a testbed. I found that both 

assumptions for a linear system generally hold. In Chapter 2, I showed that the response amplitude 

across cortical depth resulting from one stimulus contrast, is an excellent predictor for the response 

amplitude across cortical depth for another stimulus contrast. I thus confirmed that, despite the 

directional blood draining across cortical depth and resulting dependencies, the scaling assumption 

for a linear system holds. In Chapter 3, I showed that at each cortical depth responses to shorter 

stimulus presentations, shifted in time and added together, are good predictors for responses to 

longer stimulus presentations. In summary, I have shown that the linearity assumptions that are 

required to perform traditional fMRI analyses, are generally met for laminar fMRI in the visual system. 

Limitations 
As with any other study, there are limitations to this linearity assessment. First of all, I have only 

carried out this assessment in a small part of the brain: the early and intermediate visual cortex (visual 

field maps V1, V2, and V3). While these are important and often-studied parts of the brain, they only 

cover a small portion of the cortex. We know from previous studies that BOLD responses differ 

between for instance visual and motor cortices (see e.g. Birn, Saad, & Bandettini, 2001). This may be 

exacerbated across cortical depth. Therefore, care should be taken when extrapolating the results 

from this thesis to regions of the brain that do not process visual information, although they may well 

still hold. Secondly, the acquisition method used for all experiments in this thesis is suboptimal for 

recording microvascular signals, as GRE echo planar imaging (EPI) is also sensitive to the 

macrovasculature (Huber et al., 2017). The latter is less layer-specific, resulting in a contamination of 

the more layer-specific signal from the microvasculature. Alternative acquisition sequences that are 

less sensitive to the macrovasculature, as discussed in the general introduction, are in my opinion 

likely to be the way forward for the field of laminar fMRI. However, as GRE-EPI remains the most 

widely available and consistently used acquisition method to this day, our linearity assessment is 

relevant for a substantial part of the current laminar fMRI field. Moreover, if any sequence is likely to 

be sensitive to nonlinearities in the fMRI signal across cortical depth, it is arguably GRE-EPI (as 

discussed at length in Chapter 2). Thus, as we find only limited nonlinearities using GRE-EPI, it is likely 

that other acquisition protocols suffer from even less nonlinear interactions. Lastly, I only used 

luminance contrast and presentation duration manipulation to assess the scaling and temporal 

additivity assumption respectively. While luminance contrast manipulations are often used for 

fundamental research and have been used extensively in regular-resolution fMRI linearity 

assessments, they are only a small part of a vast array of possible stimulus manipulations such as 

spatial frequency, color, orientation, density, etc. Linearity across cortical depth could be assessed for 

different stimulus properties, but this would require many scans, and would be very time-consuming. 

Moreover, an exhaustive study of all stimulus properties would be virtually impossible, as there are 

many. Instead, we decided to limit our efforts to contrast and presentation duration manipulation. 

The main motivation for this was that these were the stimulus properties that were varied in early 

linearity assessments for regular-resolution fMRI (see e.g. Boynton, Demb, Glover, & Heeger, 1999; 

Boynton et al., 1996; Friston et al., 1994).  

  



86 | General discussion 
 

Assessing higher-order cognitive processing across laminae: 

numerosity 
Once I confirmed that the linearity assumptions hold for laminar fMRI analysis, we were ready to apply 

high-resolution imaging methods to neuroscientific questions. Most laminar fMRI studies have 

focused on early sensory processing (for reviews, see De Martino et al., 2018; Dumoulin, Fracasso, van 

der Zwaag, Siero, & Petridou, 2018; Lawrence, Formisano, Muckli, & de Lange, 2017; Petridou & Siero, 

2017; Self & Roelfsema, 2017; Stephan et al., 2019; Yacoub, De Martino, & Ugurbil, 2018). However, 

relatively little is known about laminar processing for higher-order information. Thus, we set out to 

investigate exactly this. We used sub-millimeter fMRI to study laminar processing in numerosity-

selective cortical regions. Numerosity perception refers to the set size of a group of items and is a 

higher-order process. Response curves for numerosity were estimated using a numerosity-tuning 

forward model previously developed in our group (Harvey, Klein, et al., 2013). For each neuronal 

population in the region of interest, I estimated the numerosity to which a population responded most 

(the preferred numerosity), and the numerosity range to which a population responded (the tuning 

width).  

Assuming that laminar processing for numerosity information follows a similar pattern as this early 

visual cortex model, we would expect one of two patterns for tuning width across cortical depth: A U-

shaped profile, or an inverted U-shaped profile. In early visual cortex, ascending information arrives 

in layer IV (central layer), and feedback information arrives in laminae above and below it (the supra- 

and infragranular layers; Felleman & Van Essen, 1991; Shipp, 2007). As information is processed more 

extensively with distance from layer IV, the (population) receptive field size profile across cortical 

depth is U-shaped (Fracasso, Petridou, et al., 2016; Hubel, 1988; Self et al., 2019). The rationale for 

the U-shaped profile for laminar processing of numerosity information would be identical to this: more 

extensive information processing results in increasing tuning widths with distance from layer IV. An 

inverted U-shape could be expected as, rather than generalizing the incoming information (as in early 

visual cortex), numerosity processing may sharpen the responses outwards from layer IV, as this 

processing should ultimately result in one specific output (e.g. perception of the set size ‘5’). However, 

there is no direct sensory innervation to the numerosity-selective cortex, i.e. there is no direct 

correspondence between the low-level visual properties of the numerosity stimuli (such as stimulus 

size, total surface area, shape, etc.) and the responses of numerosity-selective neuronal populations 

(Harvey, Klein, et al., 2013). Therefore, the tuning width profile across cortical depth may also differ 

from the above predictions.  

Tuning width in numerosity-responsive cortex does not vary across cortical depth 
In Chapter 4, I investigated the tuning width across cortical depth in a numerosity-responsive region 

of interest, NPC1 (Harvey, Klein, et al., 2013). I found that tuning width increases with increasing 

preferred numerosity for most cortical depth bins. This is consistent with previous results from fMRI 

studies at regular resolution (Harvey & Dumoulin, 2017; Harvey, Klein, et al., 2013). Contrary to the 

hypotheses, there were no consistent significant differences in tuning width across cortical depth. For 

this, it did not matter whether I took the average tuning width for each cortical depth bin, or extracted 

the tuning widths at a set numerosity from a linear fit for each cortical depth bin. Two potential 

explanations for this pattern across cortical depth come to mind. The first one is that the U or inverted 

U-shaped pattern was lost in the measurement noise, stemming from factors such as subject motion, 

scanner-related instabilities, and/or physiological noise from breathing and heartrate. However, 

general model fit quality was fine, albeit lower than for previous -non-laminar- fMRI studies. This is 

easily explained by the reduced signal-to-noise ratio (SNR) that comes with increasing spatial 

resolutions. To reduce the measurement noise, I could increase the SNR by adding additional scanning 
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sessions for the subjects, and potentially by exploring alternative/additional denoising strategies and 

voxel selection criteria. The second explanation for the absence of a(n inverted) U-shaped tuning 

width profile, is that laminar organization of maps involved in higher cognitive functions (in this case 

numerosity) may be constructed differently from maps innervated by our sensory organs. Population 

receptive field sizes in the visual system increase roughly five-fold between visual field maps across 

the visual processing hierarchy (Harvey & Dumoulin, 2011). However, previous comparisons across a 

network of numerosity-selective cortical maps showed only small differences in tuning width between 

different numerosity maps (Harvey & Dumoulin, 2017). Seeing that tuning width differences between 

cortical maps are mostly negligible, it is entirely plausible that the same holds for numerosity 

processing across cortical depth. Moreover, little is known about laminar information processing 

outside the primary sensory cortices. Assuming the same laminar information processing flow for the 

entire brain is an attractive hypothesis, but as I found in Chapter 4, this assumption may not hold.   

Intracranial recordings reveal numerosity-tuned neuronal populations  
While laminar fMRI has a great spatial resolution, the inherently sluggish temporal nature of the BOLD 

response prevents us from measuring neuronal responses at a great temporal resolution using fMRI 

(Gazzaniga et al., 2014). To investigate brain processes at a higher temporal resolution while 

simultaneously not losing too much spatial resolution, I needed to revert to invasive neuroimaging 

methods. In Chapter 5, I used electrocorticography (ECoG) to identify transient numerosity-tuned 

responses in humans. This imaging technique has a spatial resolution of 1-2 mm, and a temporal 

resolution in the millisecond range (Gazzaniga et al., 2014). Both subjects were patients who 

temporarily had electrode grids implanted directly on the cortical surface for clinical purposes. While 

these patients are relatively rare, it is even rarer that the coverage of the electrode grids includes the 

parietal cortex, where one of the most reliably identifiable numerosity map (in fMRI studies) is located 

(Harvey, Klein, et al., 2013). We presented numerosity stimuli that were very similar to the laminar 

fMRI study from the previous chapter. I identified a neuronal population that responds selectively to 

numerosity 7, with a decreasing response to numerosities that lie numerically further away from it. 

This response was limited to only the high-frequency band. The location of this neuronal population 

could be traced to roughly the location of NPC1 (as studied in Chapter 4); one of the numerosity maps 

located around the intraparietal sulcus. Furthermore, this neuronal population did not respond to 

category-specific (face, house, or letter) stimuli, further supporting its response specificity, and 

excluding the possibility that this population was generally active for any visual input (as would be 

expected for early visual electrodes). I further support the latter claim by showing that the response 

pattern of the numerosity-selective neuronal population is fundamentally different from that of 

neuronal populations in early/intermediate visual cortex. In summary, I identified a neuronal 

population that showed a numerosity-tuned response pattern in a similar location as in previous fMRI 

experiments (Harvey & Dumoulin, 2017; Harvey, Klein, et al., 2013). 

Limitations 
The identified numerosity-selective neuronal population underlies a single electrode in a single 

subject. As electrode grids covered the parietal lobe in only one subject, it is not surprising that I find 

a limited number of electrodes. However, a single electrode is very little to go on, even though the 

location corresponds to previous fMRI experiments, it appears to be selectively responsive to 

numerosity stimuli, and is tuned to a specific numerosity. The electrode grids in the second subject 

covered most of the occipital cortex, which provided a clear image of what low-level visual responses 

to the numerosity stimuli should look like. Nonetheless, the coverage for this subject was suboptimal 

for identification of numerosity-selective neuronal populations. Thus, it is desirable to increase the 

number of subjects for this study, even though parietal electrode coverage is rare. As the keen reader 
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may have spotted, I do not make full use of the advantages in temporal resolution that ECoG has to 

offer. So far, the main analysis was focused on the average response across a certain time window. I 

thus do not specifically investigate any high-resolution temporal patterns. This would be of interest as 

this is a major benefit of ECoG over fMRI. 

Laminar fMRI for clinical applications 
Laminar fMRI can not only be used to study higher-order visual processing, but also for studying clinical 

conditions. Thus far, researchers have been left guessing as to the explanation of certain findings in 

clinical populations, such as macular degeneration (MD). Patients suffering from MD have a defect in 

the macula (part of the retina where most cone-type photoreceptors are located) that results in a 

blurred or complete absence of vision in the center of the visual field. It has been argued that in 

patients with MD, feedback connections to early visual cortex representations of the macula have 

been spared, while feedforward connections to these areas are absent. This theory, however, is based 

on a regular resolution fMRI-study (Masuda et al., 2008). This study has shown that there is task-

related activation in regions of the primary visual cortex that represent the macula, which should not 

be activated as they do not receive any visual input. It was hypothesized that this activation was the 

effect of spared feedback interactions to the macular representations in the primary visual cortex. 

With laminar fMRI, it is possible to investigate this hypothesis, thus expanding our knowledge of 

information processing in clinical populations. Of course, laminar fMRI can be applied to better 

understand ample other clinical conditions, such as retinitis pigmentosa, achiasma, amblyopia, and 

albinism. It is thus a promising tool to further our understanding of numerous conditions, both in the 

visual as well as in other domains.  
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Conclusion 
All in all, I have investigated laminar processing of higher-order (visual) information in this thesis. The 

chosen methods for this were laminar fMRI and intracranial recordings. I first set out to investigate 

whether the linearity assumptions that underly most fMRI analyses, hold for laminar fMRI. I have 

shown that both linearity assumptions for laminar fMRI are met for recordings in the visual system. 

We can thus apply previously developed fMRI analyses to laminar fMRI data, without having to 

implement major corrections for BOLD nonlinearities. Next, I used this knowledge in my assessment 

of laminar processing of numerosity information. Using laminar fMRI, I showed that laminar 

information processing in numerosity-responsive parietal cortex is arranged differently from laminar 

information processing in the visual cortex. This observation was further supported using intracranial 

recordings, showing that the neuronal population response pattern in numerosity-responsive parietal 

cortex is distinct from response patterns in the visual cortex. 

While fMRI has been around for a couple decades, laminar fMRI has only become feasible in humans 

less than a decade ago. It is a big step forward in the level of detail at which we can record the structure 

and function of the brain, as it for the first time allows for the non-invasive investigation of information 

processing across cortical depth. However, conducting laminar fMRI research remains challenging to 

this day as data acquisition, processing, analysis, and interpretation all require additional steps, 

precision, and considerations. Substantial progress has been made in the laminar fMRI field, slowly 

converging towards a set of common acquisition, processing, and analysis methods. A considerable 

amount of fundamental research is still being carried out in this field, with neuroscientific applications 

beginning to emerge slowly but steadily. At the end of the day, laminar fMRI is a relatively new, quickly 

developing, and very exciting field with promising applications for neuroscience across the board.  
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Zicht is een van de belangrijkste zintuigen. Hoewel de ogen belangrijk zijn in het verzamelen van 

visuele informatie, gebeurt het uiteindelijke ‘zien’ in de hersenen. Zicht is dusdanig belangrijk dat in 

mensen ongeveer een kwart van de grote hersenen bezig is met het verwerken en interpreteren van 

visuele informatie. Vanuit het oog reist visuele informatie via onder andere de oogzenuw naar de 

occipitaal kwab helemaal achterin het brein. Helemaal achterin de occipitaal kwab, verborgen tussen 

de twee hersenhelften in, ligt de primaire visuele cortex. Dit is de plek waar de eerste verwerking van 

de visuele informatie plaatsvindt. Vanuit de primaire visuele cortex wordt de informatie doorgestuurd 

naar andere hersengebieden, voornamelijk in de occipitaal en pariëtaal kwab.  

Ieder hersengebied heeft zijn eigen functie. Hoe meer de visuele informatie al is verwerkt 

voordat deze een hersengebied bereikt, hoe complexer de informatie is die door dat gebied verwerkt 

wordt. Hierbij wordt onderscheid gemaakt tussen vroege waarneming en late waarneming. Vroege 

waarneming is gericht op de elementaire eigenschappen van beelden, ook wel stimuli genoemd. Zo 

verwerkt de primaire visuele cortex bijvoorbeeld informatie over contrast en verwerkt een ander 

gebied kleur-, en weer een ander gebied bewegingsinformatie. Late waarneming is gericht op de 

verwerking van gehele objecten in visuele informatie, bijvoorbeeld het detecteren van een gezicht in 

visuele informatie. Er zijn ook meerdere gebieden die zich bezighouden met hoeveelheidsperceptie. 

Deze gebieden houden zich niet bezig met ‘simpele’ stimulus eigenschappen als kleur en richting, maar 

verwerken vrijwel uitsluitend informatie over hoeveel dingen (bijvoorbeeld auto’s op een rustige 

parkeerplaats of koekjes op een bord; zie Figuur 4 in de Introductie) er zijn binnen ons visuele veld op 

een bepaald moment. Dit gaat dusdanig automatisch dat we vaak in één oogopslag zien hoeveel 

relevante dingen zich ergens bevinden, maar alleen als het een klein aantal is (tot 5 à 6). Probeer het 

maar eens met bijvoorbeeld de borden op tafel of objecten aan een muur.  

De hersenschors is de buitenste 1,5 – 4 millimeter van de grote hersenen. In deze laag, ook wel cortex 

of grijze stof genoemd, bevindt zich het grootste deel van de cellichamen van de ruwweg 100 miljard 

hersencellen. Hier vindt ook de meeste informatieoverdracht plaats tussen de hersencellen. De cortex 

is in het algemeen op te delen in zes verschillende lagen, genummerd met de Romeinse cijfers I-VI. 

Iedere laag ziet er onder een microscoop net een beetje anders uit (zie Figuur 1 in de Introductie). Een 

deel van de informatieverwerking in de cortex vindt plaats tussen verschillende hersengebieden. Het 

grootste deel vindt echter plaats tussen neuronen (zenuwcellen) binnen en vooral tussen de lagen van 

de cortex. 

 In de visuele cortex komt informatie binnen in laag IV. Deze informatie verspreidt zich van 

daaruit lateraal naar de diepere (lagen V en VI) en hoger liggende lagen (dichter bij het oppervlak van 

de cortex; lagen I, II en III). Terugkoppeling vanuit hersengebieden later in de verwerkingshiërarchie 

arriveert in alle lagen behalve laag IV. Deze terugkoppeling kan bestaan uit bijvoorbeeld informatie 

over op welk deel van een stimulus je je aandacht moet vestigen. 

Neuronen hebben zuurstof nodig om te kunnen functioneren. Ze kunnen namelijk zelf geen 

energie opslaan. Zuurstof wordt aangeleverd door het bloed. Grote bloedvaten liggen op het 

oppervlak van de cortex. Deze vertakken zich in kleinere bloedvaten die haaks op het corticale 

oppervlak staan. Deze ‘dalende’ bloedvaten zorgen voor de toevoer van zuurstofrijk bloed. 

Zuurstofarm bloed wordt vervolgens afgevoerd door ‘stijgende’ bloedvaten die in tegenovergestelde 

richting naar het corticale oppervlak gaan en vervolgens samenkomen in de grote bloedvaten die daar 

liggen (zie Figuur 2 in de Introductie). Doordat de stijgende bloedvaten vaak bloed afvoeren dat 

afkomstig is uit verschillende corticale lagen, is de totale hoeveelheid zuurstofarm bloed in zo’n 

bloedvat in een bepaalde laag de combinatie van zuurstofarm bloed uit de betreffende laag en het 

zuurstofarme bloed uit andere lagen. De lokale hoeveelheid zuurstofarm bloed is dus afhankelijk van 

de betreffende laag en alle onderliggende lagen.  
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Magnetic resonance imaging (MRI) is een niet-invasieve beeldvormingstechniek waarbij door middel 

van een grote elektromagneet beelden van het lichaam gemaakt worden. Deze techniek kan ook 

gebruikt worden om hersenactiviteit in kaart te brengen; dit heet functionele MRI (fMRI). Met fMRI 

meet je de balans tussen zuurstofrijk en zuurstofarm bloed en daarmee, indirect, de activiteit van 

neuronen. Tot voor kort was het alleen mogelijk om informatieverwerking in detail te bestuderen in 

dieren, door middel van operationeel geplaatste elektroden. De afgelopen jaren zijn MRI-magneten 

echter steeds sterker geworden. Hierdoor is de kwaliteit en resolutie van de fMRI beelden sterk 

toegenomen. Tegenwoordig zijn er scanners met extreem sterke magneten van 7 Tesla beschikbaar 

voor hersenonderzoek. Dit is equivalent aan ongeveer 1500 koelkastmagneten. Met deze scanners is 

het mogelijk om hersenfuncties te onderzoeken met een resolutie van minder dan een millimeter. 

Hiermee is het mogelijk om informatieverwerking tussen de verschillende lagen van de cortex te 

onderzoeken, waar een groot deel van de informatieverwerking plaatsvindt. Daarom noemen we deze 

techniek ook wel laminaire fMRI.  

 Laminaire fMRI is in de afgelopen jaren gebruikt om onder andere de vroege visuele verwerking te 

bestuderen in mensen. Hoewel we hiervan al veel geleerd hebben, is het interessanter om late visuele 

verwerking te bestuderen. Deze is moeilijk te onderzoeken in dieren, maar een stuk makkelijker in 

mensen. In dit proefschrift onderzoek ik de laminaire organisatie van late visuele 

informatieverwerking. Ik gebruik hiervoor voornamelijk laminaire fMRI, maar ook intracraniale (onder 

de schedel) metingen.  

Een van de fundamentele aannames van algemene fMRI dataverwerking en interpretatie is dat er een 

evenredig verband bestaat tussen neuronale activiteit en het gemeten fMRI signaal. Dit wordt ook wel 

de lineariteit aanname genoemd. Echter, vanwege de afhankelijkheid van het lokale fMRI-signaal van 

signalen in andere lagen in de cortex, is de lineariteit aanname mogelijk niet geldig. Dit kan resulteren 

in verkeerde uitkomsten die kunstmatig hoog of laag zijn, wat kan leiden tot een verkeerde 

interpretatie van de resultaten. In Hoofdstukken 2 & 3 beoordeel ik de geldigheid van de lineariteit 

aanname voor laminaire fMRI. Hierin laat ik zien dat aan de eisen op dit punt voldaan wordt voor 

laminaire fMRI-metingen van visuele informatieverwerking. Hiermee leggen we de grondslag voor een 

bredere toepassing van laminaire fMRI. 

In Hoofdstuk 4 pas ik laminaire fMRI toe op een neurowetenschappelijk vraagstuk: hoe verloopt de 

informatieverwerking tussen verschillende lagen van de cortex in een hersengebied dat 

gespecialiseerd is in hoeveelheidsperceptie? Hiervoor gebruiken we een data-analysemethode om de 

verwachte reactie van een groep neuronen te voorspellen, die we vervolgens optimaliseren naar de 

gemeten reactie. Aan de hand hiervan kunnen we de hoeveelheid bepalen waarop een groep 

neuronen het sterkst reageert. Daarnaast kunnen we ook bepalen op welke hoeveelheden deze 

groepen neuronen specifiek reageren; dit noemen we ook wel de afstembreedte. Ik laat zien dat de 

verschillende corticale lagen geen voorkeur hebben voor een bepaalde hoeveelheid. Daarnaast toon 

ik aan dat de afstembreedte nagenoeg gelijk is tussen de verschillende corticale lagen. In de primaire 

visuele cortex varieert een vergelijkbare maat tussen corticale lagen, waarbij deze het kleinste is in 

laag IV en groter wordt richting de diepere en hoger liggende lagen. Hierdoor ontstaat een U-vormig 

profiel. Dit profiel is een directe afspiegeling van de corticale informatieverwerking, waarbij informatie 

aankomt in laag IV en verwerkt wordt richting zowel de diepere als hoger liggende lagen. Aangezien 

de afstembreedte in de hoeveelheidscortex een nagenoeg horizontale lijn laat zien over corticale 

diepte, concludeer ik dat de informatiestromen voor late visuele verwerking (in de 

hoeveelheidscortex) fundamenteel verschillen van die voor vroege visuele verwerking (in de visuele 

cortex).  



107 | Nederlandse samenvatting 
 

In Hoofdstuk 5 zet ik de onderzoekslijn van het vorige hoofdstuk voort. Ik gebruik in dit hoofdstuk 

intracraniale metingen (electrocorticografie; ECoG) om de reactie over tijd te meten van groepen 

neuronen. Het grote voordeel van intracraniale metingen is dat deze op de milliseconde precies de 

elektrische signalen van neuronen meten, in tegenstelling tot laminaire fMRI waarmee deze signalen, 

indirect, slechts eens per minimaal een seconde kunnen worden gemeten. Voor intracraniale 

metingen wordt de schedel verwijderd en worden er elektroden direct op het oppervlak van de 

hersenschors geplaatst. Deze operatie brengt logischerwijs risico’s met zich mee en wordt daarom 

alleen uitgevoerd als het medisch noodzakelijk is. Vaak is dit in het geval van epilepsie, waarbij de 

elektroden helpen met het opsporen van de bron van de epilepsie. Terwijl de elektroden op het brein 

aanwezig zijn, nemen sommige patiënten deel aan wetenschappelijk onderzoek. Wij hebben tijdens 

een van deze onderzoeken stimuli met verschillende hoeveelheden laten zien aan deze patiënten. Ik 

laat zien dat zich in de pariëtaal kwab een groep neuronen bevindt die selectief reageert op bepaalde 

hoeveelheden, op een locatie die overeenkomt met die in het vorige hoofdstuk (gemeten met fMRI). 

Daarnaast toon ik aan dat de reacties van deze groep neuronen duidelijk verschillen van reacties van 

neuronen in de visuele cortex.  

In dit proefschrift laat ik zien dat laminaire fMRI toegepast kan worden op late visuele 

waarnemingsprocessen. Eerst heb ik een aantal aannames getest over het verband tussen neuronale 

activiteit en het fMRI signaal die mogelijk niet geldig zijn voor laminaire fMRI. Ik heb aangetoond dat 

deze aannames veilig gemaakt kunnen worden voor laminaire fMRI van visuele verwerking. Daarnaast 

heb ik deze kennis gebruikt in het onderzoeken van laminaire responsen in een hersengebied dat 

informatie over hoeveelheden verwerkt. Daarmee heb ik aangetoond dat de informatieverwerking 

voor deze late visuele verwerking fundamenteel verschilt van informatieverwerking tijdens vroege 

visuele verwerking. Dit heb ik verder onderbouwd door middel van intracraniale metingen in 

epilepsiepatiënten. Al met al is laminaire fMRI een veelbelovende techniek waarmee we 

neurowetenschappelijke vraagstukken kunnen beantwoorden die tot voor kort moeilijk te bestuderen 

waren. 
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